- 无标题文档
查看论文信息

题名:

 管网内瓦斯爆炸演化规律及冲击波推演模型研究    

作者:

 黄玉鑫    

学号:

 20120089017    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯灾害防治    

导师姓名:

 范京道    

导师单位:

 西安科技大学    

第二导师姓名:

 李树刚    

提交日期:

 2024-06-19    

答辩日期:

 2024-05-26    

外文题名:

 Study on the Evolution Laws of Gas Explosion in Pipeline Networks and Shock Wave Extrapolation Modeling    

关键词:

 瓦斯爆炸 ; 演化规律 ; 数值模拟 ; 动态损伤特征 ; 多层感知器回归模型    

外文关键词:

 Gas explosion ; Laws of evolution ; Numerical simulation ; Dynamic damage characterisation ; Multilayer perceptron traceability methody    

摘要:

瓦斯爆炸事故是煤矿各类事故中的“头号杀手”,具有死亡率高、破坏性强、经济损失大等特征。爆炸产生的冲击波、火焰波、高温气流导致巷道内空气密度、压力等发生突变,破坏了巷道内原有的空气动力平衡,造成井下有限空间内产生复杂的动力效应,进一步导致人员伤亡和财产损失。掌握瓦斯爆炸冲击波、火焰波的时空演化规律及致伤特征,对防灾、抗灾能力的提升具有重要意义。

采用理论研究、实验分析、数值模拟及案例分析相结合的方法,研究了不同管道结构中瓦斯爆炸冲击波和火焰波的时空演化规律、不同作用因素影响冲击波超压传播规律,构建了多参数自主寻优的瓦斯爆炸冲击波推演方法,并对其适用性和可靠性进行了验证。取得如下研究成果:

(1)实验研究了在平直管道和不同分叉角度管道结构中瓦斯爆炸演化规律,得到冲击波、火焰波在不同管道结构中的衰减规律;构建了超压衰减系数与分叉角度和分叉前超压的耦合关系式;得到了不同管道结构中火焰速度沿程按指数函数衰减的规律;通过对冲击波在不同角度分叉口的斜反射效应进行研究,构建了斜击波阵面角与气流折转角和管道楔形壁面角度之间的关系,得到瓦斯爆炸冲击波超压有效衰减管道角度范围。

(2)对比研究了带分直结构对称管道、无分直结构对称管道和非对称分叉管道结构对冲击波传播规律的影响,构建了对称管道冲击波超压衰减系数关系式;通过研究多分叉连通管道结构对瓦斯爆炸冲击波传播规律的影响,构建了冲击波发生对碰前后超压的变化关系式,建立了对碰后形成冲击波峰值二次演化过程关系式。

(3)研究了瓦斯爆炸致通风设施动态损伤机制对冲击波传播规律的影响,分析了通风设施应力和应变动态响应过程,得到了不同作用因素条件下通风设施的应力、应变动态分布规律;构建了等效应力与机械应力和热应力之间的耦合关系,建立了通风设施关于冲击波超压、作用时间、比冲量及等效应力的损伤判定机制;揭示了耦合作用下通风设施的动态损伤机制;通过对冲击波作用通风设施的正反射效应机制进行分析,根据介质参数构建了入射冲击波压力与反射冲击波压力之间的关联关系,建立了设施损伤前后对超压传播规律的影响关系式。

(4)构建了基于优化多层感知器回归的冲击波超压推演模型,通过粒子群和自助法对多层感知器回归算法进行参数优化,建立了惯性权重与迭代次数和粒子适应度的关联关系,基于多组实验数据对平直管道和多角度分叉管道超压演化过程进行推演,得到推演结果与真实值平均绝对误差、置信区间最大和最小误差均较小,证明了所提推演模型的可靠性。

(5)建立了我国真实瓦斯爆炸事故煤矿全尺寸巷道场景模型,采用理论计算、数值模型及超压推演模型对事故案例进行超压传播过程推演对比分析,通过对三条关键路径的超压传播过程推演,验证了所提推演模型的适用性。

本文研究成果能够有效掌握井下瓦斯爆炸过程的时空演化规律,为瓦斯爆炸事故反演、评估灾害辐射范围、抑制灾变范围进一步扩大并制定科学有效的应急预案提供有效支撑。

外文摘要:

Gas explosion accidents are the most serious of all types of accidents in coal mines. It is characterised by high mortality, devastation and economic losses. Shock wave, flame wave, high temperature air flow generated by the explosion leads to sudden changes in air density and pressure in the tunnel, destroying the original aerodynamic balance in the tunnel, resulting in complex dynamic effects in the limited space underground, leading to casualties and property losses. Mastering the spatial and temporal evolution law and injury-causing characteristics of gas explosion shock wave and flame wave is of great significance to the enhancement of disaster prevention and disaster resistance.

