- 无标题文档
查看论文信息

论文中文题名:

 搭载抗氧化剂的纳米复合水凝胶研发及防灭火特性研究    

姓名:

 夏尚文    

学号:

 21220089054    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 张玉涛    

第一导师单位:

 西安科技大学安全科学与工程学院    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Development of nanocomposite hydrogels loaded with antioxidants and study of fire-fighting properties    

论文中文关键词:

 煤自燃 ; 纳米复合水凝胶 ; 白皮杉醇 ; 氧化特性 ; 表观活化能    

论文外文关键词:

 Coal spontaneous combustion ; Nanocomposite hydrogels ; Piceatannol ; Oxidation characteristics ; Apparent activation energy    

论文中文摘要:

阻化剂防灭火技术在我国煤矿中应用广泛,但常见的矿用阻化剂存在作用手段单一、易失效、阻化效果弱的缺点。本文制备了以羟乙基纤维素(HEC)、甲基纤维素(MC)和纳米二氧化硅(CSPs)为原料的纳米复合水凝胶(NCH),作为复合阻化剂的物理阻化部分;优选出抗氧化剂(AO)白皮杉醇作为化学阻化部分,复配了不同比例的复合阻化剂(AO-NCH)。采用理论分析、实验测试和数学计算的方法研究AO-NCH的防灭火特性、优选AO-NCH的配比、掌握AO-NCH对煤自燃过程中活性官能团变化的影响规律、揭示AO-NCH阻化煤自燃的作用机理。

采用溶液共混法制备了非共价相互作用驱动的NCH,以成胶时间和状态为依据初步筛选出适合防灭火的凝胶配比,通过热稳定性、渗透性及封堵性测试进一步确定各配比凝胶的基础性能,最终选择成胶时间为12 min的凝胶作为阻化凝胶(HEC:MC:CSPs=0.75wt%:0.25wt%:5wt%),成胶时间为2.5 min的凝胶作为灭火凝胶(HEC:MC:CSPs=1.25wt%:1.25wt%:5wt%),与白皮杉醇复配形成AO-NCH开展防灭火特性研究。

通过同步热分析实验和程序升温实验得到了AO、NCH及不同配比的AO-NCH对煤自燃过程热特性及煤低温氧化特性的影响。与原煤相比,阻化煤的特征温度明显增大,其中NCH和AO对失水结束温度T1与质量峰值温度T2具有较为明显的提高作用,AO-NCH(40%:60%)表现出了优于单一阻化剂的阻化效果;阻化煤的最大质量损失率、平均质量损失率、可燃性指数及综合燃烧特性指数均低于原煤,其中AO-NCH(40%:60%)对煤自燃的前期反应能力抑制效果最佳,AO-NCH(50%:50%)对整体氧化燃烧性能具有最明显的抑制效果;阻化剂增大了原煤热平衡温度与最大放热功率温度,增加了煤自燃过程中的吸热量并减少了放热量;阻化煤样在氧化升温过程中具有比原煤更低的CO生成浓度、C2H4生成浓度、耗氧速率以及更高的表观活化能,但过高的AO含量或NCH含量均会导致阻化率及表观活化能的降低。其中AO-NCH(40%:60%)对原煤低温氧化过程的抑制效果最为明显,AO-NCH(40%:60%)阻化煤的表观活化能和平均阻化率最大。因此选用AO:NCH=40%:60%作为阻化煤自燃的最佳复配比例。

利用小型灭火试验台测试了AO-NCH的灭火性能,AO-NCH成胶前具有的流动性能保证了其在破碎煤体间的扩散,与高温火源接触后产生的水蒸气相对量小、安全性好;扩散过程中交联程度的加深使其能够有效粘附于煤体,覆盖煤体表面、封堵漏风通道,材料流失量少;优异的性能使煤温从783℃降低至50℃左右且未发生复燃。

利用原位漫反射红外光谱实验研究了原煤及AO-NCH(40%:60%)阻化煤氧化过程中的活性官能团变化规律,结果表明AO-NCH(40%:60%)可以有效减缓羟基的消耗趋势,抑制羟基、羧基、羰基及脂肪烃官能团的增长趋势,增加稳定醚键的生成速率。这意味着AO-NCH可以通过惰化活性中心、隔氧吸热的方式抑制煤氧反应,实现协同阻化煤自燃。

