论文中文题名: | 急倾斜近距离煤层采场围岩链式结构形成演化机理 |
姓名: | |
学号: | 20203077020 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0819 |
学科名称: | 工学 - 矿业工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山压力与岩层控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-26 |
论文答辩日期: | 2023-06-05 |
论文外文题名: | Formation and evolutionary mechanism of chain structure of surrounding rock of stope in near steeply inclined seam |
论文中文关键词: | |
论文外文关键词: | near steeply inclined seam ; composite stope ; chain structure ; stress transfer path |
论文中文摘要: |
急倾斜煤层广泛赋存于我国西部地区,其安全开采对区域经济发展具有重要的能源保障作用。受重力倾角效应和多次采动复合效应作用,急倾斜近距离煤层采场围岩结构复杂,动力灾害频发。因此,以新疆龙泉煤矿急倾斜近距离煤层开采为工程背景,采用数值模拟、物理相似模拟实验、理论分析等研究方法,分析了急倾斜近距离煤层复合采场应力传递路径和复合采场裂隙发育及围岩运移特征,揭示了采场围岩“P-S-P”链式结构的形成演化机理,提出了链式结构失稳模式及判定条件,主要结论如下: (1)受重力-倾角作用和多次采动复合效应作用,急倾斜单一采场围岩形成顶板倾斜中上部“非对称拱形”应力释放区、顶板倾斜下部应力集中区、底板倾斜上部应力集中区、底板倾斜下部应力释放区。急倾斜复合采场形成过程中,上工作面倾斜下部区域应力集中与释放现象减弱,复合采场形成后,间隔岩层应力分布区域由对立分布演变为间隔分布,采场外侧应力集中与释放区面积增大,应力峰值明显增大,区段煤柱周围应力集中与释放范围减小,应力峰值明显增大。 (2)在同一稳定岩层中,应力竖直传递;在软硬岩层交界面附近,应力分别沿层面传递和垂直于层面传递。复合采场应力传递路径可分为“R-P-F”、“R-P-F-P”、间隔岩层应力传递路径3大类,其中“R-P-F”、“R-P-F-P”应力传递路径控制采场整体范围的应力分布及演化,间隔岩层应力传递路径控制间隔岩层和煤柱的应力分布及演化。在复合采场形成过程中,间隔岩层应力传递路径复杂演化,最终应力传递路径为上煤层上工作面底板倾斜上部→下煤层上工作面顶板倾斜下部→上煤层下工作面底板倾斜上部→下煤层下工作面顶板倾斜下部,呈自上而下螺旋传递特征。 (3)急倾斜工作面开挖完毕后,顶板垮落特征呈“倾斜非对称”拱壳状,不同埋深、不同采高的垮落拱壳略有差别;垮落顶板对底板起到破坏和保护的“二象性”作用。顶板垮落后下滑充填采空区,在垂向形成采空“下部充填、中部铰接、上部空域”的特征,中部铰接对顶底板支撑最明显,形成相对稳定的的“V”形铰接结构。复合采场围岩结构包括:工作面两侧的“R-P-F”结构、同水平煤柱间的“P-S-P”结构、跨水平煤柱间的“P-S-P”结构,其中跨水平煤柱间的“P-S-P”结构为跨间隔岩层结构,是控制复合采场围岩稳定性的关键。 (4)分析了急倾斜近距离煤层复合采场链式结构形成演化过程,给出了基于区段煤柱关键柱、间隔岩层关键域的两种失稳模式,确立了两种失稳模式的判定条件,初步制定了基于区段煤柱关键柱的关键防控、断链减灾防治措施,为该类煤层的链式灾害防治指明防治关键点,为复合采场围岩稳定性控制提供理论指导。 |
论文外文摘要: |
The steeply inclined coal seam is widely located in the western region of China, and its safe mining plays an important role in energy security for regional economic development. Due to the gravity-dip effect and multiple mining compound effect, the stope-surrounding rock structure of near steeply inclined coal seam is complex and dynamic hazards are frequent. Therefore, taking the near steeply inclined coal seam mining in Xinjiang Longquan coal mine as the engineering background, numerical simulation, physically similar simulation experiments and theoretical analysis are used to analyze the stress transfer path of the composite stope of near steeply inclined coal seam and the characteristics of fracture development and surrounding rock transport in the composite stope, revealing the "P-S-P" chain structure of stope surrounding rock. The main conclusions are as follows: (1)Under the comprehensive influence of gravity-dip angle and mining action, the roof and floor of the steeply inclined working face form the "asymmetric arch" stress-release area in the upper part of the inclined roof, the stress-concentrated area in the upper part of the inclined floor, the stress-release area in the lower part of