论文中文题名: | 黄土高原采煤沉陷区土壤水分变化多源遥感反演与分析 |
姓名: | |
学号: | 21210226097 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山沉陷与生态修复 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-16 |
论文答辩日期: | 2024-06-02 |
论文外文题名: | Multi-source remote sensing inversion and analysis of soil moisture change in the coal mining area of Loess Plateau |
论文中文关键词: | |
论文外文关键词: | Mining subsidence ; Soil moisture ; Remote sensing inversion ; UAV multispectral ; Loess mining area |
论文中文摘要: |
西部黄土高原是我国煤炭资源主要产区之一,人居生态环境脆弱,多年来大规模地下采煤已引起大范围的地面塌陷和变形破坏,改变了矿区原有的地貌形态和土壤特性,对土壤水分造成了显著的扰动效应,成为驱动煤矿区生态环境演变的关键因素,但目前学术界对于采煤沉陷引起土壤水分变化的研究还很不充分。本文选择黄土高原大佛寺煤矿为研究区域,运用时序SAR(Synthetic Aperture Radar)和光学遥感影像反演矿区土壤含水量,结合实地采样和连续监测数据分析矿区土壤水分的时空变化特征及其影响因素;进一步针对采煤沉陷区采用无人机多光谱数据结合卫星影像数据,构建工作面尺度的土壤水分遥感反演模型。论文研究的主要内容及结果如下: (1)基于时序Sentinel-1SAR数据和Sentinel-2光学影像数据,利用雷达信号变化探测算法构建了大佛寺矿区土壤水分时序变化的反演模型。运用水云模型消除植被对雷达后向散射系数影响,通过实地采样数据对该模型进行精度验证,获取了2022—2023年连续15期矿区土壤水分变化分布图。 (2)结合土壤水分遥感反演和现场监测数据,分析了大佛寺矿区土壤含水量变化的时空分布特征。矿区土壤含水量均值呈现季节性波动变化特征,总体上呈现微小增长趋势。对比分析了开采沉陷区与非沉陷区土壤水分变化的不同特征,发现30组对比数据中沉陷区土壤含水量均值较低的占18组,降雨后沉陷区土壤水分分布的变异系数显著增大,尤其在采动裂缝发育区更为明显,表明地下开采引起的地表沉陷变形对土壤水分造成了显著的扰动影响。 (3)利用遥感反演的土壤水分数据结合矿区DEM和植被覆盖度(FVC),分析了土壤含水量变化与主要影响因子之间的关系。通过提取研究区高程、坡度和坡向等地形因子,采用分布指数描述了不同地形因子等级所对应的土壤水分等级的分布特征;利用主成分分析法发现坡度因子对土壤水分影响最大,坡向次之,高程影响最小;对比分析发现,在干旱期植被覆盖度和土壤水分呈正相关趋势,在雨水期两者关系不稳定。 (4)基于无人机多光谱数据结合Sentinel-2光学影像,构建了适用于小范围采煤沉陷区的土壤水分协同反演模型。通过在大佛寺煤矿40201开采工作面地表采集多光谱影像,提取光谱反射率和敏感光谱指数,并结合实地采样数据,构建了基于BPNN、RBFNN、SVM和RF的土壤水分反演模型。对比验证发现随机森林(RF)模型的精度最优。进一步将无人机遥感数据通过尺度转换,构建了无人机—卫星遥感数据协同的土壤水分反演模型,提高了基于卫星遥感影像反演矿区土壤水分的实际精度,具有一定的应用价值。 |
论文外文摘要: |
The western Loess Plateau is one of the major coal resources producing areas in China, with fragile human ecological environment. Over the years, large-scale underground coal mining has caused widespread ground subsidence and deformation damage, which changed the original geomorphic morphology of the mining area and soil properties, and caused significant disturbance effects on soil moisture, which has become a key factor driving the evolution of the ecological environment in the coal mining area, but at present, academic research on the changes in soil moisture caused by coal mining subsidence is still very insufficient. However, the academic research on soil moisture changes caused by coal mining subsidence is still very insufficient. In this paper, we choose Dafosi Coal Mine in the Loess Plateau as the study area, and use Synthetic Aperture Radar (SAR) and optical remote sensing images to invert the soil moisture content in the mining area, and analyze the spatial and temporal characteristics of soil moisture and its influencing factors by combining with the field samples and continuous monitoring data; we further use the unmanned aerial vehicle (UAV) multispectral data combined with the satellite images to construct a working face scale soil moisture analysis of the coal mine subsidence area. In addition, a remote sensing inversion model of soil moisture at the working face scale was constructed for the coal mining subsidence area. The main contents and results of the thesis are as follows: (1) Based on the time-series Sentinel-1 SAR data and Sentinel-2 optical image data, an inversion model of the time-series change of soil moisture in the Dafosi mine