- 无标题文档
查看论文信息

论文中文题名:

 基于兼容子域级DGTD的圆极化波电磁特性研究    

姓名:

 李航    

学号:

 18307205008    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 计算电磁学    

第一导师姓名:

 韩晓冰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-08    

论文外文题名:

 Research on the electromagnetic characteristics of circularly polarized waves based on compatible sub-domain level DGTD    

论文中文关键词:

 非连续伽略金算法 ; 数值通量 ; 完美匹配层 ; 宽频圆极化波 ; 区域分解技术    

论文外文关键词:

 Discontinuous Galerkin Time Domain ; Numerical flux ; Perfect Matching Layer ; Broadband circularly polarized waves ; Regional decomposition technique    

论文中文摘要:

时域非连续伽略金(Discontinuous Galerkin Time Domain,DGTD)法作为近年来计算电磁学领域中的新型算法,因其精度高、便于并行等优点受到广泛关注。在电磁模拟中,由于单元级DGTD算法需要对整个计算区域采用相同的剖分类型和高精度的剖分尺寸来离散目标区域,这样会造成过多计算资源和时间成本的浪费。因此,降低资源消耗和提高计算效率在DGTD方法研究中具有重要的价值和意义。

本文针对多尺度复杂电磁模型求解难度高的问题,采用区域分解思想划分多个子域,根据精细程度选择不同网格剖分方式,同时采用混合阶基函数可以很好地减少资源消耗并提高计算效率。该方法采用EB和EH两种形式的麦克斯韦方程组作为控制方程,使用四面体和六面体两种网格进行剖分。结合区域分解方法构建两种形式的多域线性离散系统方程,将DGTD方法与适定PML(Well-posed PML)相结合来模拟无界问题。并给出了在PML区域中Maxwell方程组的矢量形式和相应的显式四阶龙格库塔时间迭代方法。同时该方法可以对PML域和物理域采取不同离散策略,也可以通过优化调整每个子域的剖分类型、剖分尺寸以及基函数的阶数来有效的降低自由度提高算法计算效率。将该算法应用于多尺度的电磁问题求解中,发现运用混合网格以及混合阶基函数的方法可以很好地提升仿真效率。仿真结果表明,在同等量级的计算精度情况下,采用子域级EB-DGTD相比于单元级DGTD方法内存消耗减少了87 %,自由度减少了96 %,时间成本降低99.7 %。

将EB-DGTD方法应用于电磁散射问题中,从圆极化波基础理论出发,结合总场散射场分离技术(TF/SF)提出了一种新的圆极化波注入方法,该方法将圆极化平面波完美注入计算域中,并进一步将单频圆极化扩展到宽频圆极化波。通过仿真发现,数值结果与解析解有着良好的一致性,同时也符合平面波的叠加原理,验证了算法的正确性。有效地解决了DGTD算法的圆极化波注入问题。为圆极化波在计算目标的RCS仿真研究中提供了理论参考。

论文外文摘要:

The Discontinuous Galerkin Time Domain (DGTD) method, as a new algorithm in the field of computational electromagnetics in recent years, has received wide attention due to its advantages of high accuracy and ease of parallelism. Since the cell-level DGTD algorithm requires the same profile type and high-precision profile size for the whole computational region to discretize the target region, this will cause excessive computational resources and time cost wastage. Therefore, reducing resource consumption and improving computational efficiency are of great value and significance in the research of DGTD methods.

In this thesis, for the problem of high difficulty in solving multi-scale complex electro-magnetic models, we adopt the idea of area decomposition to divide multiple sub-domains, and choose different grid dissection methods according to the fineness, while using mixed-order basis functions can well reduce resource consumption and improve computational efficiency. The method adopts two forms of Maxwell's equations, EB and EH, as the controlling equations, and uses two types of meshes, tetrahedral and hexahedral, for dissection. The multi-domain linear discrete system equations of both forms are constructed by combining the region decomposition method, and the DGTD method is combined with the proper PML (Well-posed PML) to simulate the unbounded problem. And the vector form of Maxwell's system of equations in the PML region and the corresponding explicit fourth-order Longacurta time iteration method are given. Meanwhile, the method can adopt different discretization strategies for PML and physical domains, and also can improve the computational efficiency of the algorithm by optimally adjusting the dissection type, dissection size, and order of basis functions of each subdomain to effectively reduce the degrees of freedom. The algorithm is applied to the solution of multi-scale electromagnetic problems, and it is found that the efficiency of the simulation can be improved by using the hybrid grid and the hybrid order basis functions. The simulation results show that the subdomain-level EB-DGTD reduces the memory consumption by 87 %, the degrees of freedom by 96 %, and the time cost by 99.7 % compared with the cell-level DGTD method for the same magnitude of computational accuracy.

