- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 张晓飞    

学号:

 21220089032    

保密级别:

 1    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2024    

培养单位:

 西    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

     

第一导师姓名:

 杨守国    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-18    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Research on Propagation and Attenuation Law of Mining Ventilation Disaster Pressure Wave    

论文中文关键词:

 煤与瓦斯突出瓦斯爆炸压力波波形特征衰减规律    

论文外文关键词:

 Coal and gas outburst ; Gas explosion ; Pressure wave ; Waveform characteristics ; Attenuation rules    

论文中文摘要:
<p></p> <p>307.69m/s286.49m/s444.44m/s398.16m/s</p> <p>使</p> <p> Flowmaster &mdash;</p>
论文外文摘要:
<p>In the event of coal and gas outbursts and gas explosions, significant air disturbances impact the mine&#39;s ventilation system. These initial incidents not only inflict damage proximal to the epicenter but frequently precipitate severe secondary catastrophes, including further gas and coal dust explosions. These events generate shock waves that swiftly traverse the ventilation infrastructure, eventually attenuating into conventional pressure waves as they propagate over distance. Investigating the propagation and attenuation characteristics of pressure waves within the context of mine ventilation emergencies is crucial for enabling prompt localization and automated detection of such incidents, thereby facilitating effective measures to curtail the escalation of these disasters.</p> <p>This study focuses on catastrophic pressure waves, examining their propagation and attenuation across various types and magnitudes within mine roadways. It delves into the disaster-inducing properties of coal and gas outbursts and gas explosion incidents, deriving a formula for the velocity of pressure wave propagation. Leveraging an established mine disaster early warning laboratory infrastructure, the paper validates the feasibility of simulating coal and gas outburst and gas explosion scenarios through preliminary experiments. Extensive experimental analysis reveals the waveform characteristics of catastrophic pressure waves of different types and scales, determining the static pressure wave for coal and gas outbursts to be 307.69 m/s, with a dynamic pressure wave of 286.49 m/s. In contrast, gas explosions exhibit a static pressure wave of 444.44 m/s and a dynamic pressure wave of 398.16 m/s. Employing wavelet transform from signal analysis theory for spectral examination, the study observes that dynamic pressure waveforms are significantly influenced by propagation distance, whereas static pressure waveforms remain relatively unaffected.</p> <p>Additionally, this research extends to analyzing the attenuation behavior of pressure waves within complex roadway configurations, including simple straight roadways, bifurcated roadways, and curved roadways. Within these intricate structures, the behavior of pressure waves resulting from gas explosions parallels that of coal and gas outbursts, with dynamic pressure waves exhibiting a higher rate of attenuation compared to static pressure waves, underscoring the latter&#39;s relative stability. The attenuation of pressure waves in roadways is influenced by the roadway&#39;s length and the complexity of its internal structure, with changes in the structural configuration leading to more pronounced attenuation effects. Pressure waves originating from gas explosions, characterized by their rapid velocity and large amplitude, tend to propagate further and carry more energy within the roadway network compared to those generated by coal and gas outbursts.</p> <p>Based on the mechanisms and characteristics of various disasters, the corresponding pressure-time functions are constructed using Flowmaster. By simulating two types of disaster scenarios in tunneling and coal mining faces, the study examines the impact of pressure waves on the entire ventilation network during long-distance propagation. The research reveals that both static pressure waves and dynamic pressure waves attenuate as propagation distance increases, with the static pressure wave traveling at a greater velocity compared to the dynamic pressure wave. The static pressure wave exhibits a sudden increase followed by rapid attenuation to a slightly lower normal value, then fluctuates continuously until stability is reached. Conversely, the dynamic pressure wave experiences rapid decreases following instantaneous increases or swift recoveries after instantaneous decreases. The dynamic pressure values gradually stabilize after continuous fluctuations. During air impact within the ventilation network, both static pressure waves and dynamic pressure waves can discern the type and intensity of disasters. Additionally, the direction of air impact during a disaster can be determined by observing the positive or negative fluctuations of the dynamic pressure wave.</p>
参考文献:

[1] 国家能源局. 中国能源大数据报告(2023)[EB/OL]. https://www.cpnn.com.cn/news/baogao2023/202306/t20230630_1613836.html.

[2] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[EB/OL]. https://www.stats.gov.cn/sj/zxfb/202402/t20240228_1947915.html.

