- 无标题文档
查看论文信息

论文中文题名:

 智能矿井多元监控数据集成技术研究与实现    

姓名:

 章鳌    

学号:

 20207223086    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 矿山监控与信息化    

第一导师姓名:

 李国民    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Research and implementation of multiple monitoring data integration technology for intelligent mine    

论文中文关键词:

 监控系统 ; 数据集成 ; 协议解析 ; 协议驱动 ; 元数据 ; 时序数据    

论文外文关键词:

 Monitoring system ; Data integration ; Protocol parsing ; Protocol driver ; Metadata ; Time-series data.    

论文中文摘要:

近年来为了对煤矿各个系统进行有效的监控,煤矿行业开发了很多自动化监控系统。许多第三方厂家开发的定制化监控系统,由于技术路线不统一,产生了大量异构数据,煤矿企业需要为各定制化系统均开发一套监控软件对数据进行二次集成,但是经转换后的数据存在滞后、运维困难、系统崩溃等问题。为解决二次开发、数据异构和数据共享程度低等问题,本文在中煤科工集团常州研究院项目《智能矿山基础信息平台的研发》中,主要研究数据感知与采集问题,开发了智能矿井多元监控数据集成系统。

针对煤矿专业化系统由不同厂家开发,煤矿企业二次开发的多种上位机数据转换程序,存在转换时间滞后、数据存储格式与原系统数据不一致等问题,本文提出用一套软件平台实现对全矿井各类感知数据的集成。将不同系统设备的协议封装为数据驱动,采用多协议驱动动态加载的方式实现对全矿数据的采集,处理后的数据格式统一。在.NET平台上采用C#语言开发了文本协议驱动、OPC(OLE for Process Control)驱动和Modbus驱动,解析后数据均是统一的格式。其它第三方系统只需将数据协议封装为驱动插件(DLL,Dynamic Link Library),输出统一的格式,即可以以驱动的方式接入到上位机软件平台,实现用一套平台对全矿各种协议数据的采集。

针对不同系统相同的业务数据,描述规范不同,造成数据束缚在子系统中、共享困难、效率低下等问题,本文提出通过梳理筛选企业各个系统频繁共享的数据,通过构建煤矿SSN(Semantic Sensor Network Ontology)模型,映射生成RDF(Resource Description Framework)模型后添加语义描述,从而形成元数据规范,实现数据在系统间自由地共享。

针对煤矿生产过程中产生的庞大的时序数据,对数据库的存储性能要求极高,本文提出采用开源的数据库,将实时数据存储到时序数据库Influx DB中,对查询性能要求高的数据,保存到关系数据库MySQL中。

最后对本文设计的智能矿井多元监控数据集成系统进行测试和验证,证明其符合设计需求。

论文外文摘要:

In recent years, many automatic monitoring systems have been developed in coal mine industry in order to monitor each system effectively. The customized monitoring system developed by many third-party manufacturers has produced a large amount of heterogeneous data due to the inconsistent technical route. Coal mine enterprises need to develop a set of monitoring software for each customized system for data secondary integration, but the data after conversion has problems such as lag, operation and maintenance difficulties, system breakdown and so on. In order to solve the problems of secondary development, data heterogeneity and low degree of data sharing, this thesis mainly studies the problem of data perception and collection in the project "Research and Development of Intelligent mine Basic Information Platform" of China Coal Technology and Engineering Group Changzhou Automa- tion Research Institute, and develops an integrated system of intelligent mine multiple monitor-

ing data.

In view of the problems such as conversion time lag and data storage format inconsistency with the data of the original system in various kinds of upper computer data conversion programs developed by different manufacturers and secondary development by coal mine enterprises, this paper proposes to use a set of software platform to realize the integration of all kinds of perception data in the whole mine. The protocol of different system equipment is encapsulated as data driven, and the multi-protocol driven dynamic loading method is adopted to realize the collection of the whole mine data, and the data format after processing is unified. The text protocol driver, OPC(OLE for Process Control) driver and Modbus driver are developed using C# language on.NET platform, and the parsed data are all in the same format. Other third-party systems only need to package the data protocol as a Dynamic link library(DLL) and output a unified format, that is, it can be connected to the upper computer software platform in the way of driving, to realize the collection of all kinds of protocol data of the mine with a set of platforms.