Applying the EB-DGTD method to the electromagnetic scattering problem, a new circularly polarized wave injection method is proposed from the fundamental theory of circularly polarized waves, combined with the total field scattering field separation technique (TF/SF), which perfectly injects circularly polarized plane waves into the computational domain and further extends the single-frequency circular polarization to bandwidth circularly polarized waves. Through simulation, it is found that the numerical results are in good agreement with the analytical solution and also conform to the superposition principle of plane waves, which verifies the correctness of the algorithm. The circularly polarized wave injection problem of the DGTD algorithm is effectively solved. It provides a theoretical reference for the study of circularly polarized waves in the RCS simulation of computational targets.

参考文献:

[1]Archambeault B, Brench C, Ramahi O M. The Finite-Difference Time-Domain Method[M]. Springer New York, 2013.

[2]Taflove, Allen, Ardavan Oskooi, and Steven G. Johnson, eds. Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology. Artech house, 2013.

[3]Gao K, Fu S, Chung E T. An Efficient Multiscale Finite‐Element Method for Frequency‐Domain Seismic Wave Propagation[J]. Bulletin of the Seismological Society of America, 2018, 108(2): 966-982.

[4]Anees A, Angermann L. Time Domain Finite Element Method for Maxwell’s Equations[J]. IEEE Access, 2019, 7: 63852-63867.

[5]Jin J M. The Finite Element Method in Electromagnetics[M]. John Wiley & Sons, 2015.

[6]Cohen G, Pernet S. Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations[M]. Dordrecht: Springer, 2017.

[7]Gibson W C. The Method of Moments in Electromagnetics[M]. Chapman and Hall/CRC, 2021.

[8]Hamilton B. Finite Difference and Finite Volume Methods for Wave-based Modelling of Room Acoustics[J]. 2016.

[9]Reed W H, Hill T R. Triangular Mesh Methods for The Neutron Transport Equation[R]. Los Alamos Scientific Lab., N. Mex.(USA), 1973.

[10]Hesthaven J S, Ryan J, Shu C W, et al. Preface to Focused Issue on Discontinuous Galerkin Methods[J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 1-2.

[11]Christophe A, Descombes S, Lanteri S. An Implicit Hybridized Discontinuous Galerkin Method for The 3D Time-Domain Maxwell Equations[J]. Applied Mathematics and Computation, 2018, 319: 395-408.

[12]Chen J, Tobon L E, Chai M, et al. Efficient Implicit-Explicit Time Stepping Scheme With Domain Decomposition for Multiscale Modeling of Layered Structures [J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2011, 1(9): 1438-1446.

[13]Chen J, Liu Q H. Discontinuous Galerkin Time-Domain Methods for Multiscale Electromagnetic Simulations: A Review [J]. Proceedings of the IEEE, 2013, 101(2): 242-254.

[14]Descombes S, Durochat C, Lanteri S, et al. Recent Advances on a DGTD Method for Time-Domain Electromagnetics[J]. Photonics and Nanostructures-Fundamentals and Appli- cations, 2013, 11(4): 291-302.

[15]Álvarez González J. A Discontinuous Galerkin Finite Element Method for The Time-Domain Solution of Maxwell Equations[M]. Universidad de Granada, 2014.

[16]Ren Q, Liu Q H. EB Scheme Hybrid Spectral-Finite Element Time Domain Method for Super Multiscale Simulations[C]//2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2015: 179-180.

[17]Ren Q, Sun Q, Tobon L, et al. EB Scheme-Based Hybrid SE-FE DGTD Method for Multiscale EM Simulations[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 4088-4091.

[18]Ren Q, Zhan Q, Liu Q H. An Improved Subdomain Level Nonconformal Discontinuous Galerkin Time Domain (DGTD) Method for Materials With Full-Tensor Constitutive Parameters[J]. IEEE Photonics Joumal, 2017, 9(2): 1-13.