area was constructed using the radar signal change detection algorithm. The water cloud model was applied to eliminate the influence of vegetation on the radar backward scattering coefficient, and the accuracy of the model was verified by the field sampling data, and the distribution maps of soil moisture changes in the mining area in 15 consecutive periods in 2022-2023 were obtained. (2) Combined with soil moisture remote sensing inversion and field monitoring data, the spatial and temporal distribution characteristics of soil moisture changes in the Dafosi mine area were analyzed. The average value of soil moisture content in the mining area shows seasonal fluctuation and change characteristics, and the overall trend is a slight increase. The different characteristics of soil moisture change in mining subsidence area and non-subsidence area were analyzed in comparison, and it was found that the average value of soil moisture content in subsidence area was lower in 18 groups out of 30 groups of comparative data, and the coefficient of variation of soil moisture distribution in subsidence area increased significantly after rainfall, which was especially more obvious in the area of mining fissure development, indicating that subsidence deformation of the ground surface caused by underground mining caused a significant perturbing effect on soil moisture. (3) Using the soil moisture data from remote sensing inversion combined with DEM and vegetation cover (FVC) of the mining area, the relationship between soil moisture content changes and the main influencing factors was analyzed. By extracting topographic factors such as elevation, slope and slope direction in the study area, the distribution index was used to characterize the distribution of soil moisture classes corresponding to different topographic factor classes; using principal component analysis, it was found that the slope factor had the greatest influence on soil moisture, followed by slope direction, and elevation had the smallest influence; a comparative analysis found that vegetation cover and soil moisture showed a positive correlation trend in the drought period, and that the relationship between the two was unstable in the rainy period. (4) Based on UAV multispectral data combined with Sentinel-2 optical images, a synergistic inversion model of soil moisture applicable to small-scale coal mining subsidence areas was constructed. A soil moisture inversion model based on BPNN, RBFNN, SVM and RF was constructed by collecting multispectral images on the surface of 40201 mining face in Dafosi coal mine, extracting spectral reflectance and sensitive spectral index, and combining with field sampling data. Comparative validation revealed that the accuracy of the random forest (RF) model was optimal. The soil moisture inversion model based on UAV remote sensing data was further constructed through scale conversion, which improves the actual accuracy of soil moisture inversion in the mining area based on satellite remote sensing images, and has certain application value. |
参考文献: |