the inclined floor, and the stress-concentrated area in the lower part of the inclined roof. During the formation of the steeply inclined composite stope, the stress concentration and release phenomenon in the inclined lower area of the upper working face is weakened; with the formation of the composite stope, the stress distribution area of the interval rock seam evolves from opposing distribution to interval distribution, the area of the stress concentration and release area on the outside of the stope increases, and the stress peak increases significantly, and the area of the stress concentration and release around the sectional coal column decreases, and the stress peak increases significantly. (2)In the same stable rock formation, the stress is transferred vertically; near the rock formation level, the stress is transferred along the level; when spanning multiple rock formations, the stress is transferred perpendicular to the level. Compound stope stress transfer paths can be divided into three major categories: "R-P-F", "R-P-F-P" and "R-P-F-P". The "R-P-F" and "R-P-F-P" stress transfer paths control the stress distribution and evolution of the overall range of the stope, and the interval rock layer stress transfer paths control the stress distribution and evolution between the working faces. During the formation of composite stope, the stress transfer path of interval seam evolves many times, and the transfer path is the inclined upper part of the bottom plate of the upper working face of the upper coal seam → the lower coal pillar → the lower coal pillar. coal pillar in the upper coal seam → the inclined upper part of the bottom plate in the lower working face of the upper coal seam → the inclined lower part of the top plate in the lower working face of the lower coal seam, showing the top-down spiral transfer characteristics. (3)When the steeply inclined working face is excavated for 10 cm and 20 cm, the roof starts to appear fissures and delamination respectively; After the excavation of the working face is completed, the roof collapse is characterized as "inclined asymmetric" arch shell, and the collapse arch shell varies slightly for different burial depths and mining heights; the collapsed roof plays a "duality" role on the floor, which is manifested as the impact damage of the collapse on the floor and the protection of "floor protection layer" formed by the collapse. After the roof collapse, it slides down and fills the goaf with gravity, and forms the characteristics of "lower filling, middle hinge structure, upper airspace" in the vertical direction, in which the middle hinge structure supports the roof and floor most obviously, and the "V-shaped" hinge structure has good structural stability, and the upper and lower sides have gangue distribution. The stable structure of composite