- 无标题文档
查看论文信息

论文中文题名:

 黄土-红粘土接触界面力学特性及破坏特征研究    

姓名:

 张一豪    

学号:

 19209212039    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 滑坡风险评估    

第一导师姓名:

 赵洲    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Study on Mechanical Properties and Failure Characteristics of Loess-Red Clay Contact Interface    

论文中文关键词:

 黄土 ; 红粘土 ; 接触面滑坡 ; 剪切试验 ; 数值模拟    

论文外文关键词:

 Loess ; Red Clay ; Contact Surface Landslide ; Shear Test ; Numerical Simulation    

论文中文摘要:

黄土-红粘土接触面滑坡上部黄土渗透性较强,下部红粘土渗透性较弱,雨水易在接触面产生汇集,形成易滑带。在对陕西省府谷县脑畔梁滑坡实际勘查中发现,滑坡的滑动面存在一定的厚度,并非完全位于黄土-红粘土接触面,还存在于接触面附近的黄土与红粘土内。因此本文以府谷县脑畔梁滑坡岩土体为研究对象,通过土工试验、数值模拟分别对不同含水率、不同围压和不同接触角度下黄土-红粘土接触界面的力学特性及破坏特征进行研究,结合实际滑坡中不同倾角和不同埋深下黄土-红粘土接触界面的变形破坏方式,探究黄土-红粘土型滑坡接触界面力学特性及破坏特征,取得的研究成果如下:
(1) 通过室内试验研究黄土、红粘土基本物理力学特性可知:随着含水率的增大,黄土的粘聚力与内摩擦角持续降低,红粘土的粘聚力先增大后减小、内摩擦角逐渐减小;与黄土的抗剪强度相比红粘土粘聚力更大,内摩擦角更小。
(2) 通过对接触试样进行室内三轴剪切试验和数值模拟三轴剪切试验,发现随着含水率的增大、围压的减小以及黄土-红粘土接触角度的增大,试样的破坏方式由红粘土鼓胀破坏向试样整体鼓胀破坏再到黄土鼓胀破坏转变。
(3) 接触试样的抗剪强度受破坏方式影响较大,当破坏方式为黄土鼓胀破坏或红粘土鼓胀破坏时,接触试样的抗剪强度为完整黄土试样或完整红粘土试样的抗剪强度,当接触试样破坏方式为试样整体破坏时,抗剪强度介于黄土与红粘土之间;通过对接触试样进行受力分析,得出当接触试样的破坏方式相同时,随着接触角度的增大,试样的抗剪强度先增大后减小,接触角度为试样做薄弱面夹角一半时抗剪强度最大。
(4) 基于脑畔梁滑坡野外勘查、失稳破坏过程数值模拟及接触试样的室内试验,分析不同倾角和不同埋深下黄土-红粘土接触界面的变形破坏特征,得出随着接触面倾角的增大、接触面埋深的减小,黄土-红粘土接触面滑坡滑动带形成位置易由接触面及下部红粘土向接触面及上部黄土转变。
 

论文外文摘要:

Because the upper loess of the landslide at the loess-red clay contact surface is highly permeable, and the lower red clay is an impermeable layer, rainwater tends to collect on the contact surface of the loess and red clay, forming a slippery zone. In actual investigation, it is found that the sliding surfaces of this type of landslide are not all located on the loess-red clay contact surface. In this paper, taking Naopanliang landslide and its rock and soil mass in Fugu County as the research object, the mechanical properties and failure characteristics of loess-red clay contact samples under different moisture contents, confining pressures and contact angles are studied through geotechnical tests and numerical simulations, combined with the deformation and failure modes of the loess-red clay contact interface at different dip angles and burial depths in actual landslides, the formation mechanism of the landslide sliding surface at the loess-red clay interface was explored, and the following main research results were obtained:
(1) The internal friction angle of loess and red clay decreased with the increase of water content, the cohesion of red clay first increased and then decreased with the increase of water content, the cohesion of loess continued to decrease with the increase of water content, and the resistance to loess was higher. Compared with loess, red clay has higher cohesion and lower internal friction angle.
(2) Through indoor triaxial shear test and numerical simulation triaxial shear test of the contact sample, it is concluded that with the increase of water content, the decrease of confining pressure and the increase of contact angle, the failure mode of the sample gradually changes from The bulging failure of red clay transformed into the bulging failure of the whole sample and the bulging failure of loess.
(3) The shear strength of the contact sample is greatly affected by the failure mode of the sample. When the failure mode is bulging failure of loess or bulging failure of red clay, the shear strength is the shear strength of complete loess or complete red clay. When the sample fails as a whole, the shear strength is between loess and red clay; the shear strength of the contact sample is analyzed from the mechanical point of view. When the failure mode is the same, with the increase of the contact angle, the shear strength of the sample first increases and then decreases, and reaches the peak when the contact angle is  .
(4) The instability and failure process of the Naopanliang landslide was simulated, and the deformation and failure characteristics of the loess-red clay interface under different dip angles and burial depths were analyzed. Combined with the formation mechanism of the shear band of the contact sample obtained from the laboratory test and numerical simulation, it is considered that with the contact With the increase of the inclination angle and the decrease of the buried depth of the contact surface, the formation position of the landslide sliding surface at the loess-red clay contact surface is easy to change from the lower red clay to the upper loess.
 