This study combines theoretical research, experimental analysis, numerical simulation and case studies to investigate the spatial and temporal evolution laws of gas explosion shock waves and flame waves in different pipeline structures and the overpressure propagation laws of shock waves affected by different factors. A multi-parameter autonomous optimisation method for gas explosion shock wave derivation is constructed and its applicability and reliability are verified. The following research results were obtained:

Evolutionary patterns of gas explosions in flat and straight pipelines and in pipeline structures with different bifurcation angles are experimentally investigated. The attenuation laws of shock and flame waves in different pipe structures are obtained. The coupling equation of the overpressure attenuation coefficient with the bifurcation angle and the overpressure before the bifurcation is constructed. The law that the flame velocity decays along the course by an exponential function in different pipe configurations is obtained. The effect of oblique reflection of shock waves at bifurcations of different angles is investigated. Relationships between the oblique strike wavefront angle and the airflow folding angle and the pipe wedge wall angle are constructed. Angular range of effective attenuation pipes for gas explosion shock wave overpressure is obtained.

Comparative study of the effects of symmetric pipelines with split-straight structure, symmetric pipelines without split-straight structure, and asymmetric bifurcated pipeline structures on the propagation law of shock waves. Symmetric pipeline shock wave overpressure attenuation coefficient relation is constructed. The effect of multi-bifurcated connecting pipeline structure on the propagation law of gas explosion shock wave was investigated. The relational equation for the change of overpressure before and after the collision of shock waves is constructed. Relation equation for the secondary evolution process of the peak shock wave formed after the collision is established.

The effect of the dynamic damage mechanism of ventilation facilities caused by a gas explosion on the propagation law of shock waves is investigated. The dynamic response process of stress and strain of the ventilation facilities is analyzed, and the dynamic distribution law of stress and strain of the ventilation facilities under the conditions of different action factors is obtained. The coupling relationship between equivalent stresses and mechanical and thermal stresses, and the damage determination mechanism of ventilation facilities with respect to shock wave overpressure, time of action, specific impulse, and equivalent stresses are established. The dynamic damage mechanism of ventilation facilities under coupling is revealed. Mechanisms of positive reflection effects on shockwave-activated ventilation facilities are analyzed. The correlation between the incident shock wave pressure and the reflected shock wave pressure is constructed based on the medium parameters, and the relational equation for the effect on the overpressure propagation law before and after facility damage is established.

Shock wave overpressure extrapolation model based on optimised multilayer perceptron regression is developed. Parameter optimisation of multilayer perceptron regression algorithms by particle swarm and self-help methods. The correlation of inertia weights with the number of iterations and particle fitness is established. Derivation of overpressure evolution in straight and angularly bifurcated pipelines based on multiple sets of experimental data. Comparison of the extrapolated results with the true values yields smaller mean absolute error, maximum and minimum confidence interval errors. Reliability of the proposed derivation model is demonstrated.

China's real gas explosion accident coal mine full-size roadway scene model was established. Overpressure decay theoretical model, numerical model and overpressure projection model are used to analyse the overpressure propagation process in accident cases. The applicability of the proposed extrapolation model is verified by extrapolating the overpressure propagation process for the three critical paths. The applicability of the proposed extrapolation model is verified by extrapolating the overpressure propagation process for the three critical paths.

The research results of this paper can effectively grasp the spatial and temporal evolution of the underground gas explosion process, and provide effective support for the inversion of gas explosion accidents, assessment of the radiation range of the disaster, inhibition of the further expansion of the scope of the disaster, and the formulation of scientific and effective emergency response plans.

参考文献:

[1]袁亮. 煤炭工业碳中和发展战略构想[J]. 中国工程科学, 2023, 25(05): 103-110.

[2]王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发 [J]. 煤炭学报 , 2023, 48(07): 2599-2612.

[3]范京道, 黄克军, 李川, 等. 煤炭开发工程“五化协同”模式研究[J]. 煤田地质与勘探, 2023, 51(01): 55-65.

[4]庞军, 梁宇超, 孙可可, 等. 中国经济增长与煤炭消费脱钩及影响因素分析[J]. 中国环境科学, 2024, 44(02): 1144-1157.

[5]崔炜, 满延春, 杨汝岱. 中国地区经济增长、能源消费结构与“碳中和”[J]. 消费经济, 2023, 39(05): 51-64.

[6]李姗姗, 袁亮. 煤炭工业全生命周期碳排放核算与影响因素[J]. 煤炭学报, 2023, 48(07): 2925-2935.

[7]程磊, 孙洁. 2016—2022年我国煤矿事故统计与规律分析[J]. 煤炭工程, 2023, 55(11): 125-129.

[8]范京道, 黄玉鑫, 闫振国, 等. ARIMA-SVM组合模型驱动下的瓦斯浓度预测研究[J]. 工矿自动化, 2022, 48(09): 134-139.

[9]付恩三, 白润才, 刘光伟, 等. “十三五”期间我国煤矿事故特征及演变趋势分析[J]. 中国安全科学学报, 2022, 32(12): s88-94.

[10]Li L, Fang Z. Cause analysis of coal mine gas explosion based on bayesian network[J]. Shock and Vibration, 2022, 2022.

[11]Huang Y, Li S, Fan J, et al. A Spark Streaming-Based Early Warning Model for Gas Concentration Prediction. Processes 2023, 11(1), 220.

[12]程磊, 孙洁. 2016—2022年我国煤矿事故统计与规律分析[J]. 煤炭工程, 2023, 55(11): 125-129.

[13]李树刚, 刘李东, 赵鹏翔, 等. 倾斜厚煤层卸压瓦斯靶向区辨识及抽采关键技术[J]. 煤炭科学技术, 2023, 51(08): 105-115.