[3] 吴祥, 程远平, 周红星, 等. 大平煤矿重特大瓦斯事故关键链分析及对策研究[J]. 煤炭技术, 2010,29(04):83-87.

[4] 王宝兴, 经建生, 李晨, 等. 鹤岗新兴煤矿瓦斯爆炸的几个疑点与矿难主要原因[J]. 消防科学与技术, 2010,29(04):338-340.

[5] Yang S, Zhang X, Liang J, et al. Research on Optimization of Monitoring Nodes Based on the Entropy Weight Method for Underground Mining Ventilation[J]. Sustainability, 2023,15(20).

[6] Yang S, Zhang X, Liang J, et al. Research on Intelligent Control of Regional Air Volume Based on Machine Learning[J]. Processes, 2023,11(12).

[7] 潘志秋, 段昌国. 管道流体压力波穿透和反射动态特性的分析[J]. 华北水利水电学院学报, 1988(S1):1-8.

[8] 王廷喜, 赵华. 压力波作用下输油管道动态特性研究[J]. 石油矿场机械, 2011,40(10):24-27.

[9] 杨飞, 胡鑫杰, 李传宪, 等. 基于SPS软件的原油管道压力波传递特性分析[J]. 石油化工高等学校学报, 2016,29(06):79-85.

[10] 崔秀国, 王龙, 柳建军, 等. 基于工业环道试验的启动压力波传递特性[J]. 油气储运, 2010,29(07):491-493.

[11] 周晓君, 刘高, 乔春德, 等. 压力波在粘性流体中的传播[J]. 机械设计与制造, 2013(11):50-52.

[12] 高琳, 赵利胜, 刘剑, 等. 输气管道泄漏压力波的频谱特性模拟[J]. 工业安全与环保, 2017,43(01):65-68.

[13] 陈潜, 邢晓凯, 王炜硕. 基于特征线法的输气管道泄漏瞬态仿真与分析[J]. 科学技术与工程, 2017,17(30):217-222.

[14] 王明达, 张来斌, 梁伟, 等. 基于奇异值特征的管道压力波识别方法[J]. 石油机械, 2009,37(12):68-71.

[15] 陈二锋, 厉彦忠, 应媛媛. 泵间管气液两相流压力波传播速度数值研究[J]. 航空动力学报, 2010,25(04):754-760.

[16] 林惟锓, 黄亮, 蔡茂林. 气动管道中压力波的传播特性分析[J]. 北京航空航天大学学报, 2011,37(05):600-604.

[17] 张玄一. 基于压力波法的给水管道堵塞检测与定位[J]. 给水排水, 2014,50(12):109-113.

[18] 黄亮, 苏智勇, 蔡茂林. 基于压力波传送的管道气体流量测量方法[J]. 机床与液压, 2008,36(12):138-140.

[19] 李凤, 王文和, 游赟, 等. 天然气管道泄漏的声-压耦合识别方法[J]. 应用声学, 2020,39(03):402-408.

[20] Toshiyuki Tanaka T A. Characteristics of Unsteady Boundary Layer Induced by the Compression Wave Propagating in a Tunnel[J]. Open Journal of Fluid Dynamics, 2012,2(4A):257-263.

[21] 王潇芹, 梅元贵, 周朝晖. CRH3高速列车隧道压力波特性浅析[J]. 兰州交通大学学报, 2011,30(01):117-121.

[22] D. H, K. E, G. H, et al. Experimental and theoretical study of the pressure wave generation in railway tunnels with vented tunnel portals[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018(176):290-300.

[23] 周朝晖, 郭安宁, 梅元贵, 等. 基于波叠加法高速列车单车通过隧道诱发压力波计算方法[J]. 空气动力学学报, 2015,33(03):375-383.

[24] Murray P R, Howe M S. Influence of hood geometry on the compression wave generated by a high-speed train[J]. Journal of Sound and Vibration, 2010,329(14):2915-2927.

[25] Garcia J, Munoz-Paniagua J, Crespo A. Numerical study of the aerodynamics of a full scale train under turbulent wind conditions, including surface roughness effects[J]. Journal of Fluids and Structures, 2017,74:1-18.