参考文献:

[1] 文宝萍. 黄土地区典型滑坡预测预报及减灾对策研究[M]. 北京: 地质出版社, 1997.

[2] 吴玮江, 王念秦. 黄土滑坡的基本类型与活动特征[J]. 中国地质灾害与防治学报, 2002,(02):38-42.

[3] 曲永新, 张永双, 覃祖淼. 三趾马红土与西北黄土高原滑坡[J]. 工程地质学报, 1999,(03):257-265.

[4] 苏伯苓. 洒勒山滑坡机制研究[J]. 河北地质学院学报, 1986,(Z1):327-346.

[5] 李媛, 吴奇. 孟家山黄土-红层接触面滑坡破坏机理研究[J]. 水文地质工程地质, 2001,(01):52-54.

[6] 赵法锁. 西安白鹿塬边坡破坏特点及其形成条件[J]. 长安大学学报(地球科学版), 1993,(04):167-171.

[7] 辛鹏. 陕西宝鸡市渭河北岸大型黄土滑坡形成机理与危险性评估研究[D]. 北京:中国地质科学院, 2013.

[8] Goodman R E, Taylor R L, Brekke T L A. A model for the mechanics of jointed rock[J]. ASCE Soil Mechanics and Foundation Division Journal, 1968, 99(5): 637-659.

[9] Clough G W, Duncan J M. Finite element analyses of retaining wall behavior[J]. Journal of Soil Mechanics & Foundation Engineering, 1971, 97(12): 1657-1673.

[10] C., S., Desai, et al. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984.

[11] 殷宗泽, 朱泓, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, (03): 14-22.

[12] 范臻辉, 肖宏彬, 王永和. 膨胀土与结构物接触面的力学特性试验研究[J]. 中国铁道科学, 2006, (05): 13-16.

[13] 王一. 饱和粉土-混凝土结构接触面剪切性状环剪试验研究[D]. 郑州,郑州大学, 2020.

[14] 刘世奥, 廖晨聪, 陈锦剑, 等. 饱和砂土-结构物接触面强度特性的三轴试验方法[J]. 上海交通大学学报, 2021, 55(11): 1371-1379.

[15] Reilly C C, Orr T. Physical modelling of the effect of lubricants in pipe jacking[J]. Tunnelling and Underground Space Technology, 2017, 63(MAR.): 44-53.

[16] 江权, 冯夏庭, 周辉, 等. 层间错动带的强度参数取值探讨[J]. 岩土力学, 2011, 32(11): 3379-3386.

[17] 苗帅升. 黄土-三趾马红土接触界面剪切力学特性试验研究[D]. 西安:长安大学, 2020.

[18] 孙嘉兴, 谷天峰, 孔嘉旭, 等. 滑带土与原状土的显微结构对比分析[J]. 干旱区资源与环境, 2021, 35(03): 126-133.

[19] Lian B, Wang X, Liu K, et al. A mechanical insight into the triggering mechanism of frequently occurred landslides along the contact between loess and red clay[J]. Scientific reports,2021,11(1):17556.

[20] 高俊合, 于海学, 赵维炳. 土与混凝土接触面特性的大型单剪试验研究及数值模拟[J]. 土木工程学报, 2000,(04):42-46.