stope surrounding rock includes: "R-P-F" structure on both sides of the working face, "P-S-P" structure between the same horizontal coal pillars, and "P-S-P" structure between cross horizontal coal pillars, among which "P-S-P" structure between cross horizontal coal pillars is the structure of cross sandwiched rock between two near stope, which is the key to control the stability of composite stope surrounding rock. (4)The process of chain structure formation and evolution in the composite stope of near steeply inclined seam is analyzed, two instability modes based on the key pillar and the critical zone of interval rock layer are given, the judgment conditions of the two instability modes are established, the prevention measures based on the key pillar like prevention and control of key pillar and chain-cutting disaster mitigation are initially formulated, which indicate the key for the prevention and control of chain disasters in near steeply inclined seam and provide the theoretical guidance for the stability control of the surrounding rock in the composite stope. |
参考文献: |
[3]夏彬伟, 胡科, 卢义玉, 等. 深埋隧道层状岩体破坏过程特征模型试验[J]. 中国公路学报, 2012, 25(1): 107-114. [5]黄润秋, 李渝生, 严明. 斜坡倾倒变形的工程地质分析[J]. 工程地质学报, 2017, 25(5): 1165-1181. [6]李建林, 王乐华. 卸荷岩体力学原理与应用[M]. 北京: 科学出版社, 2015. 11. [9]张基伟. 王家山矿急倾斜煤层长壁开采覆岩破断机制及强矿压控制方法[J]. 岩石力学与工程学报, 2018, 37(7): 1776. [11]屠洪盛, 屠世浩, 陈芳, 等. 基于薄板理论的急倾斜工作面顶板初次变形破断特征研究[J]. 采矿与安全工程学报, 2014, 31(1): 49-54+59. [12]姚琦, 冯涛, 廖泽. 急倾斜走向分段充填倾向覆岩破坏特征及移动规律[J]. 煤炭学报,2017, 42(12): 3096-3105. [15]王家臣, 杨胜利, 李良晖. 急倾斜煤层水平分段综放顶板“倾倒-滑塌”破坏模式[J]. 中国矿业大学学报, 2018, 47(6): 1175-1184. [16]鞠文君, 李文洲. 急倾斜特厚煤层水平分段开采老顶断裂力学模型[J]. 煤炭学报, 2008, 33(6): 606-608. [17]曹树刚, 刘玉成, 彭勇, 等. 急倾斜煤层走向长壁综采面顶板控制[J]. 采矿与安全工程学报, 2009, 26(4): 441-444. [18]王明立, 张玉卓, 张华兴. 急倾斜煤层开采覆岩非均衡破坏机理分析[J]. 采矿与安全工程学报, 2010, 27(4): 558-561. [19]孙建, 王连国. 采场底板倾斜隔水关键层的失稳力学判据[J]. 煤炭学报, 2014, 39(11): 2276-2285. [21]孙闯, 陈东旭, 程耀辉, 等. 急倾斜煤层坚硬顶板塌落规律及控制研究[J]. 岩石力学与工程学报, 2019, 38(8): 347-352. [22]何江, 窦林名, 曹晋荣, 等. 急倾斜特厚煤层水平分段综放开采冲击矿压机理[J]. 煤炭学报, 2020, 45(5): 1701-1709. [23]程志恒, 齐庆新, 李宏艳, 等. 近距离煤层群叠加开采采动应力-裂隙动态演化特征实验研究[J]. 煤炭学报, 2016, 41(2): 367-375. [24]李杨. 煤层群开采围岩应力壳时空演化特征研究[D]. 中国矿业大学(北京), 2017. [25]赵军. 多煤层开采覆岩结构演化规律及矿压控制研究[D]. 山东科技大学, 2018. [26]刘长友, 杨敬轩, 于斌, 等. 多采空区下坚硬厚层破断顶板群结构的失稳规律[J]. 煤炭学报, 2014, 39(3): 395-403. [27]于斌. 多煤层上覆破断顶板群结构演化及其对下煤层开采的影响[J]. 煤炭学报, 2015, 40(2): 261-266. [28]张勇, 刘传安, 张西斌, 等. 煤层群上行开采对上覆煤层运移的影响[J]. 煤炭学报, 2011, 36(12): 1990-1995. [29]李维光, 张占海. 赵家坝煤矿急倾斜煤层群联合开采的工程实践[J]. 岩石力学与工程学报, 2005, 24(3): 542-546. [30]严国超, 胡耀青, 宋选民, 等. 极近距离薄煤层群联合开采常规错距理论与物理模拟[J]. 岩石力学与工程学报, 2009, 28(3): 592-596. [31]杨伟, 刘长友, 杨宇. 层间应力影响下近距离煤层工作面合理错距留设问题研究[J]. 岩石力学与工程学报, 2012, 31(1): 2965-2971. [32]郭忠平, 王凯, 陈建杰. 急倾斜极近距离煤层联合开采采煤方法研究[J]. 煤炭科学技术, 2017, 45(1): 68-72. [33]杨科, 孔祥勇, 陆伟, 等. 近距离采空区下大倾角厚煤层开采矿压显现规律研究[J]. 岩石力学与工程学报, 2015, 34(S2): 4278-4285. [34]孔祥勇, 杨科, 陆伟. 大倾角煤层群下行开采底板破坏机理及工程应用[J]. 