In view of the same business data of different systems, the description specifications are different, resulting in data bound in subsystems, sharing difficulties, low efficiency and other problems. This paper proposes to sort out and screen the data frequently shared by various systems of the enterprise, build the coal mine SSN(Semantic Sensor Network Ontology) model, map to generate RDF(Resource Description Framework)model, and then add semantic descript-ion, so as to form the metadata specification. Realize data sharing freely and efficiently among all systems.

In view of the huge amount of time-series data generated during coal mining production, the storage performance of the database is extremely high. This paper proposes to use open-source databases, storing real-time data in the time-series database Influx DB, and storing data with high query performance requirements in the relational database MySQL.

Finally, the intelligent mine multi-monitoring data integration system designed in this paper is tested and verified to prove that it meets the design requirements.

参考文献:

[1]贺耀宜,王海波.基于物联网的可融合性煤矿监控系统研究[J].工矿自动化,2019,45(08):13-18.

[2]王国法,任怀伟,赵国瑞等.智能化煤矿数据模型及复杂巨系统耦合技术体系[J].煤炭学报,2022,47(01):61-74.

[3]Azman N H, Oktaviandri M, Ramedan M R. SCADA System for Industrial Manipulator PLC Trainer[M]//Enabling Industry 4.0 through Advances in Mechatronics: Selected Articles from iM3F 2021, Malaysia. Singapore: Springer Nature Singapore, 2022: 375-385.

[4]Bai J, Zheng D, Jia C. Safety technology risks and countermeasures in the intelligent construction of coal mines[J]. Geofluids, 2022, 2022: 1-8.

[5]Hao X, Yang H, Yin Z. Research on the Intelligent Integrated Management System of Opencast Coal Mine[C]//Journal of Physics: Conference Series. IOP Publishing, 2019, 1314(1): 012138.

[6]崔亚仲,白明亮,李波.智能矿山大数据关键技术与发展研究[J].煤炭科学技术,2019,47(03):66-74.

[7]丁恩杰,廖玉波,张雷,刘忠育.煤矿信息化建设回顾与展望[J].工矿自动化,2020,46(07):5-11.

[8]王文广.组态软件WinCC在煤矿综合自动化系统中的应用[J].科学之友(B版),2009(02):135-136.

[9]俎少杰,樊晓明,王中.OPC技术在矿井综合自动化系统中的应用[J].工矿自动化,2011,37(06):108-110.

[10]张爱绒,谢斌红,张英俊.基于Modbus协议的煤矿安全监控系统数据集成研究与设计[J].太原理工大学学报,2011,42(06):617-621.

[11]张爱绒,谢斌红,张英俊.基于OPC UA的煤矿监控系统集成设计与实现[J].太原理工大学学报,2012,43(01):69-72.

[12]武斌,罗键,黄淮彩.南方煤矿综合自动化系统的研究[J].工矿自动化,2014,40(01):23-26.DOI:10.13272/j.issn.1671-251x.2014.01.007.

[13]李勇,钟宇,梁强,王强.企业服务总线和插件技术在煤矿综合自动化系统中的应用[J].中州煤炭,2015(08):96-98.

[14]林浩伟.基于SOA的煤矿异构系统综合集成研究[J].成都工业学院学报,2016,19(02):35-37+41.

[15]吕晓颖,石桂名.基于Wonderware IAS煤矿综合自动化系统的设计与实现[J].矿冶,2018,27(03):89-92.

[16]曾伟.DDS技术在煤矿综合自动化系统中的应用[J].煤矿安全,2018,49(08):138-140.DOI:10.13347/j.cnki.mkaq.2018.08.036.