[21] 胡黎明, 马杰, 张丙印. 直剪试验中接触面渐进破坏的数值模拟[J]. 清华大学学报(自然科学版), 2008, (06): 943-946.

[22] 殷殷, 张丙印, 袁会娜, 等. 接触面直剪试验及数值模拟分析[J]. 水力发电学报, 2018, 37(06): 84-92.

[23] 张泽林, 王涛, 吴树仁, 等. 泥岩中软弱夹层的剪切力学特性研究[J]. 岩石力学与工程学报, 2021, 40(04): 713-724.

[24] Wang Q, Li W, Guo Y, et al. Geological and geotechnical characteristics of N-2 laterite in northwestern China[J]. QUATERNARY INTERNATIONAL, 2019,519:263-273.

[25] 陈丹玲. 三趾马红粘土的粒度组成特征及其地质意义[J]. 西北地质科学, 1996,17(2): 1-5.

[26] 李滨, 吴树仁, 石菊松, 等. 陕西宝鸡市三趾马红土工程地质特性及灾害效应[J]. 地质通报, 2013, 32(12): 1918-1924.

[27] Zhou C, Cui G, Yin H, et al. Study of soil expansion characteristics in rainfall-induced red-bed shallow landslides: Microscopic and macroscopic perspectives[J]. PLOS ONE, 2021,16(1):e246214.

[28] Zhang Z, Wang T, Wu S, et al. Dynamics characteristic of red clay in a deep-seated landslide, Northwest China: An experiment study[J]. ENGINEERING GEOLOGY, 2018,239:254-268.

[29] 赵胜.三趾马黏土强度对胶粒径级和含量的响应[J].森林工程,2017,33(05):104-107+112.

[30] 郑苗苗,郑泓,李同录. 关中西部大型黄土滑坡滑带土的物理力学特性研究[J]. 水土保持研究, 2016,23(1):6.

[31] 祝艳波, 刘振谦, 李文杰, 等. 黄土三趾马红土滑坡滑带土的长期强度影响因素研究[J]. 水文地质工程地质, 2022,49:1-9.

[32] 张子然. 黄土—三趾马红土滑坡蠕变特性研究[D]. 西安:长安大学, 2015.

[33] 陈伟, 李文平, 刘强强, 等. 陕北非饱和红土土——水特征曲线试验研究[J]. 工程地质学报, 2014,22(02):341-347.

[34] 周瑞光,成彬芳,曲永新,等. 三趾马红土力学性质实验研究[C]// 中国地质学会工程地质专业委员会. 第五届全国工程地质大会文集. 北京:工程地质学报编辑部1996:503-508.

[35] 杜长城, 祝艳波, 苗帅升, 等. 初始含水率对三趾马红土失水收缩特性影响[J]. 水土保持研究, 2019,26(1): 227-233.

[36] 杜长城, 祝艳波, 苗帅升, 等. 三趾马红土失水收缩裂缝演化规律研究[J]. 岩土力学, 2019,40(8): 3019-3027+3036.

[37] Shi J S, Wu L Z, Qu Y X, et al. Neogene clay and its relation to landslides in the southwestern Loess Plateau, China[J]. ENVIRONMENTAL EARTH SCIENCES, 2018,77(5):204.

[38] Zhang Z, Chen X, Yao H, et al. Experimental Investigation on Tensile Strength of Jurassic Red-Bed Sandstone under the Conditions of Water Pressures and Wet-Dry Cycles[J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2021,25(7):2713-2724.

[39] Zhang S, Xu Q, Hu Z. Effects of rainwater softening on red mudstone of deep-seated landslide, Southwest China[J]. ENGINEERING GEOLOGY, 2016,204:1-13.

[40] Marat A R, Tamas T, Samsudean C, et al. Physico-mechanical and mineralogical investigations of red bed slopes (Cluj-Napoca, Romania)[J]. BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2022,81(2):1-20.

[41] Liu J, Xu Q, Wang S, et al. Formation and chemo-mechanical characteristics of weak clay interlayers between alternative mudstone and sandstone sequence of gently inclined landslides in Nanjiang, SW China[J]. BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2020,79(9):4701-4715.