论文外文摘要:

The fire retardant prevention technology is widely used in China's coal mines, but the common mining retardants have the disadvantages of single means of action, easy failure and weak retarding effect. In this paper, a nano-composite hydrogel (NCH) with hydroxyethyl cellulose (HEC), methyl cellulose (MC) and nano-silica (CSPs) was prepared as the physical inhibiting part of the composite retardant; the antioxidant (AO) piceatannol was preferably selected as the chemical inhibiting part, and different ratios of the composite retardant (AO-NCH) were compounded. Theoretical analysis, experimental tests and mathematical calculations were used to study the fire-fighting properties of AO-NCH, to optimize the proportion of AO-NCH, to grasp the influence law of AO-NCH on the change of active functional groups during coal spontaneous combustion, and to reveal the mechanism of the effect of AO-NCH in inhibiting coal spontaneous combustion.

Non-covalent interaction-driven NCH was prepared by solution blending method, and suitable gel ratios were initially screened on the basis of gel formation time and state, and the basic properties of each ratio were further determined by thermal stability, permeability and blockability tests. The gel with a gel formation time of 12 min was finally selected as the inhibiting gel(HEC:MC:CSPs=0.75wt%:0.25wt%:5wt%), and the gel with a gel formation time of 2.5 min was selected as the fire suppression gel(HEC:MC:CSPs=1.25wt%:1.25wt%:5wt%). AO-NCH was formed by compounding NCH and piceatannol and the study of fire-fighting properties was carried out.

The effects of AO, NCH and AO-NCH on the thermal characteristics of coal spontaneous combustion process and the low temperature oxidation characteristics of coal were obtained by simultaneous thermal analysis experiments and temperature-programmed experiments. The retardant effectively increased the characteristic temperature of the raw coal, among which NCH and AO had more obvious effects on the water loss end temperature T1 and mass peak temperature T2, respectively. Furthermore, AO-NCH (40%:60%) showed better inhibiting effects than single retardant. The maximum mass loss rate, average mass loss rate, combustion characteristics index of the inhibited coal were lower than those of the raw coal, among which AO-NCH (40%:60%) and AO-NCH (50%:50%) had the most obvious inhibition effects on the pre-combustion reactivity and the overall oxidative combustion performance of the coal, respectively.The retardant increased the thermal equilibrium temperature and the maximum exothermic power temperature of the raw coal, increased the heat absorption and reduced the exothermic heat in the process of spontaneous combustion. The inhibited coal has lower CO generation concentration, C2H4 generation concentration, oxygen consumption rate and higher apparent activation energy than the raw coal, but too high AO or NCH content will lead to the decrease of inhibiting rate and apparent activation energy. Among them, AO-NCH (40%:60%) has the most obvious inhibiting effect on the low-temperature oxidation of raw coal, and has the highest apparent activation energy and inhibiting rate. Therefore, AO:NCH=40%:60% was selected as the best compounding ratio for inhibiting coal spontaneous combustion.

The fire extinguishing performance of AO-NCH was tested by a small fire extinguishing test bench. The fluidity of AO-NCH before gel formation ensures its diffusion among broken coal bodies, and the relative amount of water vapor generated after contacting with high temperature fire sources is small and safe. The deepening of cross-linking in the diffusion process enables it to adhere to the coal body effectively, covering the surface of the coal body and sealing the air leakage channels with less material loss. The excellent performance reduces the coal temperature from 783℃ to about 50℃ without re-ignition.

The changes of active functional groups during the oxidation of raw coal and AO-NCH (40%:60%) inhibited coal were investigated by in situ diffuse reflectance infrared spectroscopy experiments, and the results showed that AO-NCH (40%:60%) could effectively slow down the consumption trend of hydroxyl groups, inhibit the growth trend of hydroxyl, carboxyl, carbonyl and aliphatic hydrocarbon functional groups, and increase the generation rate of stable ether bonds. This implies that AO-NCH can inhibit the coal oxygen reaction by inerting the active center and isolating oxygen and absorbing heat to achieve synergistic deterrence of coal spontaneous combustion.

