- 无标题文档
查看论文信息

论文中文题名:

 综放面“埋管+高位孔”协同抽采条件下采空区瓦斯运移规律的伪斜效应研究    

姓名:

 安星虣    

学号:

 20220226069    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 赵鹏翔    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-27    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on the Pseudo-Slope Effect of Gas Migration in Goaf under the Coordinated Extraction of "Backfilling + High- level Boreholes" in Fully-mechanized Top-coal Caving Area    

论文中文关键词:

 埋管抽采 ; 高位钻孔 ; 数值模拟 ; 协同抽采 ; 伪斜效应    

论文外文关键词:

 Buried pipe extraction ; High level drilling ; Numerical simulation ; Co-operative extraction ; Pseudo-slope effect    

论文中文摘要:

我国煤层大多具有高瓦斯含量、低渗透率等特点,回采工作面更易发生瓦斯灾害事故,我国煤矿的特殊地质及瓦斯赋存条件,煤层预抽效果不佳,高突矿井进行卸压瓦斯抽采势在必行。本文以新疆硫磺沟煤矿为实验原型,4-5(06)工作面为试验工作面,采用物理相似模拟、数值模拟等手段,确定高位钻孔与埋管抽采最佳抽采参数,并通过现场实践验证其在不同伪斜下瓦斯治理效果。

本文通过理论计算、物理相似模拟实验,获得“三带”高度,确定了高位钻孔的布置范围。根据现场参数进行瓦斯涌出量预测,并分析回采工作面瓦斯涌出因素。结合实验结果及现场情况,分别建立不同抽采条件下几何模型,开展协同抽采数值模拟实验。无抽采时,通过调整配风量与伪斜降低上隅角瓦斯浓度,得到最佳风量为2160 m3/min;在最佳风量条件下开展埋管抽采与高位抽采下的工作面上隅角伪斜效应研究,分别得到最优埋管与最优高位钻孔抽采条件。由于单一抽采方式无法满足安全生产条件,因此需要协同抽采。分别以最佳埋管布置参数和最佳高位钻孔布置参数为基础,开展协同抽采数值模拟实验。模拟结果表明符合条件的抽采方案为:①高位钻孔间距3 m,抽采负压10 kPa,伪斜30 m,抽采口埋深30 m,抽采负压15 kPa;②抽采口埋深20 m,抽采负压10 kPa,伪斜25 m,高位钻孔间距3 m,抽采负压10 kPa。通过数值模拟结果建立卸压瓦斯协同抽采方案判定方法,并进行工程实践检验,实践表明,在抽采口埋深20 m,伪斜25 m,高位钻孔间距3 m时,上隅角瓦斯浓度不超过0.5%,实现安全生产。

本文通过理论分析、物理相似模拟、数值模拟等方法,确定合理布置参数与抽采参数,并对实验结果进行现场验证,建立立体抽采方法,分析瓦斯抽采效果,以验证论文研究结果合理性,为同类矿井瓦斯治理工作提供参考,对井下瓦斯灾害防治具有一定借鉴意义。

论文外文摘要:

Most of the coal seams in our country are characterized by high gas content and low permeability, which make the occurrence of gas disasters in mining area more likely. Due to the unique geological and gas occurrence conditions in Chinese coal mines, the pre-drainage effect of coal seams is often poor, and the unloading pressure gas extraction method is necessary for high-gas outburst mines. In this study, taking Sulphur Gou coal mine in Xinjiang as the experimental prototype and the 4-5 (06) working area as the test working area, physical similarity simulation, numerical simulation, and other methods were used to determine the optimal extraction parameters for high-level boreholes and buried pipe extraction, and the gas control effect was verified through field practice under different pseudo-slope.