[19]Sun Q, Zhang R, Zhan Q, et al. A Novel Coupling Algorithm for Perfectly Matched Layer with Wave Equation Based Discontinuous Galerkin Time Domain Method[J]. IEEE Transactions on Antennas & Propagation, 2017, 66(1): 255-261.

[20]Sun Q, Zhan Q, Ren Q, et al. Wave Equation-Based Implicit Subdomain DGTD Method for Modeling of Electrically Small Problems[J]. IEEE Transactions on Microwave Theory &Techniques, 2017, 65(4): 1111-1119.

[21]Hussain I, Li H, Cao Q. Multiscale Structure Simulation Using Adaptive Mesh in DGTD Method[J]. IEEE Journal on Multiscale & Multiphysics Computational Techniques, 2017, 2(99): 115-123.

[22]Bao H, Kang L, Campbell S D, et al. PML Implementation in a Non-conforming Mixed-Element DGTD Method for Periodic Structure Analysis[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(11): 6979-6988.

[23]Yan S, Jin J M. A Dynamic p-Adaptive DGTD Algorithm for Electromagnetic and Multiphysics Simulations[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2446-2459.

[24]Yan S, Qian J, Jin J M. An Advanced EM-Plasma Simulator Based on the DGTD Algorithm with Dynamic Adaptation and Multirate Time Integration Techniques[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2019, 4: 76-87.

[25]Chen L, Özakın M B, Ahmed S, et al. A Memory-Efficient Implementation of Perfectly Matched Layer With Smoothly Varying Coefficients in Discontinuous Galerkin Time-Domain Method[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(6): 3605-3610.

[26]Wang ZH, Jiang C, Ni BY, et al. An Interval Finite Element Method for Electromagnetic Problems With Spatially Uncertain Parameters[J]. Science China Technological Sciences, 2020, 63(1): 25-43.

[27]寇龙泽, 彭达, 郭志亮,等.一种基于Gordon-Hall方法的DGTD高阶网格生成技术[J]. 微波学报, 2013, 29(01): 60-64.

[28]Peng D, Tang X, Yang H, et al. Dissipative Scheme for Discontinuous Galerkin Time-Domain Method Based on a Leap-Frog Time-Stepping[J]. The Applied Computational Electromagnetics Society Journal (ACES), 2013: 573-580.

[29]Peng D, Tang X, Yang H, et al. Dissipative Scheme for Discontinuous Galerkin Time-Domain Method Based on Verlet Time-Stepping[J]. Journal of Electromagnetic Waves and Applications, 2013, 27(14): 1800-1814.

[30]龚俊儒,时域间断伽略金方法在电磁散射分析中的应用研究[D].长沙:国防科学技术大学,2014.

[31]Cui X, Feng Y, Min G. Improved Local Time-Stepping Algorithm for Leap-Frog Discon- tinuous Galerkin Time-Domain Method[J]. IET Microwaves, Antennas &Propagation, 2018, 12(6): 963-971.

[32]买文鼎,郝文曲,李平,等.改进的二维三维混合时域不连续伽辽金方法[J].电波科学学报, 2018, 33(01): 33-40.

[33]Tian C Y, Shi Y, Chan C H. An Improved Vector Wave Equation-Based Discontinuous Galerkin Time Domain Method and Its Hybridization With Maxwell's Equation-Based Discontinuous Galerkin Time Domain Method[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6170-6178.

[34]Qi Q, Cao X, Chen M, et al. An Improved Fast Finite Element Time-Domain Method Based on Compressive Sensing for Cavity Problems[J]. IEEE Microwave and Wireless Com-ponents Letters, 2020, 30(4): 331-334.

[35]王斯乐 基于偏迎风通量的DG方法的hp估计[D]. 南京: 南京大学, 2015.

[36]Ban ZG, Shi Y, Yang Q, et al. GPU-Accelerated Hybrid Discontinuous Galerkin Time Domain Algorithm With Universal Matrices and Local Time Stepping Method[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4738-4752.

[37]Yang Q, Wei B, Li L, et al. Implementation of Corner-Free Truncation Strategy in DGTD Method[J]. Waves in Random and Complex Media, 2017, 27(2): 367-380.

[38]Wang H, Xu L, Li B, et al. A New Family of Exponential-Based High-Order DGTD Methods for Modeling 3-D Transient Multiscale Electromagnetic Problems[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5960-5974.