地下空间与工程, 2015, 11(S2): 394-400. [35]伍永平, 解盘石, 王红伟, 等. 大倾角煤层群长壁采场低位梯阶关键层[J]. 西安科技大学学报, 2014, 34(6): 641-645. [36]来兴平, 杨毅然, 陈建强, 等. 急斜特厚煤层群采动应力畸变致诱动力灾害控制[J]. 煤炭学报, 2016, 41(7): 1610-1616. [37]侯德建, 孙雪亮, 闫瑞兵, 等. “煤柱-岩柱”系统诱发动力灾害防治技术研究[J]. 煤炭科学技术, 2017, 45(S1): 28-33. [38]吴振华, 潘鹏志, 赵善坤, 等. 近直立特厚煤层组“顶板-岩柱”诱冲机理及防控实践[J]. 煤炭学报, 2021, 46(S1): 49-62. [39]王汉斌. 急倾斜多煤层开采诱发覆岩及地表移动规律研究[D]. 中国地质大学(北京), 2020. [40]高明中, 余忠林. 厚冲积层急倾斜煤层群开采重复采动下的地表沉陷[J]. 煤炭学报, 2007, 32(4): 347-352. [41]阎跃观, 戴华阳, 王忠武, 等. 急倾斜多煤层开采地表沉陷分区与围岩破坏机理—以木城涧煤矿大台井为例[J]. 中国矿业大学学报, 2013, 42(4): 547-553. [42]梁冰, 盖迪, 孙维吉, 等. 长沟峪煤矿急倾斜煤层群裂隙演化及渗流规律[J]. 水资源与水工程学报, 2012, 23(2): 641-645. [43]王宏图, 洪松, 胡国忠, 等. 急倾斜下保护层倾向保护范围数值模拟及验证[J]. 重庆大学学报, 2009, 32(6): 629-632. [44]施峰, 王宏图, 舒才. 间距对上保护层开采保护效果影响的相似模拟实验研究[J]. 中国安全生产科学技术, 2017, 13(12): 138-144. [45]舒才. 深部不同倾角煤层群上保护层开采保护范围变化规律与工程应用[D]. 重庆大学, 2017. [46]张百胜. 极近距离煤层开采围岩控制理论及技术研究[D]. 太原理工大学, 2008. [47]黄庆享, 贺雁鹏, 罗利卜, 等. 浅埋极近距离煤层采空区垮落顶板活化结构及支架阻力研究[J]. 采矿与安全工程学报, 2018, 35(3): 561-566. [48]黄庆享, 曹健, 贺雁鹏, 等. 浅埋近距离煤层群分类及其采场支护阻力确定[J]. 采矿与安全工程学报, 2018, 35(6): 1177-1184. [49]赵旭峰. 大倾角薄煤层群联合开采研究[D]. 太原理工大学, 2018. [50]赵旭峰, 王德忠. 薄煤层群联合开采回采巷道布置研究[J]. 煤炭技术, 2020, 39(11): 21-23. [51]张百胜, 杨双锁, 康立勋, 等. 极近距离煤层回采巷道合理位置确定方法探讨[J]. 岩石力学与工程学报, 2008(1): 97-101. [52]朱润生. 极近距离煤层回采巷道合理位置确定与支护技术[J]. 煤炭科学技术, 2012, 40(4): 10-13+17. [53]杨路林. 极近距离下位煤层回采巷道合理位置的确定[J]. 煤炭技术, 2017, 36(12): 71-73. [54]马海峰, 程志恒, 刘伟. 近距离煤层群叠加开采采动应力与覆岩位移场演化特征[J]. 中国安全生产科学技术, 2017, 13(5): 28-33. [55]刘怀谦, 刘萍, 韩森, 等. 急倾斜近距离煤层开采矿压显现规律研究[J]. 煤矿开采, 2018, 23(3): 87-91. [56]伍永平, 王红伟, 解盘石. 大倾角煤层长壁开采围岩宏观应力拱壳分析[J]. 煤炭学报, 2012, 37(4): 559-564. [57]屠洪盛. 薄及中厚急倾斜煤层长壁综采覆岩运动规律与控制机理研究[D]. 中国矿业大学, 2014. [58]王红伟. 大倾角煤层长壁开采围岩应力演化及结构稳定性研究[D]. 西安科技大学, 2014. [59]王红伟, 伍永平, 解盘石, 等. 大倾角煤层开采“关键域”岩体结构稳定性分析[J]. 采矿与安全工程学报, 2017, 34(2): 287-294. [60]解盘石. 大倾角煤层长壁开采覆岩结构及其稳定性研究[D]. 西安科技大学, 2011. [61]解盘石, 田双奇, 段建杰. 大倾角伪俯斜采场顶板运移规律实验研究[J]. 煤炭学报, 2019, 44(10): 2974-2982. [62]田双奇. 大倾角煤层长壁伪俯斜采场顶板运移规律[D]. 西安科技大学, 2020. [63]屠洪盛, 刘送永, 黄昌文, 等. 急倾斜煤层走向长壁工作面底板破坏机理及稳定控制[J]. 采矿与安全工程学报, 2022, 39(2): 248-254. [64]王红伟, 焦建强, 伍永平, 等. 急倾斜厚煤层短壁综放采场承载结构泛化特征[J]. 煤炭科学技术, 2021, 49(11): 56-64. [65]段建杰. 大倾角煤层长壁伪俯斜采场“支架—围岩”相互作用机理[D]. 西安科技大学, 2020. [66]罗生虎, 王同, 伍永平, 等. 大倾角煤层群长壁开采承载拱与间隔岩层采动应力演化特征[J]. 煤炭学报, 2023, 48(2): 551-562. [67]伍永平, 贠东风, 解盘石, 等. 大倾角煤层长壁综采理论与技术[M]. 北京: 科学出版社, 2017. [68]钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010. [69]阎跃观, 戴华阳, 王忠武, 等. 急倾斜煤层开采垮落带破坏特征与法向高度研究[J]. 煤炭科学技术, 2015, 43(4): 23-26. [70]杨俊哲, 贾林刚, 宋桂军, 等. 补连塔煤矿综采大采高覆岩破坏“两带”高度实测研究[J]. 煤矿开采, 2018, 23(5): 73-76. [71]李杰, 张俊英, 马丕梁, 等. 综采工作面覆岩破坏高度实测研究[J]. 煤矿开采, 2012, 17(2): 82-85. [72]许延春, 李振华, 贾安立, 等. 深厚松散层薄基岩条件下覆岩破坏高度实测分析[J]. 煤炭科学技术, 2010, 38(7): 21-23. [73]尚志红, 张献军, 李国平, 等. 网络并行电法在工作面顶板“两带”高度探测中的应用[J]. 中国煤炭地质, 2022, 34(6): 73-79. [74]屠洪盛, 刘送永, 黄昌文, 等. 急倾斜煤层走向长壁工作面底板破坏机理及稳定控制[J]. 采矿与安全工程学报, 2022, 39(2): 248-254. |
中图分类号: | TD325 |
开放日期: | 2023-06-26 |