By means of theoretical analysis, computational calculations, and physical similarity simulation experiments, this study has determined the optimal arrangement range for high-level boreholes based on the "three-zone" concept. Gas emission rates were predicted based on field parameters, and factors affecting gas emission in the mining area were analyzed. Geometric models were established under different extraction conditions, taking into consideration experimental results and field conditions, followed by numerical simulation experiments on coordinated extraction. Without extraction, by adjusting the ventilation volume and pseudo-slope to reduce the gas concentration at the upper corner, the optimal ventilation volume was determined to be 2160 m3/min. Under the optimal ventilation volume conditions, the research on the pseudo-slope effect of gas concentration at the upper corner was conducted for buried pipe extraction and high-level borehole extraction, respectively, and the optimal conditions for buried pipe extraction and high-level borehole extraction were obtained. As a single extraction method cannot meet the safety production requirements, coordinated extraction is needed. Based on the optimal parameters of buried pipe layout and high-level borehole layout, numerical simulation experiments of coordinated extraction were conducted. The simulation results showed that the compliant extraction schemes were: ① high-level borehole spacing of 3 m, negative pressure extraction of 10 kPa, pseudo-slope of 30 m, and buried depth of 30 m with negative pressure extraction of 15 kPa; ② buried depth of 20 m, negative pressure extraction of 10 kPa, pseudo-slope of 25 m, high-level borehole spacing of 3 m, and negative pressure extraction of 10 kPa. A method for determining the coordinated extraction scheme for unloading pressure gas was established based on the numerical simulation results and verified through engineering practice. The practical results showed that when the buried depth of the extraction opening was 20 m, pseudo-slope was 25 m, and high-level borehole spacing was 3 m, the gas concentration at the upper corner did not exceed 0.5%, achieving safe production.

The paper employs theoretical analysis, physical similarity simulation, numerical simulation, and other methods to determine reasonable parameters for layout and gas extraction. The experimental results are further validated through on-site verification, and a three-dimensional gas extraction method is established. The effectiveness of gas extraction is analyzed to validate the rationality of the research results. The findings provide reference for similar mine gas management work and offer insights for the prevention and control of underground gas disasters.

参考文献:

[1]孙杰, 程爱国, 刘亢, 等. 中国煤炭与煤层气协同勘查开发现状与发展趋势[J].中国地质, 2023: 1-15.

[2]国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[R]. 国家统计局, 2023.

[3]胡千庭. 我国煤矿瓦斯灾害防治对策[J]. 矿业安全与环保, 2000. 2(1): 91-92.

[4]张超林, 蒲静轩, 宋世豪, 等.煤与瓦斯突出两相流研究现状及展望[J]. 煤炭科学技术, 2023: 1-11.

[5]林海飞, 王旭, 徐培耘, 等. 特厚煤层卸压瓦斯储集区演化特征及工程应用[J]. 煤炭科学技术, 2022. 1-11.

[6]袁亮. 瓦斯治理理念和煤与瓦斯共采技术[J]. 中国煤炭, 2010, 36(6): 5-12.

[7]梁运培, 郑梦浩, 李全贵, 等. 我国煤与瓦斯突出预测与预警研究综述[J]. 煤炭学报, 2022, 1-24.

[8]钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(1): 1-13.

[9]王翰锋. 高瓦斯矿井零超限瓦斯防治体系的研究与实践[J]. 煤炭科学技术, 2016, 44(5): 145-150.

[10]史博文, 白建平, 郝春生, 等. 采动覆岩裂隙动态演化规律的三维模拟[J]. 煤矿安全, 2019, 50(07): 259-262.

[11]陈建强, 王世斌, 刘旭东, 等.急倾斜特厚煤层水平分段开采工作面瓦斯涌出影响因素研究[J]. 煤炭科学技术, 2022, 50(03): 127-135.

[12]孟宪锐, 张文超, 贺永强. 高瓦斯综放面瓦斯涌出特征研究[J]. 采矿与安全工程学报, 2006, 23(04): 419-422.

[13]赵灿, 张浪, 刘彦青. 偏Y型通风下采空区瓦斯涌出规律及超限治理研究[J]. 煤炭科学技术, 2019, 47(04): 127-133.

[14]李树刚, 丁洋, 安朝峰, 等. 高瓦斯特厚煤层综放开采工作面瓦斯涌出及分布特征研究[J]. 煤炭技术, 2015, 34(05): 113-116.

[15]秦跃平, 刘鹏, 郝永江, 等. 巷壁瓦斯涌出的数学模型及无因次分析[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(10): 1105-1110.

