- 无标题文档
查看论文信息

论文中文题名:

 天然气储罐泄漏扩散及爆炸数值模拟研究    

姓名:

 胡腾    

学号:

 19320214008    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 可燃气体泄漏扩散及爆炸    

第一导师姓名:

 罗振敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Numerical simulation of leakage diffusion and explosion    

论文中文关键词:

 泄漏扩散 ; 爆炸 ; 数值模拟 ; 浓度 ; 速度 ; 超压 ; 温度    

论文外文关键词:

 Leakage diffusion ; Explosion ; Numerical simulation ; Concentration ; Speed    

论文中文摘要:

作为一种洁净环保、经济实惠的优质能源,天然气在我国居民的日常生活和工业生产过程中扮演着越来越重要的角色。众所周知,天然气易燃爆,在储运过程中往往容易发生泄漏现象,天然气所具有的密度比空气小的性质导致其在泄漏后极易扩散,当气云团遇点火源后可能会发生火灾、爆炸等严重后果,最终造成巨大的人员伤亡和经济损失。本文基于前人研究的成果,利用 FLACS 数值模拟研究了多种因素影响下天然气球形储罐罐区泄漏扩散规律及爆炸过程,论文主要取得以下成果:

本文选取某天然气储罐区,使用 FLACS 软件进行厂区 CFD 建模,针对风速、风向、障碍物、泄漏速率,泄漏方向、泄漏孔径等不同工况条件,研究了天然气球形储罐泄漏扩散过程,获得了天然气储罐泄漏扩散浓度、速度分布规律及等效可燃气云体积随时间的变化规律。

同时,本文研究了不同体积及浓度天然气云团遇点火源发生爆炸后产生的火焰形状变化规律、超压和高温对人员伤害范围、最大超压及各监测点的压力和温度变化规律。结果表明:天然气云发生爆炸后起初在点火源处形成火球,随后火焰迅速向四周蔓延,与此同时火焰迅速向上空扩散,形成“蘑菇云”形状,随后,火焰尺寸逐渐变小,最终消散。通过切面图分析,压力和温度以点火位置为中心迅速向四周扩散,核心位置处最高,边界层处较低,随后爆炸中心压力下降,出现负压区,最后压力云图自内
向外逐渐消散,爆炸反应逐渐结束,温度边界层处呈现“锯齿状”分布。此外,爆炸高温区域面积最大与爆炸中心压力最高时刻相近,温度云图面积达到最大后,从中点处出现断裂,最后从两侧逐渐消散。最大爆炸超压随着气云体积增大呈现线性函数递增关系,随着气云浓度增大则呈现先增大后减小的趋势。当量比越接近 1,反应越充分,爆炸最强烈,而浓度越远离 10%,其最大爆炸超压值越小。
最后,本文对天然气浓度检测报警仪布置高度、探测有效性及反应时间进行了分析,并提出了天然气浓度检测报警仪布局优化、防爆及预警措施建议。

论文外文摘要:

~As a clean, explosion limit of 5-15%, also has certain corrosion resistance and toxicity,
hazard is opposite bigger, the leakage phenomenon can occur in the process of storage and
transportation, gas density is smaller than the air of the nature of the cause of the leak after
spread extremely easily, when gas clouds in ignition source may occur after the fire, explosion
and other serious consequences,Eventually resulting in huge casualties and economic losses.
In view of this, a large number of scholars and experts have conducted research on natural gas
leakage explosion.Based on the results of previous studies, this paper uses FLACS simulation
to study the diffusion law of leakage gas and the law of combustion and explosion after leakage
of spherical natural gas storage tank area under the influence of a variety of factors. The main
achievements of this paper are as follows:
In order to study the law of natural gas leakage and diffusion, based on a natural gas
storage tank area, this paper uses FLACS software to conduct CFD modeling in the plant area,
and then sets different wind speed, wind direction, leakage rate, leakage direction and leakage
aperture. The influence of the above working conditions on the distribution of concentration
and velocity of gas leakage and diffusion after reaching a stable state and the influence on the
variation rule of equivalent gas cloud volume Q9 with time was studied. It was suggested that
the layout of gas concentration detection and alarm should be placed directly above the potential
release source. In accordance with the national standard within the scope of combustible gas
detection alarm device as far as possible arranged at a high place, in order to improve detection
sensitivity. At present, the maximum alarm lag time stipulated in relevant standards is
relatively loose, so it is recommended to choose the detection and alarm device with sensitive
response and short alarm lag time.
In addition, this paper also studies the flame shape change rule, the damage range of
overpressure and high temperature, the maximum overpressure and the pressure and
temperature change rule of each monitoring point after the gas cloud explodes in ignition source
with different volume and concentration. After the explosion of natural gas cloud at the
beginning of the ignition source to form a fireball, then the flame quickly spread around, at
the same time the flame rapidly spread to the sky, the formation of a "mushroom cloud" shape,
then, the flame size gradually smaller, and eventually dissipated.The pressure XY section
diagram spreads rapidly to all sides from the ignition position as the center. In the initial stage,
the pressure at the core position is the highest, while the boundary layer pressure is low. Then,
the pressure at the explosion center drops and a negative pressure area appears. The XY section
diagram of temperature spreads rapidly around the ignition location, with high temperature in
the core location and low temperature in the boundary layer. The boundary layer is a "sawtooth"
distribution. The maximum area of the high temperature area of the explosion was close to the
moment of the highest pressure in the explosion center. After the temperature cloud area
reached the maximum, the fracture appeared at the middle point and finally dissipated
gradually from both sides. With the increase of gas cloud concentration, the maximum
explosion overpressure (P) after the gas cloud is ignited increases first and then decreases.The
closer the equivalent ratio of ER is to 1, the fuller the reaction is and the strongest explosion
is; while the farther the concentration is from 10%, the smaller the maximum explosion
overpressure is.