[14]景国勋, 陈纪宏. 基于SPA-VFS耦合模型的瓦斯爆炸风险评价[J]. 安全与环境学报, 2023, 23(07): 2151-2158.

[15]Huang Y, Fan J, Yan Z, et al. Research on early warning for gas risks at a working face based on association rule mining[J]. Energies, 2021, 14(21): 6889.

[16]魏涛. BP神经网络在煤矿瓦斯安全事故预测中的应用[J]. 煤炭技术, 2023, 42(12): 165-168.

[17]邵良杉, 杨金辉. 基于事故表征和案例推理的煤矿瓦斯爆炸预测研究[J]. 安全与环境学报, 2024, 24(01): 221-228.

[18]梁建军, 雷咸锐, 吴斌, 等. 基于规则模式的瓦斯爆炸事故信息抽取技术[J]. 煤矿安全, 2023, 54(02): 239-245.

[19]张天阔. 管网瓦斯爆炸冲击波破坏特性研究[D]. 阜新: 辽宁工程技术大学, 2023.

[20]李金蓉, 杨玉中. DS理论-贝叶斯网络下的煤矿通风系统风险评估[J]. 中国安全科学学报, 2022, 32(08): 146-153.

[21]景国勋, 穆璐璐. 煤矿瓦斯爆炸事故统计分析及应急管理研究[J]. 安全与环境学报, 2023, 23(10): 3657-3665.

[22]Li X, Cao Z, Xu Y. Characteristics and trends of coal mine safety development[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021: 1-19.

[23]Li L, Guo H, Cheng L, et al. Research on causes of coal mine gas explosion accidents based on association rule[J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104879.

[24]马钧蓉. 高温颗粒引爆瓦斯起爆机理与爆炸传播特性研究[D]. 太原: 太原理工大学, 2022.

[25]叶光莉. 定性比较分析法在瓦斯爆炸事故分析中的应用[J]. 煤炭技术, 2022, 41(02): 125-127.

[26]Wang J. Development and prospect on fully mechanized mining in Chinese coal mines[J]. International Journal of Coal Science & Technology, 2014, 1: 253-260.

[27]Wu X, Li H, Wang B, et al. Review on Improvements to the Safety Level of Coal Mines by Applying Intelligent Coal Mining[J]. Sustainability, 2022, 14(24): 16400.

[28]Betz M R, Partridge M D, Farren M, et al. Coal mining, economic development, and the natural resources curse[J]. Energy Economics, 2015, 50: 105-116.

[29]Singh R D. Principles and practices of modern coal mining[M]. New Age International, 2005.

[30]Liu X, Li L, Yang Y. Development status of coal mining in China[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2023, 123(1): 19-28.

[31]Wei L, Hu J, Luo X, et al. Study and analyze the development of China coal mine safety management[J]. International Journal of Energy Sector Management, 2017, 11(1): 80-90.

[32]Li X, Yu Q, Zhou N, et al. The influence of pipe length on explosion of flammable premixed gas in 90 bending pipe and dynamic response of the thin-walled pipe[J]. Advances in Mechanical Engineering, 2019, 11(5).

[33]Gao K, Li S, Han R, et al. Study on the propagation law of gas explosion in the space based on the goaf characteristic of coal mine[J]. Safety science, 2020, 127: 104693.

[34]Gao K, Li S, Liu Y, et al. Effect of flexible obstacles on gas explosion characteristic in underground coal mine[J]. Process Safety and Environmental Protection, 2021, 149: 362-369.

[35]Zhang X, Wang H, Yang M, et al. Application of a Simulation Method for the Shock Wave Propagation Law of Gas Explosion[J]. ACS omega, 2022, 7(35): 31047-31058.

[36]贾进章, 田秀媛, 赵丹, 等. 角联管网瓦斯爆炸冲击波与火焰波的传播特性[J]. 爆破器材, 2022,51(05): 24-30.

[37]杨书召, 张文勇. 突出掘进工作面瓦斯爆炸传播试验研究[J]. 河南工程学院学报(自然科学版), 2023,35(01): 17-20.

[38]刘佳佳, 张扬, 张翔, 等. Y型通风采煤工作面瓦斯爆炸传播规律模拟研究[J]. 爆炸与冲击, 2023, 43(08): 182-194.

[39]罗振敏, 吴刚. 密闭空间瓦斯爆炸数值模拟研究[J]. 煤矿安全, 2020, 51(02): 1-4.

[40]罗振敏, 张群, 王华, 等. 基于FLACS的受限空间瓦斯爆炸数值模拟[J]. 煤炭学报, 2013, 38(08): 1381-1387.

[41]罗振敏, 苏彬, 程方明, 等. 基于FLACS的煤矿巷道截面突变对瓦斯爆炸的影响数值模拟[J]. 煤矿安全, 2018, 49(01): 183-186.

[42]罗振敏, 吴刚. 圆柱体障碍物对密闭管道内瓦斯爆炸特性影响的数值模拟[J]. 安全与环境工程, 2020, 27(04): 189-194.

[43]邓军, 马晓峰, 商铁林, 等. 多元可燃气体爆炸压力峰值的数值模拟[J]. 煤矿安全, 2014, 45(04): 13-16+20.

[44]王海燕, 张雷, 郭增乐. 基于自研设备高温源诱发甲烷爆炸特性研究[J]. 工矿自动化, 2019, 45(05): 11-15.