[1] 霍超, 刘天绩, 樊斌, 等. 双碳背景下我国煤炭资源勘查开发布局研究[J]. 地质论评, 2022, 68(3): 938-944. [2] 胡振琪, 肖武. 关于煤炭工业绿色发展战略的若干思考——基于生态修复视角[J]. 煤炭科学技术, 2020, 48(4): 35-42. [3] 文博杰, 陈毓川, 王高尚, 等. 2035年中国能源与矿产资源需求展望[J]. 中国工程科学, 2019, 21(1): 68-73. [4] 庞建宏. 煤炭资源地质勘查中环境保护问题的研究[J]. 内蒙古煤炭经济, 2021, (24): 192-194. [5] 卞正富, 于昊辰, 雷少刚, 等. 黄河流域煤炭资源开发战略研判与生态修复策略思考[J]. 煤炭学报, 2021, 46(5): 1378-1391. [6] 王双明, 申艳军, 孙强, 等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报, 2020, 2(4): 5-19. [7] 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197. [8] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1-6. [9] 胡振琪, 龙精华, 王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报, 2014, 39(8): 1751-1757. [11] 马鹏飞, 张安兵, 王贺封, 等. 基于改进遥感生态指数的矿区生态环境监测及驱动因素分析[J]. 生态与农村环境学报, 2023, 39(12): 1580-1590. [12] 胡振琪, 赵艳玲. 黄河流域矿区生态环境与黄河泥沙协同治理原理与技术方法[J]. 煤炭学报, 2022, 47(1): 438-448. [14] 赵伟, 文凤平, 蔡俊飞. 被动微波土壤水分遥感产品空间降尺度研究:方法、进展及挑战[J]. 遥感学报, 2022, 26(9): 1699-1722. [15] 陈浩, 冯浩, 杨祯婷, 等. 基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计[J]. 排灌机械工程学报, 2021, 39(6): 622-629. [16] 陈清荷, 焦华富, 管晶. 煤炭资源型县域土地城镇化时空演变及驱动因素——以淮北市濉溪县为例[J]. 资源科学, 2024, 46(3): 583-596. [27] 马晓黎, 王行风, 陈明, 等. 基于植被指数的神东矿区植被盖度变化分析[J]. 安徽农业科学, 2011, 39(21): 12795-12796+12813. [28] 李恒凯, 吴立新, 刘小生. 稀土矿区地表环境变化多时相遥感监测研究——以岭北稀土矿区为例[J]. 中国矿业大学学报, 2014, 43(6): 1087-1094. [30] 吕宝奇, 牛瑞卿, 张培佩, 等.松宜煤矿区生态环境质量变化监测与评价[J]. 湖南科技大学学报(自然科学版), 2021, 36(4): 15-24. [33] 张凯南, 杨志强, 武继峰. D-InSAR技术在黄土高原沟壑矿区地表沉陷监测中的应用[J]. 测绘通报, 2014, (S2): 23-25. [34] 冯舒, 赵文武, 陈利顶, 等. 2010年来黄土高原景观生态研究进展[J]. 生态学报, 2017, 37(12): 3957-3966. [37] 汤伏全, 杨倩. 西部黄土高原矿区采煤沉陷多源遥感监测技术进展与展望[J]. 煤炭科学技术, 2023, 51(12): 9-26. [46] 詹志明, 秦其明, 阿布都瓦斯提·吾拉木, 等. 基于NIR-Red光谱特征空间的土壤水分监测新方法[J]. 中国科学.D辑:地球科学, 2006, (11): 1020-1026. [47] 于健, 杨国范, 王颖, 等. 基于MODIS数据反演阜新地区土壤水分的研究[J]. 遥感技术与应用, 2011, 26(4): 413-419. [55] 马仪, 黄组桂, 贾江栋, 等. 基于无人机-卫星遥感升尺度的土壤水分监测模型研究[J]. 农业机械学报, 2023, 54(6): 307-318. [56] 李虎, 钟韵, 冯雅婷, 等. 无人机遥感的多植被指数土壤水分反演模型[J]. 光谱学与光谱分析, 2024, 44(1): 207-214. [57] 郑慧慧, 秦佳星, 桑之婷, 等. 基于区域特征的煤炭开采沉陷对土壤特性影响研究进展[J]. 土壤通报, 2022, 53(6): 1481-1491. [58] 金建华, 张宝忠, 刘钰, 等. 基于有效含水量的土壤水分监测点布设的空间分层采样方法[J]. 农业工程学报, 2021, 37(21): 100-107. [59] 方西瑶, 蒋玲梅, 崔慧珍. 基于Sentinel-1雷达数据的青藏高原地区土壤水分反演研究[J]. 遥感技术与应用, 2022, 37(6): 1447-1459. [60] 邓小东, 王宏全. 土壤水分微波遥感反演算法及应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 289-302. [63] 马慧, 赵洪飞, 岳超, 等. 黄土高原地区土地覆盖类型的时空格局[J]. 水土保持通报, 2023, 43(6): 358-368+379. [64] 郝金雨. 基于无人机多光谱影像的土壤含水率检测研究[D]. 泰安:山东农业大学, 2023. [67] 陈洋波, 张涛, 窦鹏, 等. 基于SVM的东莞市土地利用/覆被自动分类误差来源与后处理[J]. 遥感技术与应用, 2017, 32(5): 893-903. [68] 戴小路, 汪廷华, 胡振威. 模糊多核支持向量机研究进展[J]. 计算机应用研究, 2021, 38(10): 2896-2903. [71] 田辉, 王澄海, 文军, 等. 基于简化参数方法的蒙古干旱区土壤湿度被动微波遥感[J]. 地球物理学报, 2012, 55(2): 415-427. [74] 张友静, 王军战, 鲍艳松. 多源遥感数据反演土壤水分方法[J]. 水科学进展, 2010, 21(2): 222-228. [76] 程梦园, 曹广超, 赵美亮, 等. 香日德-柴达木河流域土壤湿度时空变化特征及其影响因素[J]. 干旱区研究, 2022, 39(2): 615-624. [77] 庄逐舟, 黄秋昊, 石云. 黄土丘陵区土地利用变化与地形梯度关系研究[J]. 水土保持研究, 2016, 23(4): 331-337. [78] 肖洪敏, 张文江, 田云锋, 等. 基于SBAS-InSAR方法的岷江上游峡谷区地表沉降的坡向分异规律研究[J]. 遥感技术与应用, 2023, 38(4): 967-977. [79] 艾宁, 宗巧鱼, 刘广全, 等. 陕北黄土区浅沟土壤水分空间分布特征[J]. 水土保持学报, 2019, 33(5): 85-90. [80] 赵燕红, 侯鹏, 蒋金豹, 等. 植被生态遥感参数定量反演研究方法进展[J]. 遥感学报, 2021, 25(11): 2173-2197. [82] 甄佳宁, 蒋侠朋, 赵德梅, 等. 利用Sentinel-2影像超分辨率重建的红树林冠层氮含量反演[J]. 遥感学报, 2022, 26(6): 1206-1219. [83] 张博, 周伟, 张福存. 1999-2018年青海省土地退化遥感监测及其驱动力分析[J]. 水土保持通报, 2020, 40(2): 120-128+325. [84] 周琦, 王建军, 霍中洋, 等. 不同生育期小麦冠层SPAD值无人机多光谱遥感估算[J]. 光谱学与光谱分析, 2023, 43(6): 1912-1920. |
中图分类号: | P237 |
开放日期: | 2025-06-18 |