参考文献:

[1] Kong B, Li Z, Yang Y, et al. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China[J]. Environmental Science and Pollution Research, 2017, 24: 23453-23470.

[2] 钱鸣高,许家林,王家臣.再论煤炭的科学开采[J].煤炭学报,2018,43(01):1-13.

[3] 史全林.防治煤炭自燃的胶体泡沫理论及特性研究[D].徐州: 中国矿业大学,2019.

[4] Guo J, Wen H, Zheng X, et al. A method for evaluating the spontaneous combustion of coal by monitoring various gases[J]. Process Safety and Environmental Protection, 2019, 126: 223-231.

[5] Tang Z, Xu G, Yang S, et al. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal: Flame retardant and extinguishing properties[J]. Powder Technology, 2021, 384: 258-266.

[6] 邓军,白祖锦,肖旸,等.煤自燃灾害防治技术现状与挑战[J].煤矿安全,2020,51(10):118-125.

[7] Paswan M, Prajapati V, Dholakiya B Z. Optimization of biodegradable cross-linked guar-gum-PLA superabsorbent hydrogel formation employing response surface methodology[J]. International Journal of Biological Macromolecules, 2022, 223: 652-662.

[8] Dou G, Liu J, Jiang Z, et al. Preparation and characterization of a lignin based hydrogel inhibitor on coal spontaneous combustion[J]. Fuel, 2022, 308: 122074.

[9] 邢时超.基于膨胀与凝胶技术的防治煤自燃材料制备及性能研究[D].淮南: 安徽理工大学,2020.

[10] 秦波涛,仲晓星,王德明,等.煤自燃过程特性及防治技术研究进展[J].煤炭科学技术,2021,49(01):66-99.

[11] 王帅,王渭娜,高志芳,等.白皮杉醇PIC与OH自由基反应机理的理论研究[J].高等学校化学学报,2015,36(08):1588-1595.

[12] Sujanti W, Zhang D. A laboratory study of spontaneous combustion of coal: the influence of inorganic matter and reactor size[J]. Fuel, 1999, 78(5): 549-556.

[13] Humphreys D. The spontaneous heating of coal and its relation to petrography composition[D]. Brisbane: The University of Queensland, 1976.

[14] 郑兰芳.阻化剂抑制煤炭氧化自燃性能的实验研究[D].西安: 西安科技大学,2009.

[15] 徐精彩,薛韩玲,文虎,等.煤氧复合热效应的影响因素分析[J].中国安全科学学报,2001(02):34-39.

[16] 陆伟,胡千庭,仲晓星,等.煤自燃逐步自活化反应理论[J].中国矿业大学学报,2007(01):111-115.

[17] 李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,3:111-114.

[18] 邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J].辽宁工程技术大学学报,2003(04):455-459.

[19] Lopez D, Sanada Y, Mondragon F. Effect of low-temperature oxidation of coal on hydrogen-transfer capability[J]. Fuel, 1998, 77(14): 1623-1628.

[20] Wang H, Dlugogorski B Z, Kennedy E M. Theoretical analysis of reaction regimes in low-temperature oxidation of coal[J]. Fuel, 1999, 78(9): 1073-1081.

[21] 徐精彩,张辛亥,文虎,等.煤氧复合过程及放热强度测算方法[J].中国矿业大学学报,2000(03):31-35.

[22] 王继仁.煤自燃量子化学理论[M].北京:科学出版社,2007.

[23] 邓存宝,王继仁,叶兵,等.煤表面对单氧分子的物理吸附机理[J].中国矿业大学学报,2008,37(2):5.

[24] 王德明,辛海会,戚绪尧,等.煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J].煤炭学报,2014,39(08):1667-1674.

[25] 马砺,任立峰,艾绍武,等.氯盐阻化剂对煤自燃极限参数影响的试验研究[J].安全与环境学报,2015,15(04):83-88.

[26] 马砺,任立峰,艾绍武,等.氯盐阻化剂抑制煤初次和二次氧化特性的实验研究[J].矿业安全与环保,2015,42(01):1-4+8.

[27] 谢锋承.阻化剂抑制煤自燃的实验研究[D].焦作: 河南理工大学,2011.