[26] Bell J R, Burton D, Thompson M C, et al. The effect of tail geometry on the slipstream and unsteady wake structure of high-speed trains[J]. Experimental Thermal and Fluid Science, 2017,83:215-230.

[27] 骆建军. 高速地铁隧道内扩大段和通风竖井对压力波的影响研究[J]. 现代隧道技术, 2016,53(04):22-28.

[28] Zhang G, Kim D H, Kim H D. Numerical studies on the radiation of train-tunnel impulse waves[J]. Tunnelling and Underground Space Technology, 2018,80:211-221.

[29] 周朝晖, 梅元贵, 许建林. 高速列车通过截面突变隧道时压力波的数值模拟研究[J]. 铁道学报, 2007(06):34-39.

[30] 王文才, 邓连军, 张培, 等. 长距离掘进工作面通风技术[J]. 煤矿安全, 2018,49(05):87-90.

[31] 胡鹏华, 张以虎, 李先杰, 等. 铀矿井罐笼提升竖井活塞风效应影响研究[J]. 铀矿冶, 2013,32(04):195-199.

[32] 程五一, 陈国新. 煤与瓦斯突出冲击波的形成及模型建立[J]. 煤矿安全, 2000(09):23-25.

[33] 程五一, 刘晓宇, 王魁军, 等. 煤与瓦斯突出冲击波阵面传播规律的研究[J]. 煤炭学报, 2004(01):57-60.

[34] Zhou A, Wang K, Wang L, et al. Numerical simulation for propagation characteristics of shock wave and gas flow induced by outburst intensity[J]. International Journal of Mining Science and Technology, 2015,25(1):107-112.

[35] 王凯, 周爱桃, 魏高举, 等. 直巷道中突出冲击气流的形成及传播特征研究[J]. 采矿与安全工程学报, 2012,29(04):559-563.

[36] 王凯, 周爱桃, 魏高举, 等. 巷道截面变化对突出冲击波传播的影响[J]. 煤炭学报, 2012,37(06):989-993.

[37] 王凯, 周爱桃, 张建方, 等. 直角拐弯巷道中瓦斯突出冲击气流传播特征研究[J]. 中国矿业大学学报, 2011,40(06):858-862.

[38] 张建方, 王凯, 韦彩平. 煤与瓦斯突出冲击波的形成与传播规律研究[J]. 采矿与安全工程学报, 2010,27(01):67-71.

[39] 苗法田, 孙东玲, 胡千庭. 煤与瓦斯突出冲击波的形成机理[J]. 煤炭学报, 2013,38(03):367-372.

[40] 吴爱军, 蒋承林. 煤与瓦斯突出冲击波传播规律研究[J]. 中国矿业大学学报, 2011,40(06):852-857.

[41] 张强, 孙玉荣, 王晓勇, 等. 煤与瓦斯突出冲击波传播规律的研究[J]. 矿业安全与环保, 2007(05):21-23.

[42] 曹偈, 孙海涛, 戴林超, 等. 煤与瓦斯突出动力效应的模拟研究[J]. 中国矿业大学学报, 2018,47(01):113-120.

[43] 魏建平, 朱会启, 温志辉, 等. 煤与瓦斯突出冲击波传播规律实验研究[J]. 煤, 2010,19(08):11-13.

[44] 李宗翔, 刘宇, 于景晓, 等. 突出瓦斯流与矿井通风系统耦合移动仿真[J]. 重庆大学学报, 2012,35(11):111-116.

[45] 李宗翔, 王天明, 王双勇, 等. 煤与瓦斯突出矿井通风系统灾害演变仿真研究[J]. 煤炭学报, 2017,42(04):929-934.

[46] 王双勇. 煤与瓦斯突出在矿井通风系统中动力传播规律研究[D]. 辽宁工程技术大学, 2016.

[47] 杨守国. 煤与瓦斯突出判识及灾害气体运移规律研究[D]. 重庆大学, 2011.

[48] 王志荣, 李潇旋, 陈玲霞. 基于断层带瓦斯突出的巷道冲击波对围岩的三维动力效应[J]. 岩石力学与工程学报, 2015,34(09):1796-1804.

[49] 杨书召, 张瑞林. 煤与瓦斯突出冲击波及瓦斯气流所致伤害研究[J]. 中国安全科学学报, 2012,22(11):62-66.