[17]李诚诚.基于组态软件的系统集成平台的设计与应用[J].电子技术与软件工程,2019(12):61.

[18]白明亮.神东煤矿设备数据采集通信协议标准研发与应用示范[J].内蒙古煤炭经济,2021,No.331(14):123-125.

[19]王国法, 杜毅博. 煤矿智能化标准体系框架与建设思路[J]. 煤炭科学技术, 2020, 48(1): 1-9.

[20]Organization T M. Resource Description Framework (RDF)[J]. Encyclopedia of Gis,1999:6-19.

[21]Kim Y H, Kim B G, Lim H C. The index organizations for RDF and RDF schema[C]/Advanced Communication Technology,2006. Icact 2006. the,International Conference.IEEE, 2006:1865-1874.

[22]Junling M, Xueqin J,Hongqi L Research on Semantic Architecture and Sem anticTechnology of loT[J].Research and Development,2014.8(05):26-31.

[23]Michele Ruta,Floriano Scioscia,Agnese Pinto,Filippo Gramegna,Saverio Ieva,Giuseppe Loseto,Eugenio Sciascio. CoAP-based collaborative sensor networks in the Semantic Web of Things[J]. Journal of Ambient Intelligence and Humanized Computing,2019,10(7).

[24]欧石燕.面向关联数据的语义数字图书馆资源描述与组织框架设计与实现[J].中国图书馆学报, 2012, 38(6):58-71.

[25]李莉.基于XML的异构数据源查询框架[J].电子技术与软件工程,2014,No.30(04):205.

[26]杨阳. 一种异构数据描述与转换框架的研究与实现[D].西安电子科技大学,2014.

[27]李小涛,胡晓惠,李斌全.基于两层元数据与本体的异构数据共享技术[J].北京航空航天大学学报,2015,41(08):1476-1484.

[28]施昭,刘阳,曾鹏等.面向物联网的传感数据属性语义化标注方法[J].中国科学:信息科学,2015,45(06):739-751.

[29]王顺. 基于本体的多源异构数据融合方法的研究与应用[D].南京航空航天大学,2018.

[30]陈彦萍,郭超,杨为惠.面向生产过程的异构数据服务描述语言IO-DSDL的设计与实现[J].计算机与数字工程,2018,46(05):976-980.

[31]李智星,万磊,舒新义,马先俊,徐敏.公司主数据管理研究与思考[J].中国集体经济,2018(10):68-69.

[32]王海军,丁剑明,白明亮,马涛.神东煤炭生产数据标准化规划初探[J].中国煤炭,2018,44(02):83-86+90.

[33]罗婷婷,赵瑞雪,李娇等.面向多源异构科技信息治理的元数据标准规范体系构建[J].数字图书馆论坛,2021,No.203(04):58-67.

[34]葛宁. 基于OPC UA的智能车间数据采集与监控系统[D].大连理工大学,2021.

[35]Mahnke W, Leitner S H, Damm M. OPC unified architecture[M]. Springer Science & Business Media, 2009.

[36]Chai A, Ma Y, Yin Z, et al. Real-Time Communication Model Based on OPC UA Wireless Network for Intelligent Production Line[J]. IEEE Access, 2021, 9: 102312-102326.

[37]Cavalieri S, Salafia M G. Insights into mapping solutions based on opc ua information model applied to the industry 4.0 asset administration shell[J]. Computers, 2020, 9(2): 28.

[38]王鹏. 基于 Modbus 协议的数据采集系统的研究[D]. 合肥工业大学, 2019.

[39]Jeong Y, Ansari M I, Shin W H, et al. PLC and arduino interaction based on modbus protocol[J]. Journal of Korea Multimedia Society, 2017, 20(3): 511-519.