[28] Lu W, Guo B, Qi G, et al. Experimental study on the effect of preinhibition temperature on the spontaneous combustion of coal based on an MgCl2 solution[J]. Fuel, 2020, 265: 117032.

[29] Manquais K L, Snape C, Barker J, et al. TGA and drop tube furnace investigation of alkali and alkaline earth metal compounds as coal combustion additives[J]. Energy & fuels, 2012, 26(3): 1531-1539.

[30] Wu K, Wang Z, Hu Y. Microencapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene[J]. Polymers for Advanced Technologies, 2008, 19(8): 1118-1125.

[31] 郑兰芳.抑制煤氧化自燃的盐类阻化剂性能分析[J].煤炭科学技术,2010,38(05):70-72+96.

[32] 李晓曦,谭波.煤自燃阻化剂的阻化效果动力学分析及优选[J].中国安全科学学报,2017,27(06):79-84.

[33] Li Q, Xiao Y, Zhong K, et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel, 2020, 275: 117981.

[34] ]杨胜强.氢氧化钙对高硫煤的阻化实验及机理分析[J].中国矿业大学学报,1996(04):68-72.

[35] 刘英学.Ca(OH)2对煤炭氧化及自燃倾向特性作用的研究[J].矿业安全与环保,2003(05):9-11+1.

[36] Gao Y, Jiang Z, Zhang Y, et al. Experimental Study on Sodium Bicarbonate Inhibiting Spontaneous Combustion of Remaining Coal in Goaf[J]. Energy Procedia, 2011 (13): 4150-4157.

[37] 肖辉,杜翠凤.新型高聚物煤自燃阻化剂的试验研究[J].安全与环境学报,2006(01):46-48.

[38] 王立芹,杨静,王振华,等.防治煤层自燃的聚乙酸乙烯酯乳液的合成及其性能研究[J].煤矿安全,2007(03):5-7+14.

[39] 丁木生.阻燃剂在高聚物材料中的应用分析[J].化工时刊,2020,34(05):34-39.

[40] Ren W, Kang Z, Wang D. Causes of spontaneous combustion of coal and its prevention Technology in the tunnel fall of ground of extra-thick coal seam[J]. Procedia Engineering, 2011, 26: 717-724.

[41] Shi Q, Qin B. Experimental research on gel-stabilized foam designed to prevent and control spontaneous combustion of coal[J]. Fuel, 2019, 254: 115558.

[42] Lu Y, Liu Y, Shi S, et al. Micro-particles stabilized aqueous foam for coal spontaneous combustion control and its flow characteristics[J]. Process Safety and Environmental Protection, 2020, 139: 262-272.

[43] 王开胜,陆伟,杜云峰,等.防治煤自燃塑性水玻璃凝胶研究[J].矿业安全与环保,2016,43(01):8-11.

[44] 马砺,黄霄,杨元博,等.温敏性水凝胶制备及阻燃性能研究[J].消防科学与技术,2020,39(06):821-824.

[45] 周春山.矿用羧甲基纤维素钠/柠檬酸铝防灭火凝胶的制备与特性研究[D].太原: 太原理工大学,2017.

[46] 梁择文,王俊峰,董凯丽,等.高价态金属离子交联体系防灭火性能影响研究[J].中国安全科学学报,2021,31(07):113-119.

[47] Deng J, Xiao Y, Lu J, et al. Application of composite fly ash gel to extinguish outcrop coal fires in China[J]. Natural Hazards, 2015, 79(2): 881-898.

[48] Xu Y, Wang D, Wang L, et al. Experimental research on inhibition performances of the sand-suspended colloid for coal spontaneous combustion[J]. Safety science, 2012, 50(4): 822-827.

[49] 赵建国,朱化雨,刘晓泓,等.煤矿三元复合胶体防灭火材料的制备与性能研究[J].功能材料,2015,46(13):13139-13143.

[50] Zhan J, Wang H, Song S, et al. Role of an additive in retarding coal oxidation at moderate temperatures[J]. Proceedings of the combustion institute, 2011, 33(2): 2515-2522.

[51] 李金亮,陆伟,徐俊.化学阻化剂防治煤自燃及其阻化机理分析[J].煤炭科学技术,2012,40(01):50-53.