[39]Li K, Huang TZ, Li L, et al. A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation[J]. IEEE Transactions on Antennas and Propagation, 2017, 66(1): 242-254.

[40]Li K, Huang TZ, Li L, et al. POD-Based Model Order Reduction With An Adaptive Snapshot Selection for a Discontinuous Galerkin Approximation of The Time-Domain Maxwell's Equations[J]. Journal of Computational Physics, 2019, 396: 106-128.

[41]Li K, Huang T Z, Li L, et al. Non-Intrusive Reduced-Order Modeling of Parameterized Electromagnetic Scattering Problems Using Cubic Spline Interpolation[J]. Journal of Scientific Computing, 2021, 87(2): 1-29.

[42]E. Merewether, R. Fisher, and F. W. Smith, On Implementing A Numeric Huygen's Source Scheme in a Finite Difference Program to Illuminate Scattering Bodies, IEEE Trans. Nucl. Sci., 1980, 27(6): 1829-1833.

[43]Archambeault B, Brench C, Ramahi O.M. The Finite-Difference Time-Domain Method[M]. Springer New York, 2013.

[44]Liu JX, Ju L, Meng LH, et al. FDTD Method for The Scattered-Field Equation to Calculate The Radar Cross-Section of A Three-Dimensional Target[J]. Journal of Computational Electronics, 2018, 17(3): 1013-1018.

[45]Hadi M F, Bollimuntha R C, Elsherbeni A Z, et al. A Spherical FDTD Numerical Dispersion Relation Based on Elemental Spherical Wave Functions[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 784-788.

[46]Tan T, Taflove A, Backman V. Single Realization Stochastic FDTD for Weak Scattering Waves in Biological Random Media[J]. IEEE transactions on antennas and propagation, 2012, 61(2): 818-828.

[47]Wei H, Liu Y, Shi L, et al. A 3-D Total-Field/Scattered-Field Plane-Wave Source for The FDTD Analysis of Reentry Plasma Sheath[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6214-6225.

[48]Cakir G, Sevgi L, Ufimtsev P Y. FDTD Modeling of Electromagnetic Wave Scattering from A Wedge With Perfectly Reflecting Boundaries: Comparisons Against Analytical Models and Calibration[J]. IEEE transactions on antennas and propagation, 2012, 60(7): 3336-3342.

[49]Çapoğlu İ R, Taflove A, Backman V. Computation of Tightly-Focused Laser Beams in The FDTD Method[J]. Optics express, 2013, 21(1): 87-101.

[50]Li L, Wei B, Yang Q, et al. Shift-Operator Finite-Element Time-Domain Dealing With Dispersive Media[J]. Optik, 2019, 182: 832-838.

[51]Q. Yang, B. Wei, L. Li, and D. Ge, Implementation of Corner-Free Truncation Strategy in DGTD Method[J], Waves in Random and Complex Media, 2017, 27(2): 367-380.

[52]Christophe A, Descombes S, Lanteri S. An Implicit Hybridized Discontinuous Galerkin Method for The 3D Time-Domain Maxwell Equations[J]. Applied Mathematics and Computation, 2018, 319: 395-408.

[53]H. Bao, L. Kang, S. D. Campbell, and D. H. Werner, PML Implementation in A Nonconforming Mixed-Element DGTD Method for Periodic Structure Analysis[J]., IEEE Transactions on Antennas and Propagation, 2019, 67(11): 6979-6988.

[54]Hochbruck M, Sturm A. Upwind Discontinuous Galerkin Space Discretization and Locally Implicit Time Integration for Linear Maxwell’s Equations[J]. Mathematics of Computation, 2019, 88(317): 1121-1153.

[55]Q. Ren, Q. Zhan, and Q. H. Liu, An Improved Subdomain Level Nonconformal Disco-ntinuous Galerkin Time Domain (DGTD) Method for Materials With Full-Tensor Con-stitutive Parameters[J], IEEE Photonics Journal, 2017, 9(2): 1-13.

[56]Tobón L E, Ren Q, Liu Q H. A New Efficient 3D Discontinuous Galerkin Time Domain (DGTD) Method for Large and Multiscale Electromagnetic Simulations[J]. Journal of Computational Physics, 2015, 283: 374-387.

[57]Li P, Jiang L J, Bağci H. Transient Analysis of Dispersive Power-Ground Plate Pairs With Arbitrarily Shaped Antipads by The DGTD Method With Wave Port Excitation[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 59(1): 172-183.