参考文献:

[1] 安丰春,涂彬.我国天然气基础设施建设战略[J].油气田地面工程,2007,26(11):6-7.

[2] 李鹭光,王红岩,刘合,李群,张磊夫.天然气助力未来世界发展——第 27 届世界天然气

大会(WGC)综述[J].天然气工业,2018,38(09):1-9.

[3] 冯西平,张宏.天然气储罐泄漏后燃烧爆轰性分析[J].广东化工,2014,41(05):156-

157+171.

[4] 佚名.《石油发展“十三五”规划》、《天然气发展“十三五”规划》出台[J]. 中国矿

业,2017(2):76-76.

[5] 严大凡.油气长输管道风险评价与完整性管理[M].北京:化学工业出版社,2005.

[6] 刘艳娇,栾秀云.我国天然气资源开发现状及未来发展趋势展望[J]. 当代化工,

2014(10):2140-2142.

[7] Sklavounos S, Rigas F. Simulation of Coyote series trials Pant I: CFD estimation of nonisothermal LNG releases and comparison with box-model predictions. Chemical

Engineering Science, 2006, 61(5): 1434-1443.

[8] 冯亮.有限空间内天然气扩散及燃爆流场的数值模拟研究[D].东北石油大学,2018.

[9] 金卷华.埋地输气管道泄漏扩散数值模拟研究[D].浙江海洋大学,2020.

[10] Scargiali F, Grisafi F, Busciglio A et al. Modeling and simulation of dense cloud dispersion

in urban areas by means of computational fluid dynamics[J]. Journal of Hazardous

Materials, 2011 (197): 285-293.

[11] 黄浩祎.化工园区天然气泄漏扩散与爆炸灾害效应数值模拟研究[D].太原科技大

学,2021.DOI:10.27721/d.cnki.gyzjc.2021.000410.

[12] 史 合.锅 炉 房 内 天 然 气 泄 漏 扩 散 及 爆 炸 的 数 值 模 拟 研 究[D].西安科技大

学,2020.DOI:10.27397/d.cnki.gxaku.2020.001114.

[13] 肖峻峰,陈健,戴程呈,卢平.高含硫天然气泄漏爆炸与毒性影响因素分析[J].中国安全

科学学报,2020,30(06):43-49.DOI:10.16265/j.cnki.issn1003-3033.2020.06.007.

[14] 范旭东.餐馆厨房内燃气泄漏与爆炸及防护措施研究[D].天津大学,2017.

[15] 胡百中,陈序,何泊龙,陈平,黄程,陈文龙.含硫天然气集输管道气体泄漏扩散三维数值

模拟[J].重庆科技学院学报(自然科学版),2019,21(02):21-25+90.

[16] Chengjun Yue,Li Chen,Hengbo Xiang,Linfeng Xu,Shigang Yang,Zhan Li,Chenxi Xia,Qin

Fang,Chiara Bedon. Assessment of Cascading Accidents of Frostbite, Fire, and Explosion

Caused by Liquefied Natural Gas Leakage[J]. Advances in Civil Engineering,2020,2020.

[17] 任少云,辛晶.环境对密闭房间内天然气泄漏及爆炸的影响[J].消防科学与技

术,2018,37(05):680-683.