[40]Tamboli S, Rawale M, Thoraiet R, et al. Implementation of Modbus RTU and Modbus TCP communication using Siemens S7-1200 PLC for batch process[C]//2015 international conference on smart technologies and management for computing, communication, controls, energy and materials (ICSTM). IEEE, 2015: 258-263.

[41]Compton M, Barnaghi P, Bermudez L, et al. The SSN ontology of the W3C semantic sensor network incubator group[J]. Journal of Web Semantics, 2012, 17: 25-32.

[42]Orlandi F, Graux D, O'Sullivan D. Benchmarking RDF metadata representations: Reification, singleton property and RDF[C]//2021 IEEE 15th International Conference on Semantic Computing (ICSC). IEEE, 2021: 233-240.

[43]王鑫,徐强,柴乐乐,杨雅君,柴云鹏.大规模RDF图数据上高效率分布式查询处理[J.软件学报,2019,30(03):498-514.

[44]谭章禄,王美君.智能化煤矿数据归类与编码实质、目标与技术方法[J].工矿自动化,2023,49(01):56-62+72.

[45]Stone C A,O Neill M E,Team T O. Observationally Cooperative Multithreading Proceedings of the ACM international conference companion on Object oriented programming systems languages and applications companion. ACM, 2015:205-206P.

[46]Casini D, Biondi A, Buttazzo G. Analyzing parallel real-time tasks implemented with thread pools[C]//Proceedings of the 56th Annual Design Automation Conference 2019. 2019: 1-6.

[47]Casini D, Biondi A, Buttazzo G. Analyzing parallel real-time tasks implemented with thread pools[C]//Proceedings of the 56th Annual Design Automation Conference 2019. 2019: 1-6.

[48]Solis D, Schrotenboer C, Solis D, et al. C# and. NET Core[J]. Illustrated C# 7: The C# Language Presented Clearly, Concisely, and Visually, 2018: 17-22.

[49]邱浩,王然风,赵晓蔚.基于OPC和.NET的选煤厂副产品煤质信息远程监控系统研究[J].中国煤炭,2018,44(12)∶78-83.

[50]Strauss D, Strauss D. Getting to Know Visual Studio 2019[J]. Getting Started with Visual Studio 2019: Learning and Implementing New Features, 2020: 1-60.

[51]HARP V. Five SQL server database performance tips[J]. Database Trends and Applications, 2016, 30(4):28.

[52]FURNESS A. Concept of Oracle database[M]. Singapore: Tritech Digital Media, 2018.

[53]JOSE B, ABRAHAM S. Performance analysis of NoSQL and relational databases with MongoDB and MySQL[J]. Materials Today: Proceedings,2020,24(3):2036-2043.

[54]董雪,高远,敖炳.基于TDengine的智能电网监控系统数据存储方法研究[J].电气应用,2021,40(08):68-74.

[55]Li H, Hu L, Jia S. Experimental research on TSN network performance test based on real-time edge computing platform[C]//Third International Conference on Computer Science and Communication Technology (ICCSCT 2022). SPIE, 2022, 12506: 678-684.

[56]李亚臣.基于ClickHouse的用户事件分析系统的设计与实现[J].信息与电脑(理论版),2021,33(09):87-90.

[57]Nasar M, Kausar M A. Suitability of influxdb database for iot applications[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 8(10): 1850-1857.

[58]Vasile M E, Avolio G, Soloviev I. Evaluating InfluxDB and ClickHouse database technologies for improvements of the ATLAS operational monitoring data archiving[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1525(1): 012027.

[59]孟令达,朱琳,陈瑞琼,刘娅,李孝辉.基于非关系型的时间频率科学数据存储策略研究[J].时间频率学报,2021,44(04):331-344.

[60]Pliatsios D, Sarigiannidis P, Lagkas T, et al. A survey on SCADA systems: secure protocols, incidents, threats and tactics[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1942-1976.

[61]Igure V M, Laughter S A, Williams R D. Security issues in SCADA networks[J]. computers & security, 2006, 25(7): 498-506

中图分类号:

 TD67    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式