[50] 高天宝, 史文利, 韦善阳, 等. 考虑煤弹性能的瓦斯突出冲击波超压计算模型[J]. 煤矿安全, 2013,44(03):14-16.

[51] 萨文科. 井下空气冲击波[M].北京: 冶金工业出版社, 1979.

[52] H. E D, P. F, A. N M. Shock diffraction in channels with 90 deg bends[J]. Journal of Fluid Mechanics, 1983(132):257-270.

[53] O. M I, D. B, A. R. Diffraction of detonation from tubes into a large fuel-anti-explosive cloud[J]. Symposium(International)on Combustion, 1982(41):635-644.

[54] R. M A, S. B, J. N. Experimental study of premixed flame propagation over various solid obstructions[J]. Experimental Thermal&Fluid Science, 2000,3(21):109-116.

[55] Phylaktou H, Foley M, Andrews G E. Explosion enhancement through a 90° curved bend[J]. Journal of Loss Prevention in the Process Industries, 1993,6(1):21-29.

[56] Zhu C, Gao Z, Lu X, et al. Experimental study on the effect of bifurcations on the flame speed of premixed methane/air explosions in ducts[J]. Journal of Loss Prevention in the Process Industries, 2017,49:545-550.

[57] Zhu C, Lin B, Jiang B. Flame acceleration of premixed methane/air explosion in parallel pipes[J]. Journal of Loss Prevention in the Process Industries, 2012,25(2):383-390.

[58] 林柏泉, 桂晓宏. 瓦斯爆炸过程中火焰传播规律的模拟研究[J]. 中国矿业大学学报, 2002(01):9-12.

[59] 林柏泉, 菅从光, 周世宁, 等. 受限空间瓦斯爆炸反射波及对火焰传播的影响[J]. 中国矿业大学学报, 2005(01):4-8.

[60] 林柏泉, 张仁贵, 吕恒宏. 瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J]. 煤炭学报, 1999(01):58-61.

[61] 林柏泉, 周世宁, 张仁贵. 障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J]. 中国矿业大学学报, 1999(02):6-9.

[62] 林柏泉, 周世宁, 张仁贵. 瓦斯爆炸过程中激波的诱导条件及其分析[J]. 实验力学, 1998(04):36-41.

[63] 吴红波, 陆守香, 张立. 障碍物对瓦斯煤尘火焰传播过程影响的实验研究[J]. 矿业安全与环保, 2004(03):6-8.

[64] 刘玉姣. 管道属性对瓦斯爆炸冲击波传播影响规律模拟研究[D]. 辽宁工程技术大学, 2014.

[65] 王海燕, 曹涛, 周心权, 等. 煤矿瓦斯爆炸冲击波衰减规律研究与应用[J]. 煤炭学报, 2009,34(06):778-782.

[66] 吴兵, 张莉聪, 徐景德. 瓦斯爆炸运动火焰生成压力波的数值模拟[J]. 中国矿业大学学报, 2005(04):423-426.

[67] 韩蓉, 刘剑, 高科, 等. 密闭空间内障碍物对瓦斯爆炸传播影响研究[J]. 中国安全生产科学技术, 2018,14(07):61-66.

[68] 徐阿猛, 陈学习, 贾进章. 障碍物对瓦斯爆炸冲击波传播的影响研究[J]. 中国安全科学学报, 2019,29(09):96-101.

[69] 高科, 刘剑, 刘玉姣, 等. 受限空间瓦斯爆炸冲击波压力信号小波包去噪研究[J]. 中国安全生产科学技术, 2014,10(12):17-22.

[70] Zhang Q, Ma Q J. Dynamic pressure induced by a methane–air explosion in a coal mine[J]. Process Safety and Environmental Protection, 2015,93:233-239.

[71] Ye Q, Jia Z, Liu W, et al. Numerical Simulation on Destruction Process of Ventilation Door by Gas Explosion[J]. Procedia Engineering, 2018,211:934-944.

[72] 董腾, 王海桥, 陶伟, 等. 煤矿井底爆炸对通风系统的破坏及及其危害[J]. 湖南科技大学学报(自然科学版), 2012,27(03):5-9.

[73] 贾进章, 王枫潇. 瓦斯爆炸对躲避硐室影响的数值模拟[J]. 辽宁工程技术大学学报(自然科学版), 2019,38(06):517-522.