[18] 文霞.隧道内输气管道泄漏爆炸数值模拟及对邻管的损伤研究[D].西南石油大

学,2018.

[19] Tao Ma,Shuhai Liu,Huaping Xiao. Multirobot searching method of natural gas leakage

sources on offshore platform using ant colony optimization[J]. International Journal of

Advanced Robotic Systems,2020,17(5).

[20] 张敬阳,高永生,李鑫,漆琦.阳台燃气管道泄漏扩散模拟研究[J].安全,2020,41(09):57-61.

[21] 古蕾.民用建筑室内燃气泄漏的数值模拟研究[D].西南石油大学,2014.

[22] A. Agarwal,O.B. Molwane,I. Pitso. Analytical investigation of the influence of natural gas

leakage & safety zone in a pipeline flow[J]. Materials Today: Proceedings,2020.

[23]Til Baalisampang,Rouzbeh Abbassi,Vikram Garaniya,Faisal Khan,Mohammad Dadashzadeh. Accidental release of Liquefied Natural Gas in a processing facility: Effect of equipment congestion level on dispersion behaviour of the flammable vapour[J].Journal of Loss Prevention in the Process Industries,2019,61.

[24]Aihua Liu,Jian Huang,Zhiwen Li,Jieyun Chen,Xiaofei Huang,Ke Chen,Wen bin Xu.

Numerical simulation and experiment on the law of urban natural gas leakage and

diffusion for different building layouts[J]. Journal of Natural Gas Science and

Engineering,2018,54.

[25] 张丽.室内燃气泄漏扩散及燃烧爆炸的数值模拟[D].中北大学,2015.

[26] 于力.受限空间天然气泄漏扩散和爆炸的数值模拟[D].首都经济贸易大学,2011.

[27] 彭琳,杨应迪,彭伟,袁宏永,付明,武慧君.基于 ALOHA 和多元回归预测的地面天然气

管道泄漏扩散模型研究[J].河南理工大学学报(自然科学版),2021,40(01):8-14.

[28]Weitao Zhang,12,Mengqi Liu,Kaiyi Wang,Fan Zhang,Lei Hou. Numerical Study on the

Gas Leakage and Dispersion at the StreetIntersection of a Building Group[J]. Computer

Modeling in Engineering & Sciences,2020,123(3).

[29] 何宁辉,张玉涛,吕锡胜,高盛,战致铭.基于 SAFETI软件的天然气储配厂罐区定量风险

分析[J].安全,2020,41(06):42-46.

[30] 林仁祺,王芃,王雪梅,谭羽非.综合管廊内天然气泄漏扩散数值模拟 MATLAB 实现[J].

煤气与热力,2019,39(12):1-7+44-45.DOI:10.13608/j.cnki.1000-4416.2019.12.014.

[31] 周理. 高压氢气泄漏自燃现象的模拟[D].重庆大学,2014.

[32] 廖毅,于川,孙昊茹.基于高斯模型的新场气田输气管道泄漏模拟研究[J].安全、健康

和环境,2018,18(07):28-32.

[33] 陈坤,刘德欢,李开放,魏鑫.基于高斯烟羽模型的山区含硫天然气泄漏扩散研究[J].化

68

工设计通讯,2019,45(04):156-157.

[34] 陈南熹,何佳坤,梁开武,廖凯,苏美意.含硫天然气泄漏后 H2S 扩散模型对比分析[J].重

庆科技学院学报(自然科学版),2018,20(06):67-70.

[35] 庄学强,廖海峰.液化天然气泄漏扩散数值模型分析[J].集美大学学报(自然科学

版),2011,16(04):292-296.DOI:10.19715/j.jmuzr.2011.04.010.

[36] 焦建瑛,张涛,王嵩梅,何少平.燃气圆管道在空气中泄漏源地面逸出区域反算方法应

用研究[J].城市燃气,2020(02):9-13.

[37] Shuaiqi Yuan,Jiansong Wu,Xiaole Zhang,Wenyu Liu. EnKF-based estimation of natural

gas release and dispersion in an underground tunnel[J]. Journal of Loss Prevention in the

Process Industries,2019,62.

[38] 孙明曦. 燃气架空管道泄漏气体的浓度分析[A]. 中国土木工程学会燃气分会.中国燃

气运营与安全研讨会(第十届)暨中国土木工程学会燃气分会 2019 年学术年会论

文集(上册)[C].中国土木工程学会燃气分会:《煤气与热力》杂志社有限公

司,2019:7.

[39] 方自虎,蔺宏,黄鹄,郑汉忠.管廊内燃气泄漏扩散的模型试验与数值仿真[J].工程力

学,2006(09):189-192.

