- 无标题文档
查看论文信息

论文中文题名:

 温度稳定型铋基焦绿石复相材料设计与结构精化    

姓名:

 张冰洁    

学号:

 201204157    

保密级别:

 秘密    

学科代码:

 085204    

学科名称:

 材料工程    

学生类型:

 工程硕士    

学位年度:

 2015    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 功能电子材料    

第一导师姓名:

 杜慧玲    

第一导师单位:

 西安科技大学    

论文外文题名:

 Composition Design and Structure Refinement of Bismuth-based Pyrochlore Biphase Ceramics    

论文中文关键词:

 铋基焦绿石 ; Rietveld结构精化 ; 复相设计 ; 温度稳定型    

论文外文关键词:

 Bi-based Pyrochlore ; Rietveld Structure Refinement ; Biphase Design ; Temperature Stability    

论文中文摘要:
铋基焦绿石材料是具有焦绿石结构且性能优异的新型介电陶瓷材料,本文在高介电常数(Bi1.5Zn0.5)(Zn1.5Nb0.5)O7、(Bi1.5Zn0.5)(Zr1.5Nb0.5)O7与(Bi1.5Zn0.5)(Ti1.5Nb0.5)O7焦绿石材料基础上,采用Rietveld结构精修来获得精确的晶体结构信息,以对比通过(Bi1.5Zn0.5)(Zn1.5Nb0.5)O7、(Bi1.5Zn0.5)(Zr1.5Nb0.5)O7形成的复相结构的变化。为开发温度稳定型特征的焦绿石介电陶瓷介质,优选具有正负温度系数特征的焦绿石单相体系,进行复相组成设计,开发极具应用价值的新型NP0高频介质。主要研究结果如下: (1) 利用GSAS软件对焦绿石体系(Bi1.5Zn0.5)(Zn1.5Nb0.5)O7、(Bi1.5Zn0.5)(Zr1.5Nb0.5)O7与(Bi1.5Zn0.5)(Ti1.5Nb0.5)O7进行结构精修,获得精确的晶胞参数。复相陶瓷0.3(Bi1.5Zn0.5)(Zn1.5Nb0.5)O7-0.7(Bi1.5Zn0.5)(Zr1.5Nb0.5)O7的晶胞参数和结构信息精修结果表明该复相陶瓷形成独立两相,晶格常数、A–O’键长、B–O键长在两相中都有独立数值,同时实验数据与Lichtenecker混合定律理论值相近,说明形成复相材料。晶体参数均向中间值发生一定移动,O–B–O键角发生了一定畸变,实验值与理论值存在微小差距,说明有微量固溶相。 (2) 从复相陶瓷结构性能调控角度出发,应用Lichtenecker混合定律制备了不同配比的(1–x)BZN–xBZZN和(1-x)BZTN-xBZZN焦绿石结构介电陶瓷。并采用XRD、SEM、EDS、Rietveld结构精修及介电温谱等手段对该体系的结构性能进行分析,结果表明:通过调节x值,获得了介电常数温度系数αε近零的高介低损材料。BZN和BZZN在较宽温度范围内能很好地形成立方焦绿石复相结构。当x=0.70时,复相陶瓷的介电性能达到最优:1MHz下,εr=123.2,tanδ=7×10-4,αε125℃=5×10-6/℃,因此获得了具有零温度系数特征的高介低损焦绿石复相新材料。同时(1-x)BZTN-xBZZN也形成了比较理想的温度稳定材料,当x=0.74时,该体系复相陶瓷的介电性能达到最优:1MHz下,εr=161.84,tanδ=1×10-2,αε85℃=1.89×10-6/℃。 (3)根据Lichtenecker混合定律理论计算,制备了(0.6BTN-0.4BZZN)、(0.5BTN-0.5BZZN)、(0.9BTS-0.1BZN)、(0.8BTS-0.2BZN)、(0.4BST-0.6BZN)、(0.3BST-0.7BZN)、(0.2CCTO-0.8BZN)、(0.1CCTO-0.9BZN)复相材料。X射线衍射谱显示,各相特征峰明显,说明复相中的各相相对独立的保持了晶体结构、晶格参数,已形成复相结构;介电温度测试结果表明,在温度范围25~125℃之内,尤其是0.1CCTO-0.9BZN的介电常数都有所改善,介电常数高(~141),介电损耗较小(~0.0064),其介电常数温度系数大幅度降低在10-6级别,结合CCTO的特点,可以运用到更广泛的高频电路中、耦合电容等相关领域。
论文外文摘要:
Bismuth-based pyrochlore is a new kind of dielectric ceramics which has pyrochlore structure with excellent dielectric properties. (Bi1.5Zn0.5)(Zn1.5Nb0.5)O7, (Bi1.5Zn0.5)(Zr1.5Nb0.5)O7 and (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 with high dielectric constant are discussed in this paper. Rietveld refinement has been used to compare the multiphase structure variation of (Bi1.5Zn0.5)(Zn1.5Nb0.5)O7 with that of (Bi1.5Zn0.5)(Zr1.5Nb0.5)O7. Moreover, the multiphasic pyrochlore systems, possessed with positive and negative temperature coefficient characteristics, have been optimized and designed in order to develop the temperature-stable pyrochlore. The main results are as follows: (1) The GSAS software was used to refine the micro-structure of bismuth-based pyrochlores (Bi1.5Zn0.5)(Zn1.5Nb0.5)O7, (Bi1.5Zn0.5)(Zr1.5Nb0.5)O7 and (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 to obtain the accurate parameters of the unit cell. The