[45]高建良, 吴泽琳, 王文祺, 等. 瓦斯爆炸冲击波在角、并联巷道内传播规律对比研究[J]. 安全与环境学报, 2021, 21(06): 2494-2499.

[46]张学博, 高建良, 沈帅帅, 等. 矿井大尺度冲击波传播规律数值模拟研究[J]. 中国矿业大学学报, 2021, 50(04): 676-684.

[47]Song W, Cheng J, Wang W, et al. Underground mine gas explosion accidents and prevention techniques–an overview[J]. Archives of Mining Sciences, 2021, 66(2).

[48]Ruming Z, Baisheng N, Xueqiu H, et al. Different gas explosion mechanisms and explosion suppression techniques[J]. Procedia Engineering, 2011, 26: 1467-1472.

[49]Liang Y, Zeng W. Numerical study of the effect of water addition on gas explosion[J]. Journal of Hazardous Materials, 2010, 174(1-3): 386-392.

[50]Song Y, Zhang Q. Quantitative research on gas explosion inhibition by water mist[J]. Journal of hazardous materials, 2019, 363: 16-25.

[51]Yin W, Fu G, Yang C, et al. Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors: 2000–2014[J]. Safety science, 2017, 92: 173-179.

[52]蔡炯炜, 杨石刚, 孙文盛, 等. 长直空间内可燃气体爆炸灾害效应研究进展[J]. 中国安全科学学报, 2021, 31(04): 133-140.

[53]周靖轩, 朱传杰, 任洁, 等. 高预应力与爆炸载荷耦合作用下的巷道围岩损伤破坏机制[J]. 煤炭学报, 2020, 45(S1): 319-329.

[54]Fu G, Zhao Z, Hao C, et al. The accident path of coal mine gas explosion based on 24Model: a case study of the Ruizhiyuan gas explosion accident[J]. Processes, 2019, 7(2): 73.

[55]李淑娟, 贾真真, 叶青, 等. 调节风窗对瓦斯爆炸影响的数值分析[J]. 中国安全生产科学技术, 2022, 18(08): 79-84.

[56]丁浩, 杜玉晶, 解北京. 负压腔体抑制T型管道瓦斯爆炸数值模拟[J]. 煤矿安全, 2021, 52(07): 1-8.

[57]Qu, Z. M. Investigation of Damage Effect by Shock Wave on Structures in Excavation Roadway. Key Engineering Materials 2010, 439-440, 1438-1443.

[58]Li R, Zhang Z, Si R, et al. Experimental Study on Injuries to Animals Caused by a Gas Explosion in a Large Test Laneway[J]. Shock and Vibration, 2021, 2021: 1-9.

[59]Jia Z, Li S, Ye Q, et al. Damage Characteristics of Roadway Wall under the Impact of Gas Explosion[C]//Journal of Physics: Conference Series. IOP Publishing, 2022, 2329(1): 012022.

[60]Jia Z, Ye Q, Li H. Damage Assessment of Roadway Wall Caused by Dynamic and Static Load Action of Gas Explosion. Processes. 2023; 11(2):580.

[61]Xu W X, Bao Q, Li Z, et al. Numerical analysis on the behavior of autoclaved aerated concrete block infilled wall subjected to gas explosion[J]. Applied Mechanics and Materials, 2015, 723: 259-265.

[62]屈世甲, 杨欢.巷道内瓦斯爆炸状态下人工坝体的力学响应研究[J].工矿自动化,2023,49(09):132-139.

[63]高建良, 任镜璋, 潘荣锟, 等. 瓦斯爆炸对风机叶片及防爆门的冲击载荷特性[J]. 中国矿业大学学报, 2021, 50(04): 624-632.

[64]高建良, 陈太东, 王文祺, 等. 掘进工作面瓦斯爆炸风门冲击载荷的数值模拟[J]. 安全与环境学报, 2022, 22(02): 688-694.

[65]陈志峰, 何子建, 沙芳菲, 等. 爆炸冲击波作用下圆形通风设施的动态破坏特性[J]. 中国安全生产科学技术, 2020, 16(04): 88-93.

[66]Oliveto R, Gethers M, Poshyvanyk D, et al. On the equivalence of information retrieval methods for automated traceability link recovery[C]//2010 IEEE 18th International Conference on Program Comprehension. IEEE, 2010: 68-71.

[67]黄平, 周静宇. 基于火球热毁伤效应的液态危化品爆炸事故反演软件开发[J]. 安全与环境学报, 2020, 20(05): 1711-1715.

[68]索晓. 煤矿瓦斯爆炸事故致因分析方法与应用研究[D]. 北京: 中国矿业大学, 2018.

[69]范京道. 矿井风量波动与漂移的溯源分析研究[D]. 西安: 西安科技大学, 2014.

[70]韩承强. 近距离突出煤层群联合抽采瓦斯溯源技术研究[J]. 煤矿安全, 2022, 53(04): 68-73+80.

[71]王雅迪. 煤与瓦斯突出时期矿井通风系统灾害演变研究[D]. 阜新: 辽宁工程技术大学, 2019.

[72]祝楷. 煤矿瓦斯爆炸事故原因研究[D]. 北京: 中国矿业大学, 2017.