[40] 张琳,邓雅军,侯昊,王会杰,敖尚民.倒 U 型槽中天然气管道泄漏扩散模拟[J].消防科学

与技术,2019,38(05):699-702.

[41] Wu Jiansong,Liu Zhe,Yuan Shuaiqi,Cai Jitao,Hu Xiaofeng. Source term estimation of

natural gas leakage in utility tunnel by combining CFD and Bayesian inference method[J].

Journal of Loss Prevention in the Process Industries,2020,68.

[42] 周月琴,张 增 刚,王夏冉.室 内 天 然 气 泄 漏 爆 炸 的 定 量 计 算[J].煤气与热

力,2013,33(09):21-23.

[43] 武杰.综合管廊燃气舱泄漏爆炸定量分析及风险应对[C]//2017 中国燃气运营与安全

研讨会论文集.,2017:45-52.

[44] 王婷,杜光,冯萃敏,郭栋,曹艳丹. 天然气管道泄漏扩散模拟[A]. 《环境工程》编委会、

工业建筑杂志社有限公司.《环境工程》2019 年全国学术年会论文集[C].《环境工

程》编委会、工业建筑杂志社有限公司:《环境工程》编辑部,2019:4.

[45] 任泽乾.天 然 气 管 道 泄 漏 危 害 研 究[D].辽宁石油化工大

学,2019.DOI:10.27023/d.cnki.gfssc.2019.000141.

[46] 汪侃. 大开放空间高压天然气管道泄漏爆炸火球热毁伤效应研究[D].北京理工大

学,2016.

[47] 郑远攀,陈广玉,李广阳,姚浩伟,王泽宇,席广永,宋怀涛,魏晓鸽,秦恒洁.高含 CO2 天然

气泄漏危险性数值计算研究[J].消防科学与技术,2019,38(12):1648-1650.

参考文献

69

[48] 廖倩雯.天然气瞬时泄漏扩散及燃爆区域划分研究[D].大 连 交通大

学,2014.2004.4(3) :27-32.

[49] 刘国梁,宣捷,杜可,赵汝敖.重烟羽扩散的风洞模拟实验研究[J].安全与环境学

报,2004(03):27-32.

[50] 辛保泉,喻健良,党文义,姜雪,林官明.复杂地形高含硫天然气风洞扩散实验及安全防

护距离[J].天然气工业,2020,40(11):149-158.

[51] 许 闯. 连 接 容 器 内 天 然 气 爆 炸 及 泄 爆 动 力 学 实 验 研 究[D].武汉理工大

学,2020.DOI:10.27381/d.cnki.gwlgu.2020.000496.

[52] 关丽,刘德俊,周志强.天然气管道泄漏爆炸实验分析[J].中国安全生产科学技

术,2014,10(12):40-45.

[53] 陈升国,张延松,刘建,黄志安.管道内天然气爆炸火焰及压力波传播规律实验研究[J].

中国安全生产科学技术,2013,9(10):43-48.

[54] 张应安,刘振翼,王峰,钱新明,张德平,黄平.含 CO2 天然气燃烧爆炸特性实验研究[J].

天然气工业,2009,29(06):110-112+148-149.

[55] 高帅帅.LPG 球形储罐泄漏爆炸数值模拟[D].西安科技大学,2020.

[56] 黄小美,郭杨华,彭世尼,廖波.室内天然气泄漏扩散数值模拟及试验验证[J].中国安全

科学学报,2012,22(04):27-31.

[57] 李少鹏. LPG 厂区爆炸灾害效应多参数时空演化规律及防控策略[D].华南理工大

学,2020.

[58] 张琼雅.城镇天然气管道泄漏扩散的 CFD 模拟及后果分析 [D].重庆大学 2013.

[59] 文虎,高慧慧,王秋红,罗振敏,蒋军成,张明广.泄爆口强度对管内天然气爆炸流场的影

响仿真[J].天然气工业,2019,39(08):126-136.

[60] 董智新.平台拆解中油气泄漏与爆炸的风险研究 [D].江苏科技大学,2020.

[61] Javad Bezaatpour,Esmaeil Fatehifar,Ali Rasoulzadeh. CFD investigation of natural gas

leakage and propagation from buried pipeline for anisotropic and partially saturated

multilayer soil[J]. Journal of Cleaner Production,2020,277.