[58]P. Li, L. J. Jiang and H. Bağcı, Discontinuous Galerkin Time-Domain Modeling of Graphene Nanoribbon Incorporating the Spatial Dispersion Effects[J], IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3590-3598.

[59]Q. Yang, B. Wei, L. Li and D. Ge, Simulation of Electromagnetic Waves in a Magnetized Cold Plasma by the SO-DGTD Method[J], IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4151-4157.

[60]P. Wang, Y. Shi, Z. G. Ban, S. C. Zhu, Q. Yang and L. Li, Penalty Factor Threshold and Time Step Bound Estimations for Discontinuous Galerkin Time-Domain Method Based on Helmholtz Equation[J], IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7494-7506.

[61]G. Chen, L. Zhao, W. Yu, S. Yan, K. Zhang and J. Jin, A General Scheme for The Discontinuous Galerkin Time-Domain Modeling and S-Parameter Extraction of Inho-mogeneous Waveports[J], IEEE Transactions on Microwave Theory and Techniques, 2018, 66(4): 1701-1712.

[62]T. Zhang, H. Bao, D. Ding and R. Chen, Interior Penalty DGTD Method for Solving Wave Equation in Dispersive Media Described With GDM Model[J], IEEE Transactions on Antennas and Propagation, 2021, 69(9): 6105-6110.

[63]Bao H, Kang L, Campbell S D, et al. Discontinuous Galerkin Time Domain Analysis of Electromagnetic Scattering from Dispersive Periodic Nanostructures at Oblique Inci-dence[J]. Optics Express, 2019, 27(9): 13116-13128.

[64]Schmitt N, Scheid C, Lanteri S, et al. A DGTD Method for The Numerical Modeling of The Interaction of Light With Nanometer Scale Metallic Structures Taking into Account Non-Local Dispersion Effects[J]. Journal of Computational Physics, 2016, 316: 396-415.

[65]K. Li, T. Huang, L. Li, S. Lanteri, L. Xu and B. Li, A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation[J]. IEEE Transactions on Antennas and Propagation, 2017, 66(1): 242-254.

[66]Jacq P, Maire P H, Abgrall R. A nominally Second-Order Cell-Centered Finite Volume Scheme for Simulating Three-Dimensional Anisotropic Diffusion Equations on Unstruct-ured Grids[J]. Communications in Computational Physics, 2014, 16(4): 841-891.

[67]Anees A, Angermann L. Time Domain Finite Element Method for Maxwell’s Equations[J]. IEEE Access, 2019, 7: 63852-63867.

[68]Jin J M. Finite Element Method in Electromagnetics 3rd ed. (Wiley–IEEE)[J]. 2014.

[69]Q. Ren, L. E. Tobon, Q. Sun, and Q. H. Liu, A new 3-D Nonspurious Discontinuous Galerkin Spectral Element Time-Domain (DG-SETD) Method for Maxwell's Equations[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(6): 2585-2594.

[70]Sun Q, Zhang R, Zhan Q, et al. Multiscale Hydraulic Fracture Modeling With Discontinuous Galerkin Frequency-Domain Method and Impedance Transition Boundary Condition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6566-6573.

[71]Q. Sun, Q. Zhan, Q. Ren, and Q. H. Liu, Wave Equation-Based Implicit Subdomain DGTD Method for Modeling of Electrically Small Problems[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(4): 1111-1119.

[72]P. Wen, Q. Ren, J. Chen, A. Chen, and Y. Zhang, Improved Memory-Efficient Subdomain Level Discontinuous Galerkin Time Domain Method for Periodic/Quasi-Periodic Structures[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7471-7479.

[73]Z. Zhao, J. Chen, Complex Frequency‐Shifted Multi‐Axial Perfectly Matched Layer for Frequency‐Domain Seismic Wavefield Simulation in Anisotropic Media[J]. Geophysical prospecting, 2019, 67(5): 1329-1344.

[74]H. Li, J. Chen, Z. Zhao, et al. A Multi-Axial Perfectly Matched Layer for Finite-Element Time-Domain Simulation of anisotropic Elastic Wave Propagation[J]. Journal of Seismic Exploration, 2021, 30(2): 173-200.

[75]Butcher J C. Numerical Methods for Ordinary Differential Equations[M]. John Wiley & Sons, 2016.

中图分类号:

 TM15/O441.4    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式