[74] 刘涛, 贾进章. 煤矿掘进巷道内瓦斯爆炸冲击波的超压预测[J]. 矿业安全与环保, 2017,44(05):18-20.

[75] Cioclea D, Toth I, Gherghe I, et al. Analysis of transitory phenomena generated by underground explosions upon the ventilation networks[J]. Environmental engineering and management journal, 2014,13:1401-1407.

[76] 许浪. 瓦斯爆炸冲击波衰减规律及安全距离研究[D]. 中国矿业大学, 2015.

[77] 杨应迪. 瓦斯爆炸对矿井通风网络的动力效应研究[D]. 安徽理工大学, 2011.

[78] 赵丹, 陈帅, 潘竞涛. 矿井监控预警诊断系统研究[J]. 中国安全科学学报, 2015,25(04):63-69.

[79] 刘剑, 郭欣, 邓立军, 等. 基于风量特征的矿井通风系统阻变型单故障源诊断[J]. 煤炭学报, 2018,43(01):143-149.

[80] 刘剑, 蒋清华, 刘丽, 等. 矿井通风系统阻变型故障诊断及风速传感器位置优化[J]. 煤炭学报, 2021,46(06):1907-1914.

[81] 潘竟涛, 赵丹, 李宗翔, 等. 大明矿通风系统故障源诊断及风速传感器的布置[J]. 煤炭学报, 2013,38(S1):153-158.

[82] 杨守国. 矿井通风在线监测及动态分析预警[J]. 煤矿安全, 2011,42(08):29-32.

[83] 康雪, 韩文骥, 梁军, 等. 矿井通风在线监测及动态分析预警系统在打通一矿的应用[J]. 山东科技大学学报(自然科学版), 2015,34(06):52-57.

[84] 罗广, 邹银辉, 宁小亮, 等. 矿井通风网络在线监测技术研究与应用[J]. 矿业安全与环保, 2019,46(05):47-50.

[85] 孙继平. 煤与瓦斯突出报警方法[J]. 工矿自动化, 2014,40(11):1-5.

[86] 孙继平, 钱晓红. 煤矿重特大事故应急救援技术及装备[J]. 煤炭科学技术, 2017,45(01):112-116.

[87] 杨守国, 李树刚, 刘程. 基于煤矿物联网的煤与瓦斯突出灾变预警技术[J]. 煤炭科技, 2015(03):109-112.

[88] 杨守国, 唐建新, 文光才, 等. 煤与瓦斯突出灾变预警与应急辅助决策[J]. 重庆大学学报, 2012,35(09):121-125.

[89] 梁军, 张庆华. 煤与瓦斯突出事故应急分析及报警系统建设[J]. 中州煤炭, 2015(07):25-29.

[90] 周福宝, 魏连江, 夏同强, 等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报, 2020,45(06):2225-2235.

[91] 张庆华, 姚亚虎, 赵吉玉. 我国矿井通风技术现状及智能化发展展望[J]. 煤炭科学技术, 2020,48(02):97-103.

[92] Wang L, Cheng Y, Liu H. An analysis of fatal gas accidents in Chinese coal mines[J]. Safety science, 2014,62:107-113.

[93] Chen X, Li L, Wang L, et al. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China[J]. Safety Science, 2019,115:229-236.

[94] Li Y, Su H, Ji H, et al. Numerical simulation to determine the gas explosion risk in longwall goaf areas: A case study of Xutuan Colliery[J]. International Journal of Mining Science and Technology, 2020,30(6):875-882.

[95] Fu G, Xie X, Jia Q, et al. Accidents analysis and prevention of coal and gas outburst: Understanding human errors in accidents[J]. Process Safety and Environmental Protection, 2020,134:1-23.

[96] Zhang J, Zeng Y, Reniers G, et al. Analysis of the interaction mechanism of the risk factors of gas explosions in Chinese underground coal mines[J]. International journal of environmental research and public health, 2022,19(2):1002.

[97] Li Z, Yu J, Liu Y, et al. Numerical analysis of natural gas pressure during coal and gas outbursts[J]. Energy Science & Engineering, 2021,9(8):1068-1079.

[98] 周爱桃, 王凯. 煤与瓦斯突出冲击气流传播特征数值模拟[M].江苏徐州: 中国矿业大学出版社, 2020.

中图分类号:

 TD721    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式