[73]钟化雨, 张伟, 师玉栋, 等. 流程行业安全事故致因对应分析及监控策略[J]. 安全与环境工程, 2024, 31(01): 9-16.

[74]张津嘉, 许开立, 王延瞳, 等. 特别重大瓦斯爆炸事故致因机制研究[J]. 中国安全科学学报, 2017, 27(01): 48-52.

[75]张津嘉, 许开立, 王贝贝, 等. 特别重大煤矿瓦斯爆炸事故致因分析及管理模式研究[J]. 中国安全科学学报, 2016, 26(02): 73-78.

[76]李达, 郭庆雷, 王栋, 等. 基于区块链的能源电力数据验证与溯源模型[J]. 中国电力, 2023, 56(05): 203-208.

[77]杨彬, 高俊涛, 王志宝, 等. 基于词嵌入的元组级数据溯源方法[J]. 计算机技术与发展, 2023, 33(12): 49-57.

[78]Egyed A. A scenario-driven approach to traceability[C]//Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001. IEEE, 2001: 123-132.

[79]伍彩琳. 基于数据融合的瓦斯爆炸态势智能预警研究及应用[D]. 重庆: 重庆大学, 2022.

[80]Hu Q, Zhang Q, Yuan M, et al. Traceability and failure consequences of natural gas explosion accidents based on key investigation technology[J]. Engineering Failure Analysis, 2022, 139: 106448.

[81]Lei B, Zhao C, He B, et al. A study on source identification of gas explosion in coal mines based on gas concentration[J]. Fuel, 2021, 290: 120053.

[82]Yuan M, Hu Q, Huang Z, et al. Gas explosion impact behavior and disaster analysis based on structural failure: Numerical modeling[J]. Journal of Loss Prevention in the Process Industries, 2024, 87: 105234.

[83]Liu Z, Chu X, Lin S, et al. Trends and correlation characteristics of coal mine gas explosion accident factors: a case study[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022: 1-15.

[84]Yuxin W, Gui F, Qian L, et al. Accident case-driven study on the causal modeling and prevention strategies of coal-mine gas-explosion accidents: A systematic analysis of coal-mine accidents in China[J]. Resources Policy, 2024, 88: 104425.

[85]袁晓芳, 朱明杰, 孙林辉. 基于csQCA的煤矿瓦斯爆炸事故影响因素及路径研究[J]. 煤矿安全, 2023, 54(10): 237-242.

[86]顾云锋, 杨素霞, 陆慧, 等. 基于数据挖掘的瓦斯爆炸预警系统研究[J]. 煤炭技术, 2023, 42(08): 159-161.

[87]朱云飞, 王德明, 赵安宁, 等. 巷道空间特征对煤矿瓦斯爆炸超压的影响[J]. 矿业研究与开发, 2023, 43(05): 143-148.

[88]Zhang J, Xu K, You G, et al. Causation analysis of risk coupling of gas explosion accident in Chinese underground coal mines[J]. Risk analysis, 2019, 39(7): 1634-1646.

[89]马一飞. 矿井瓦斯爆炸源位置和强度反演研究[D].中国矿业大学(北京),2020.

[90]兰泽全, 李玉麟, 旷永华, 等. 基于贝叶斯网络的煤矿火区瓦斯爆炸事故情景推演[J]. 华北科技学院学报, 2023, 20(06): 16-22.

[91]汪宝发, 胡祖祥. 煤矿瓦斯爆炸事故现状统计及规律分析[J]. 煤炭技术, 2022, 41(09): 148-151.

[92]徐腾飞, 王学兵. 近十年我国低瓦斯煤矿瓦斯爆炸事故统计与规律分析[J]. 矿业安全与环保, 2021, 48(03): 126-130.

[93]成连华, 郭阿娟, 郭慧敏, 等. 煤矿瓦斯爆炸风险耦合演化路径研究[J]. 中国安全科学学报, 2022, 32(04): 59-64.

[94]马东. 采空区煤自燃环境瓦斯爆炸特性及复合灾害危险区域研究[D]. 徐州: 中国矿业大学, 2021.

[95]Wang Y, Fu G, Lyu Q, et al. Analysis of characteristics and causes of gas explosion accidents: a historical review of coal mine accidents in China[J]. International journal of occupational safety and ergonomics, 2023: 1-17.

[96]Yang J, Zhao J, Shao L. Risk Assessment of Coal Mine Gas Explosion Based on Fault Tree Analysis and Fuzzy Polymorphic Bayesian Network: A Case Study of Wangzhuang Coal Mine[J]. Processes, 2023, 11(9): 2619.

[97]Zhang J, Zeng Y, Reniers G, et al. Analysis of the interaction mechanism of the risk factors of gas explosions in Chinese underground coal mines[J]. International journal of environmental research and public health, 2022, 19(2): 1002.

[98]刘增亮. 煤矿瓦斯爆炸事故行为致因模型构建研究[J]. 煤炭技术, 2021, 40(06): 126-129.

[99]朱金超. 瓦斯煤尘爆炸化学机理及爆炸动力与通风动力耦合研究[D]. 阜新: 辽宁工程技术大学, 2022.

[100]司荣军, 牛宜辉, 王磊, 等. 煤矿瓦斯煤尘爆炸的动力学特性研究进展[J]. 工程爆破, 2023 ,29(01): 30-39.