[52] Cummings J, Tremain P, Shah K, et al. Modification of lignites via low temperature ionic liquid treatment[J]. Fuel Processing Technology, 2017, 155: 51-58.

[53] Cui F, Laiwang B, Shu C, et al. Inhibiting effect of imidazolium-based ionic liquids on the spontaneous combustion characteristics of lignite[J]. Fuel, 2018, 217: 508-514.

[54] 马砺,何铖茂,魏泽,等.离子液体对不粘煤煤粉自燃特性的影响[J].工程科学学报,2022,44(12):2008-2016.

[55] Bai Z, Wang C, Deng J, et al. Experimental investigation on using ionic liquid to control spontaneous combustion of lignite[J]. Process Safety and Environmental Protection, 2020, 142: 138-149.

[56] 常旋,徐春明,陈佳,等.抗氧化剂筛选复配及在咖啡饮料中的应用研究[J/OL].食品与发酵工业:1-10[2022-11-17].

[57] Kashanian S, Dolatabadi J. DNA binding studies of 2-tert-butylhydroquinone (TBHQ) food additive[J]. Food Chemistry, 2009, 116(3): 743-747.

[58] Imran M, Ghorat F, Ul-Haq I, et al. Lycopene as a natural antioxidant used to prevent human health disorders[J]. Antioxidants, 2020, 9(8): 706.

[59] 郭翔宇.儿茶素抑制煤自燃的机理研究[D].天津: 天津理工大学,2020.

[60] Hou Y, Nie B, Zhang Z, et al. Inhibitory effect of green antioxidants acting on surface groups and structure on lignite[J]. Energy, 2022, 257: 124655.

[61] Ma L, Wang D, Wang Y, et al. Experimental investigation on a sustained release type of inhibitor for retarding the spontaneous combustion of coal[J]. Energy & Fuels, 2016, 30(11): 8904-8914.

[62] Qin B, Dou G, Wang D. Thermal analysis of vitamin C affecting low-temperature oxidation of coal[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(3): 519-522.

[63] Pandey J, Mohalik N K, Mishra R K, et al. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires[J]. Fire Technology, 2015, 51(2): 227-245.

[64] Tang Y. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal[J]. Journal of the Energy Institute, 2018, 91(5): 639-645.

[65] Huang Z, Liu X, Gao Y, et al. Experimental study on the compound system of proanthocyanidin and polyethylene glycol to prevent coal spontaneous combustion[J]. Fuel, 2019, 254: 115610.

[66] 郜孟南.基于自由基消减的煤自燃阻化剂及其阻化特性[D].徐州: 中国矿业大学,2020.

[67] 薛海波.抑制煤自燃过程关键活性基团的抗氧化型复合阻化剂研究[D].徐州: 中国矿业大学,2018.

[68] Gaharwar A K, Peppas N A, Khademhosseini A. Nanocomposite hydrogels for biomedical applications[J]. Biotechnology and bioengineering, 2014, 111(3): 441-453..

[69] 王婕.蒙脱土类双网络复合凝胶的制备及防灭火特性研究[D].太原: 太原理工大学,2021.

[70] Cordero M, Ruiz C, Palacio D A, et al. Effect of low aspect ratio one-dimensional nanoparticles on properties of photocrosslinked alginate nanocomposite hydrogels[J]. International Journal of Biological Macromolecules, 2022, 204: 635-643.

[71] Boonmahitthisud A, Nakajima L, Nguyen K D, et al. Composite effect of silica nanoparticle on the mechanical properties of cellulose‐based hydrogels derived from cottonseed hulls[J]. Journal of Applied Polymer Science, 2017, 134(10).

[72] Haraguchi K, Takehisa T. Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de‐swelling properties[J]. Advanced materials, 2002, 14(16): 1120-1124.

[73] Cheng H, Feng Q, Liao C, et al. Removal of methylene blue with hemicellulose/clay hybrid hydrogels[J]. Chinese Journal of Polymer Science, 2016, 34(6): 709-719.

[74] Kong W, Huang D, Xu G, et al. Graphene oxide/polyacrylamide/aluminum ion cross‐linked carboxymethyl hemicellulose nanocomposite hydrogels with very tough and elastic properties[J]. Chemistry-An Asian Journal, 2016, 11(11): 1697-1704.