cell parameters and structure refinement information of 0.3(Bi1.5Zn0.5)(Zn1.5Nb0.5)O7-0.7(Bi1.5Zn0.5)(Zr1.5Nb0.5)O7 indicated that this ceramic forms two independent phases. Besides the parameter of unit cell, A–O’ bond and B–O bond length possess independent value in these phase. These results are close to the theoretical value of Lichtenecker mixture rule, which indicates that this is a multiphase ceramic system. Furthermore, the experiment result slightly different with theoretical value, i.e., the parameters of each phase unit cell moved slightly compared to the average value and some distortions of the O–B–O bond angel occurs. That is to say, the sample has micro solid solution. This chapter investigates the relationship between property variation and structure of the multiphase materials in the microcosmic view. (2) The different proportions of (1-x) BZN-xBZZN and (1-x) BZTN-xBZZN are produced using the Lichtenecker mixture rule in basis of the angle of regulating multiphase ceramic structure performance. XRD, SEM, EDS, Rietveld structure refinement and dielectric temperature measurement system are used to systematically analyze the structure and performance of the sample. The results show that, the high dielectric constant and low dielectric loss material with the temperature coefficient of dielectric constant (αε) nearly zero is obtained by adjusting the x value. BZN and BZZN can form into cubic pyrochlore multiphase material in a wider temperature range. When x=0.7, the multiphase ceramic exhibits the best dielectric performance (i.e., at 1MHz, εr = 123.2, tanδ =7×10-4, αε125℃=5×10-6/℃). Meanwhile, the sample (1-x)BZTN-xBZZN also forms into the material with stable dielectric temperature property. When x = 0.74, the multiphase ceramic has best dielectric performance (i.e., at 1MHz, εr = 161.84, tanδ = 1×10-2, αε125℃ =1.89 ×10-6 /℃). (3) According to the Lichtenecker mixture rule, the multiphase material (0.6BTN-0.4BZZN), (0.5BTN-0.5BZZN), (0.9BTS-0.1BZN), (0.8BTS-0.2BZN), (0.4BST-0.6BZN), (0.3BST-0.7BZN), (0.2CCTO-0.8BZN), (0.1CCTO-0.9BZN) are prepared. The XRD results show each phase has obvious characteristic peak, which indicates that each phase has a relative independent crystal structure and lattice parameter. The multiphase structure has also been formed. The dielectric temperature test results indicated that the temperature stability of samples have been improved in the range of 25-125℃ for industrial applications. Especially, the 0.1CCTO-0.9BZN system possesses the high dielectric constant (~141), low dielectric loss (~0.0064) and the level of temperature coefficient (i.e., 10-6). Combining with the characteristics of CCTO, the multiphase material can be widely applied to the oscillator, resonator and the coupling capacitors in high frequency circuit.
中图分类号:

 TQ174.1    

开放日期:

 2015-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式