[101]Tang Z, Yang S, Xu G, et al. Disaster-causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars[J]. Process Safety and Environmental Protection, 2019, 132: 182-188.

[102]Li Q, Lin B, Jian C. Investigation on the interactions of gas explosion flame and reflected pressure waves in closed pipes[J]. Combustion science and technology, 2012, 184(12): 2154-2162.

[103]马钧蓉. 高温颗粒引爆瓦斯起爆机理与爆炸传播特性研究[D]. 太原: 太原理工大学, 2022.

[104]冯萧. 超细水雾抑制甲烷/煤尘两相爆炸机理研究[D]. 大连: 大连理工大学, 2022.

[105]Luo Z, Li D, Su B, et al. Thermodynamic effects of the generation of H*/OH*/CH2O* on flammable gas explosion[J]. Fuel, 2020, 280: 118679.

[106]Cheng C, Si R, Wang L, et al. Experimental study on the effect of initial accumulation pattern on gas explosion and explosion suppression in a real roadway[J]. Case Studies in Thermal Engineering, 2023, 51: 103544.

[107]王文才, 杨少晨, 吴周康, 等. 基于遗煤自燃与瓦斯爆炸耦合数值模拟研究[J].矿业研究与开发, 2023, 43(10): 160-165.

[108]李芸卓, 季淮君, 苏贺涛. 瓦斯爆炸冲击波扰动后毒害气体云团运移特性[J]. 中国矿业大学学报, 2021, 50(04): 667-675.

[109]马恒, 陈晓军, 荆德吉. H型通风巷道瓦斯爆炸及泄爆过程模拟研究[J]. 中国安全科学学报, 2021, 31(01): 45-51.

[110]徐景德, 张延炜, 胡洋, 等. 管道内金属网对瓦斯爆炸冲击波抑制作用的实验研究[J]. 煤矿安全, 2021, 52(01): 20-24.

[111]邓照玉. 瓦斯爆炸对巷道壁面损伤破坏的数值模拟研究[J]. 科学技术与工程, 2020, 20(05): 1792-1798.

[112]Li Y, Su H, Ji H, et al. Numerical simulation to determine the gas explosion risk in longwall goaf areas: A case study of Xutuan Colliery[J]. International Journal of Mining Science and Technology, 2020, 30(6): 875-882..

[113]Azatyan V V. Features of the physicochemical mechanisms and kinetic laws of combustion, explosion, and detonation of gases[J]. Kinetics and Catalysis, 2020, 61: 319-338.

[114]朱邵飞, 叶青, 柳伟, 等. 瓦斯爆炸对地下巷道破坏效应的数值模拟分析[J]. 湖南科技大学学报(自然科学版), 2019, 34(04): 17-23.

[115]李志鹏, 吴顺川, 严琼, 等. 瓦斯剧烈爆炸隧道衬砌损伤数值模拟与机理分析[J]. 煤炭学报, 2018, 43(S1): 167-177.

[116]Li S, Gao K, Liu Y, et al. Influence of the cavity structure in the excavation roadway on the gas explosion characteristics[J]. ACS omega, 2022, 7(8): 7240-7250.

[117]Cheng L H, Guo A J, Guo H M, et al. Research on coupling evolution path of gas explosion risks in coal mines[J]. China Safety Science Journal, 2022, 32(4): 59.

[118]李志鹏, 吴顺川, 严琼, 等. 隧道瓦斯爆炸数值分析与爆源类型确定研究[J]. 振动与冲击, 2018, 37(14): 94-101+140.

[119]王维建, 叶青, 贾真真. H型巷道不同聚积范围瓦斯爆炸模型数值模拟研究[J]. 矿业安全与环保, 2023, 50(04): 13-18.

[120]Li D, Cao Q, Wang J, et al. Application of integrated method of HAZOP-AHP and fuzzy comprehensive evaluation in coal mine gas explosion accident[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 692(4): 042103.

[121]Tan B, Liu Y, Liu H, et al. Research on size effect of gas explosion in the roadway[J]. Tunnelling and Underground Space Technology, 2021, 112: 103921.

[122]徐景德, 周振兴, 张莉聪, 等. 障碍物数量对含尘瓦斯爆炸特性影响的试验和数值模拟研究[J]. 安全与环境学报, 2024, 24(01): 127-134.

[123]李东方, 刘会彩, 张锦. 基于层次分析法的受限空间瓦斯爆炸数值模拟研究[J]. 煤炭技术, 2022, 41(09): 108-111.

[124]黄强, 穆朝民, 王亚军, 等. 瓦斯体积分数对90°弯管泄爆特性的影响[J]. 中国安全科学学报, 2020, 30(11): 101-107.

[125]董铭鑫, 赵东风, 尹法波, 等. 通风管网中瓦斯爆炸火焰波传播特性三维数值模拟[J]. 煤炭学报, 2020, 45(S1): 291-299.

[126]苟宝洋, 吴兵, 马一飞, 等. 基于Simtec的近球体瓦斯爆炸数值模拟[J]. 矿业安全与环保, 2020, 47(02): 11-15.

[127]高科, 李胜男, 王晓琪, 等. 缝洞型管道瓦斯爆炸特性数值模拟研究[J]. 中国安全生产科学技术, 2020, 16(03): 50-54.