[75] Yang J, Han C, Duan J, et al. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels[J]. ACS applied materials & interfaces, 2013, 5(8): 3199-3207.

[76] 李岩.半纤维素基纳米复合水凝胶的制备及性能研究[D].南宁: 广西大学,2022.

[77] 袁英梅,蔺黎明.用于环境治理的改性聚乳酸纳米复合材料的制备及表征[J].化工管理,2022(15):79-82.

[78] Dey A, Khan F, Mukhopadhyay M, et al. Amphiphilically Engineered Sodium Deoxycholate Based Nanocomposite Hydrogels with Strong Bactericidal and Water Absorption Characteristics[J]. Materials Today Communications, 2023: 105353.

[79] Li B, Chen Y, Han Y, et al. Tough, highly resilient and conductive nanocomposite hydrogels reinforced with surface-grafted cellulose nanocrystals and reduced graphene oxide for flexible strain sensors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022: 129341.

[80] Wang F, Huang K, Xu Z, et al. Preparation of high-strength dynamic polysaccharide nanocomposite hydrogels and their application towards dye adsorption[J]. Industrial Crops and Products, 2022, 189: 115704.

[81] 周建华,王林本,孙根行.有机/无机纳米复合水凝胶的制备与应用[J].材料导报,2014,28(13):1-8.

[82] 史全林,秦波涛.防治煤自燃的弹性水凝胶形成机理及特性研究[J].中国矿业大学学报,2022,51(06):1106-1116.

[83] 刘贺,朱奕昊,刘亭亭,等.天然抗氧化剂及协同作用研究进展[J].聊城大学学报(自然科学版),2021,34(05):59-65.

[84] Kukreja A, Mishra A, Tiwari A. Source, production and biological activities of piceatannol: a review[J]. International Journal of Pharmaceutical Sciences and Research (IJPSR), 2013, 4(10): 3738-3745.

[85] León-Carmona J R, Martínez A, Galano A. New free radicals to measure antiradical capacity: A theoretical study[J]. The Journal of Physical Chemistry B, 2014, 118(34): 10092-10100.

[86] 李菲. 基于在线高效液相色谱技术的中药抗氧化活性成分的快速筛选[D].昆明: 昆明理工大学,2012.

[87] Dorman H J D, Peltoketo A, Hiltunen R, et al. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs[J]. Food chemistry, 2003, 83(2): 255-262.

[88] 陈莹,周华,晏日安.氧化白藜芦醇的合成工艺改进及其抗氧化活性[J/OL].食品与发酵工业:1-10[2022-11-19].

[89] 李晓霞,晏日安,段翰英.白皮杉醇的合成及抗氧化活性研究[J].食品与发酵工业,2011,37(04):78-81.

[90] 王帅. 白皮杉醇及甲氧基衍生物抗氧化活性的理论研究[D].西安: 陕西师范大学,2015.

[91] Shu P, Zhang Y, Deng J, et al. Characteristics and mechanism of modified hydrotalcite for coal spontaneous combustion preventing[J]. Energy, 2023, 265: 126353.

[92] 晏建波,王海蓉,梁栋,等.油页岩掺混煤的燃烧性能与排放性能[J].燃烧科学与技术,2014,20(02):158-163.

[93] Zhang Y, Zhang Y, Li Y, et al. Determination and dynamic variations on correlation mechanism between key groups and thermal effect of coal spontaneous combustion[J]. Fuel, 2022, 310: 122454.

[94] 马圣月. 低阶煤着火机理研究[D].北京: 华北电力大学(北京),2021.

[95] 王洋. 物理-化学笼式复合阻化剂对煤自燃的影响研究[D].徐州: 中国矿业大学,2016.

[96] 张玉涛,张园勃,李亚清,等.低瓦斯气氛下煤氧化热效应和关键基团演变特性[J].中国矿业大学学报,2021,50(04):776-783.

[97] Guo J, Zhang T, Pan H. Study on the Variations of Key Groups and Thermal Characteristic Parameters during Coal Secondary Spontaneous Combustion[J]. ACS Omega, 2023.

中图分类号:

 TD752.2    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式