[42] 蒋宇, 赵宇. 基于特征矿物的红层滑坡形成机理分析[J]. 人民长江, 2021,52(06):82-87.

[43] Chen J, Dai F, Xu L, et al. Properties and microstructure of a natural slip zone in loose deposits of red beds, southwestern China[J]. ENGINEERING GEOLOGY, 2014,183:53-64.

[44] Liu Y, Chen K, Mengfei L, et al. Study on failure of red clay slopes with different gradients under dry and wet cycles[J]. Bulletin of Engineering Geology and the Environment, 2020(2):1-16.

[45] 石菊松, 李滨, 吴树仁, 等. 宝鸡渭河北岸黄土塬边大型滑坡成因机制研究[J]. 工程地质学报, 2013,21(06):938-949.

[46] Shi J S, Wu L Z, Wu S R, et al. Analysis of the causes of large-scale loess landslides in Baoji, China[J]. GEOMORPHOLOGY, 2016,264:109-117.

[47] 文宝萍, 王思敬, 王恩志, 等. 黄土—红层接触面滑坡的变形特征[J]. 地质学报, 2005(01):144.

[48] Wen B, Wang S, Wang X. Deformation characteristics of loess landslide along the contact between loess and Neocene red mudstone[J]. ACTA GEOLOGICA SINICA-ENGLISH EDITION, 2005,79(1):139-151.

[49] 石瑞红. 黄土—红层接触面滑坡形成演化机理[D]. 兰州:兰州大学.

[50] 王倩倩. 含软弱带黄土-基岩填方边坡降雨失稳机制研究[D]. 西安:长安大学, 2021.

[51] Li B, Feng Z, Wang W P. Characteristics of the Sanmen Formation clays and their relationship with loess landslides in the Guanzhong area, Shaanxi, China[J]. ARABIAN JOURNAL OF GEOSCIENCES, 2015,8(10):7831-7843.

[52] Wei F. Regional Stability Analysis of Red Clay Slope Based on Different Failure Modes: A Case Study in Taizaifu Area, Fukuoka[J]. ADVANCES IN CIVIL ENGINEERING, 2019, 2019,(9):1-11.

[53] Qiu H, Cui P, Regmi A D, et al. Slope height and slope gradient controls on the loess slide size within different slip surfaces[J]. PHYSICAL GEOGRAPHY, 2017,38,(4):303-317.

[54] 折向毅. 黄土—基岩接触面滑坡形成机理[D]. 西安:长安大学, 2015.

[55] 赵未超. 黄土-泥岩接触面特性对边坡稳定性的影响[D]. 兰州:兰州理工大学, 2019.

[56] 杨皓然. 缓倾顺层红层软岩切坡失稳机制及预控措施研究[D]. 重庆:重庆交通大学, 2021.

[57] 郑程波. 内蒙古自治区黄土泥岩接触面滑移的数值模拟[D]. 内蒙古:内蒙古工业大学, 2013.

[58] 雷超. 黄土-泥岩型滑坡形成机制数值模拟研究[D]. 西安:长安大学, 2014.

[59] 王璋, 倪万魁, 姜骞, 等. 泥岩上覆黄土地震滑坡动力变形分析[J]. 灾害学, 2018,33,(01):225-229.

[60] 王荣涛. 陇南龙林-盐官段黄土泥岩接触面滑坡复活条件预测分析[D]. 西安:长安大学, 2021.

[61] Zhang Z, Fu X, Sheng Q, et al. Effect of Rainfall Pattern and Crack on the Stability of a Red Bed Slope: A Case Study in Yunnan Province[J]. ADVANCES IN CIVIL ENGINEERING, 2021, 2021(1):1-21.

[62] 张群, 许强, 易靖松, 等. 南江红层地区缓倾角浅层土质滑坡降雨入渗深度与成因机理研究[J]. 岩土工程学报, 2016,38(08):1447-1455.

[63] Zhang S, Xu Q, Zhang Q. Failure characteristics of gently inclined shallow landslides in Nanjiang, southwest of China[J]. ENGINEERING GEOLOGY, 2017,217:1-11.

[64] 孙巍锋. 土-岩二元结构路堑边坡失稳机理与智能预警研究[D]. 西安:长安大学, 2020.

中图分类号:

 p642.22    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式