[128]赵永耀, 张艳敏, 胡文燕. 煤矿瓦斯爆炸波传播及致灾机理的数值模拟研究[J]. 中北大学学报(自然科学版), 2020, 41(01): 73-78+90.

[129]贾进章, 王枫潇. 瓦斯爆炸对躲避硐室影响的数值模拟[J]. 辽宁工程技术大学学报(自然科学版), 2019, 38(06): 517-522.

[130]解北京, 杜玉晶, 王亮. 分岔管道内瓦斯爆炸火焰传播规律实验及数值模拟[J]. 重庆大学学报, 2019, 42(06): 69-77.

[131]侯敬峰, 庄立阳, 冯帅, 等. 煤矿瓦斯爆炸冲击下的弧形防爆墙数值模拟研究[J]. 河南理工大学学报(自然科学版), 2019, 38(04): 32-38.

[132]刘玉姣, 高科, 贾进章. 基于HLLC算法的连通器瓦斯爆炸模拟研究[J]. 中国安全科学学报, 2018, 28(12): 65-70.

[133]景一, 张西西, 程健维. 基于ANSYS数值模拟的密闭墙抗爆冲击安全性分析[J]. 煤矿安全, 2017, 48(11): 194-197.

[134]钱继发. 矿井连通空间瓦斯爆炸传播模拟实验研究[D]. 徐州: 中国矿业大学, 2021.

[135]牛宜辉. 角联管网内瓦斯及瓦斯煤尘混合爆炸传播特性研究[D]. 淮南: 安徽理工大学, 2020.

[136]李雷雷. 煤矿瓦斯爆炸灾区次生爆炸规律及应急决策模型研究[D]. 北京: 中国矿业大学, 2019.

[137]薛少谦, 黄子超, 杜宇婷, 等. 基于爆炸强度与隔爆屏障作用技术的巷道隔爆实验[J]. 煤炭学报, 2021, 46(06): 1791-1798.

[138]邱天, 潘荣锟, 顾秋月, 等. 不同爆炸条件下MFBL型防爆门泄压的模拟研究[J]. 南京工业大学学报(自然科学版), 2021, 43(02): 177-183.

[139]程健维, 张西西. 爆炸载荷作用下矿井密闭墙损伤评估[J]. 中国安全科学学报, 2021, 31(01): 132-137.

[140]刘云钦, 李妮, 赵路明, 等. 高超声速飞行器流热固耦合实时仿真技术[J]. 系统仿真学报, 2021, 33(12): 2820-2827.

[141]朱荣生, 陈一鸣, 安策, 等. 基于流热固耦合的高温熔盐泵转动系统结构应力分析[J]. 排灌机械工程学报, 2021, 39(03): 238-243+324.

[142]张迎新, 王佳伟, 唐露. 复杂管网中支路增设通风设施对瓦斯爆炸超压传播的影响[J]. 黑龙江科技大学学报, 2023, 33(05): 649-654.

[143]Wang D, Qian X, Yuan M, et al. Numerical simulation analysis of explosion process and destructive effect by gas explosion accident in buildings[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 215-227.

[144]Ran D, Cheng J, Zhang R, et al. Damages of underground facilities in coal mines due to gas explosion shock waves: an overview[J]. Shock and Vibration, 2021, 2021: 1-11.

[145]沈宇昂, 梁拥成, 郑兴伟, 等. 状态空间有限元法分析固支叠层结构热应力[J]. 东华大学学报(自然科学版), 2023, 49(04): 146-153.

[146]梁佳俊, 赵小林, 刘红军, 等. 复杂钢管空间节点应力集中系数研究[J]. 建筑钢结构进展, 2021, 23(05): 63-72.

[147]肖潇, 章桥, 关富玲. 矩形受剪切空间褶皱薄膜弹性应变能和主应力有限元分析[J]. 空间结构, 2020, 26(02): 3-10.

[148]Jiang H, Chi M, Hou D, et al. Numerical investigation and analysis of indoor gas explosion: A case study of “6·13” major gas explosion accident in Hubei Province, China[J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105045.

[149]Zhuohua Y, Qing Y, Zhenzhen J, et al. Numerical simulation of pipeline-pavement damage caused by explosion of leakage gas in buried PE pipelines[J]. Advances in Civil Engineering, 2020, 2020: 1-18.

[150]Skob Y, Ugryumov M, Dreval Y. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects[C]//Materials Science Forum. Trans Tech Publications Ltd, 2020, 1006: 117-122.

[151]郭慧敏, 成连华, 李树刚. 基于DEMATEL-ISM-MICMAC的煤矿瓦斯爆炸致因研究[J]. 矿业安全与环保, 2023, 50(02): 114-119.

[152]杨鹏飞, 田水承. 煤矿瓦斯爆炸高概率险兆事件致因因素重要度研究[J]. 安全与环境学报, 2023, 23(08): 2794-2801.

[153]宋英华, 刘子奇, 刘丹, 等. 基于模糊贝叶斯网络的化工园区火灾爆炸事故情景推演[J]. 安全与环境工程, 2022, 29(03): 86-93.

[154]赵士翔, 胡春春, 马兰. 危化品事故情景推演网络构建及关键节点分析[J]. 中国安全生产科学技术, 2022, 18(02): 36-42.