[62] 霍文涛,胡多多.基于 FLUENT 的天然气管道泄漏扩散模拟[A].中国土木工程学会燃

气分会.中国燃气运营与安全研讨会(第九届)暨中国土木工程学会燃气分会 2018

年学术年会论文集(上)[C].中国土木工程学会燃气分会:《煤气与热力》杂志社

有限公司,2018:9.

[63] 高加辉,张增刚.风对天然气管道泄漏扩散的影响[A].中国土木工程学会燃气分会.中

国燃气运营与安全研讨会(第十届)暨中国土木工程学会燃气分会 2019 年学术年

会论文集(上册)[C].中国土木工程学会燃气分会:《煤气与热力》杂志社有限公

司,2019:5.

[64] 程方明,张安邦,王焘,罗振敏,王涛,陈言.高压天然气非恒定速率泄漏扩散数值模拟研

究[J].中国安全生产科学技术,2021,17(01):90-95.

[65] Zhang Zhuoran,Krishnan Pratik,Jiao Zeren,Mannan M. Sam,Wang Qingsheng.

Developing a CFD heat transfer model for applying high expansion foam in an LNG

spill[J]. Journal of Loss Prevention in the Process Industries,2021,71.

[66] 何乐平,唐爽,胡启军,蔡其杰,石仁丹.综合管廊天然气泄漏扩散及监控方法优化研究

[J].中国安全科学学报,2019,29(09):43-50.

[67] Xuemei Wang,Yufei Tan,Tiantian Zhang,Jindong Zhang,Kecheng Yu. Diffusion process

simulation and ventilation strategy for small-hole natural gas leakage in utility tunnels[J].

Tunnelling and Underground Space Technology incorporating Trenchless Technology

Research,2020,97(C).

[68] 王文和,骆火红,董传富,肖丰.含硫无人值守井站气体泄漏扩散数值模拟[J].消防科学

与技术,2019,38(04):580-583.

[69] 廖毅,于川,孙昊茹.基于高斯模型的新场气田输气管道泄漏模拟研究[J].安全、健康

和环境,2018,18(07):28-32.

[70] 许晓元,朱红亚,李晶晶,纪超,于年灏.不同影响因素条件下室内天然气扩散[J].消防科

学与技术,2019,38(01):74-77.

[71] 王 奔.综合管廊内天然气泄漏及爆炸过程数值模拟分析[J].武警学院学

报,2019,35(02):22-26.

[72] 王磊.天然气场站燃爆风险评估与事故后果模拟[D].西安科技大学,2020.

[73]Pang Lei,Hu Qianran,Jin Mengjie,Yang Kai,Fang Qian. Effect of Congestion on Flow Field

of Vented Natural Gas Explosion in a Kitchen[J]. Advances in Civil Engineering,2021,2021.

[74] 王奔.丙烷气体爆炸参数测定与泄漏扩散数值模拟[D].西安科技大学,2020.

[75] Technology; Findings from Xi'an University of Science and Technology Broaden

Understanding of Technology (Process of Natural Gas Explosion in Linked Vessels with

Three Structures Obtained Using Numerical Simulation)[J]. Energy Weekly News,2020.

[76] Wu Jiansong,Zhao Yimeng,Zhou Rui,Cai Jitao,Bai Yiping,Pang Lei. Suppression effect of

porous media on natural gas explosion in utility tunnels[J]. Fire Safety

Journal,2022(prepublish).

[77] Qiuhong Wang,Yilin Sun,Xin Li,Chi-Min Shu,Zhirong Wang,Juncheng Jiang,Mingguang

Zhang,Fangming Cheng. Process of Natural Gas Explosion in Linked Vessels with Three

Structures Obtained Using Numerical Simulation[J]. Processes,2020,8(1).

[78] 王有智,吴明,杜金,宫克.基于 FLACS 的食堂天然气泄漏爆炸事故后果模拟[J].辽宁石

油化工大学学报,2022,42(01):35-40.

[79]赵洪祥,李少鹏,刘凯祥.基于 FLACS 的氢气检测器布置优化[J].安全与环境学

报,2020,20(01):116-121.DOI:10.13637/j.issn.1009-6094.2018.1188.

[80]章博,陈国明,龚金海,王勇.基于计算流体力学的集气站气体检测报警仪布置优化[J].

中国石油大学学报(自然科学版),2010,34(05):141-146.

[81]章博,王磊,王志刚.炼油装置有害气体泄漏区域风险等级划分[J].中国石油大学学报

(自然科学版),2015,39(05):144-149.

[82]章博,王志刚,王彦富.高硫炼油装置硫化氢泄漏场景集定量分析[J].中国安全生产科学

技术,2015,11(10):73-78.

中图分类号:

 X932    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式