[155]岳文静, 杜丽敬, 陈先锋, 等. 基于DBN的气体泄漏事故情景推演与节点分析[J]. 中国安全科学学报, 2022, 32(S1): 165-170.

[156]姚军, 马宇静, 甄梓越. 基于改进粒子群算法在煤矿安全预警中的研究[J]. 煤炭技术, 2022, 41(05): 145-148.

[157]梁晓磊, 张孟镝, 周文峰, 等. 种群熵启动反向学习的动态多种群粒子群算法[J]. 智能计算机与应用, 2024, 14(02): 9-17.

[158]陈旭东, 杨光永, 徐天奇, 等. 基于多策略融合改进粒子群算法的路径规划研究[J]. 组合机床与自动化加工技术, 2024, (02): 44-50.

[159]刘振超, 苑迎春, 王克俭, 等. 融合特征权重与改进粒子群优化的特征选择算法[J]. 计算机工程与科学, 2024, 46(02): 282-291.s

[160]马莉, 潘少波, 代新冠, 等. 基于PSO-Adam-GRU的煤矿瓦斯浓度预测模型[J]. 西安科技大学学报, 2020, 40(02): 363-368.

[161]王晓玲, 韩国玺, 余佳, 等. TBM掘进速率区间预测Bootstrap-IHHO-BiLSTM模型[J]. 水力发电学报, 2023, 42(12): 159-171.

[162]张艳芳, 赵宜宾, 任晴晴. 广义Pareto分布参数的Bootstrap置信区间及应用[J]. 工程数学学报, 2023, 40(06): 1011-1020.

[163]雷天纲, 陈刚. 基于Bootstrap方法最大熵优化过采样算法[J]. 数据采集与处理, 2023, 38(03): 727-740.

[164]许耀宗, 李涛, 范洪冬. 融合LRT的Bootstrap区间估计同质点识别方法研究[J]. 中国安全生产科学技术, 2022, 18(10): 18-23.

[165]徐锋, 王斌会, 颜斌. 面向未知自相关过程能力指数的Bootstrap区间估计[J]. 统计与决策, 2022, 38(05): 17-22.

[166]叶仁道, 王仲池, 罗堃, 等. 多个偏正态总体共同位置参数的Bootstrap置信区间[J]. 数学物理学报, 2021, 41(01): 194-216.

[167]Watróbski J, Baczkiewicz A, Rudawska I. Multi-Layer Perceptron Regressor for Ranking Prediction in Information Systems for Sustainability Assessment[J]. 2022.

[168]Talebi N, Nasrabadi A M, Mohammad-Rezazadeh I. Estimation of effective connectivity using multi-layer perceptron artificial neural network[J]. Cognitive neurodynamics, 2018, 12: 21-42.

[169]Zhang F, Sun K, Wu X. A novel variable selection algorithm for multi-layer perceptron with elastic net[J]. Neurocomputing, 2019, 361: 110-118.

[170]高亚飞, 王运华, 张彦敏, 等. 基于多层感知器和SAR参数的海浪有效波高反演方法[J]. 中国海洋大学学报(自然科学版), 2024, 54(02): 121-133.

[171]冯笑, 董腾飞, 李温静, 等. 多策略混合改进蝴蝶算法的多层感知器训练优化[J]. 计算机工程与设计, 2023, 44(05): 1555-1564.

[172]王晓敏, 骆正山, 赵乐新. 基于多层感知器神经网络和统计小波特征的管道泄漏诊断[J]. 安全与环境学报, 2021, 21(04): 1483-1489.

[173]杨欢, 吴震, 王燚, 等. 侧信道多层感知器攻击中基于贝叶斯优化的超参数寻优[J].计算机应用与软件, 2021, 38(05): 323-330.

[174]吴丽娜, 何丹萍, 艾渤, 等. 基于多层感知器神经网络的路径损耗预测研究[J]. 电波科学学报, 2021, 36(03): 396-404.

[175]杨思博, 包园, 罗金铭, 等. 多层感知器处理多分类问题的计算能力(英文)[J]. 高等学校计算数学学报, 2020, 42(03): 277-288.

[176]赵勇, 徐华东, 包伟华, 等. 基于多层感知机的过程变量趋势诊断方法研究及应用[J]. 流体测量与控制, 2021, 2(05): 1-4.

[177]郭丽, 刘磊. 基于多层感知器的流量分类方法研究[J]. 电子测量与仪器学报, 2019, 33(07): 56-64.

[178]李彦君. 采空区煤自燃高温诱发瓦斯爆炸机制及预警方法[D]. 徐州: 中国矿业大学, 2023.

[179]朱云飞, 王德明, 赵安宁, 等. 原尺度煤矿掘进工作面瓦斯爆炸仿真研究[J]. 煤矿安全, 2023, 54(10): 24-28.

[180]王维建, 贾真真, 叶青, 等. 不同热效应时的瓦斯爆炸热冲击作用分析[J]. 中国矿业, 2022, 31(09): 119-123.

[181]景国勋, 孙跃, 班涛, 等. 分岔管道阻塞条件下对瓦斯爆炸压力影响的试验研究[J]. 安全与环境学报, 2021, 21(06): 2489-2493.

中图分类号:

 TD712.7    

开放日期:

 2028-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式