[16]张仕和, 才庆祥, 陈开岩. 基于实时监测数据的综采工作面瓦斯涌出特征分析[J]. 采矿与安全工程学报, 2012, 29(04): 586-590.

[17]丁洋, 宜艳, 林海飞, 等. 高强开采综放工作面瓦斯浓度空间分布规律研究[J]. 采矿与安全工程学报, 2022, 39(01): 206-214.

[18]尹永明, 姜福兴, 谢广祥, 等. 基于微震和应力动态监测的煤岩破坏与瓦斯涌出关系研究[J]. 采矿与安全工程学报, 2015, 32(02): 325-330.

[19]桑聪, 李伟, 张浪, 等. 突出煤层群综采工作面煤壁瓦斯涌出计算方法研究[J]. 煤炭科学技术, 2016, 44(09): 99-104.

[20]姜黎明. 综采工作面三维空间风速与瓦斯浓度分布规律实测与分析[J]. 煤矿安全, 2019, 50(03): 162-166.

[21]Wang W. L., Wang F. T., Zhao B., et al. Gas distribution law for the fully mechanized top-coal caving face in a gassy extra-thick coal seam[J]. Advances in Civil Engineering, 2018, (PT. 10): 3563728.1-3563728.8.

[22]曹佐勇, 何学秋, 王恩元, 等. 隐伏逆断层带的瓦斯涌出规律及控制因素研究[J]. 采矿与安全工程学报, 2018, 35(03): 657-662.

[23]蔺亚兵, 刘军, 赵雪娇, 等. 煤层冲刷带对瓦斯赋存影响效应及其涌出控制机理[J]. 煤炭科学技术, 2019, 47(07): 59-64.

[24]杨科, 刘帅. 深部远距离下保护层开采多关键层运移-裂隙演化-瓦斯涌出动态规律研究[J]. 采矿与安全工程学报, 2020, 37(05): 991-1000.

[25]Wang Q. F., Li C. W., Zhao Y. C., et al. Study of gas emission law at the heading face in a coal-mine tunnel based on the Lattice Boltzmann method[J]. Energy Science & Engineering, 2020, 8(05): 1705-1715.

[26]周世宁, 孙辑正. 煤层瓦斯流动理论及其应用[J]. 煤炭学报, 1965(01): 24-37.

[27]章梦涛, 王景琰. 采场空气流动状况的数学模型和数值方法[J]. 煤炭学报, 1983(03): 46-54.

[28]师雯琦, 杨双锁, 牛少卿等. 渗透压力和孔隙度对隧道围岩变形的影响研究[J]. 矿业研究与开发, 2021, 41(03): 91-97.

[29]张开仲, 程远平, 王亮, 等. 基于煤中瓦斯赋存和运移方式的孔隙网络结构特征表征[J]. 煤炭学报, 2022, 47(10): 3680-3694.

[30]魏勇齐, 杜菊红, 张瑞瑞. 采动条件下瓦斯抽采钻孔有效范围及瓦斯运移规律[J]. 能源与环保, 2020, 42(08): 64-67.

[31]罗振敏, 王子瑾, 苏彬等. 基于FLUENT的采空区瓦斯运移规律数值模拟研究[J]. 矿业安全与环保, 2020, 47(03): 17-21.

[32]房新亮, 潘东. 不同钻孔抽采参数下瓦斯运移规律研究[J]. 能源与环保, 2019, 41(11): 43-46.

[33]Liu A., Liu P., Liu S. Gas diffusion coefficient estimation of coal: A dimensionless numerical method and its experimental validation[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120336.

[34]Liu Ting, Lin Baiquan, Fu Xuehai, et al. Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam[J]. Energy, 2020, 195: 117005.

[35]张天军, 彭文清, 庞明坤, 等. 基于雷诺数的级配结构破碎煤样渗流失稳特征研究[J]. 采矿与安全工程学报, 2019, 36(06): 1273-1280.

[36]邹银辉, 程波. 煤岩受载过程与瓦斯渗透特性映射规律试验研究[J]. 煤炭科学技术, 2019, 47(11): 224-230.

[37]赵向东, 唐建平. 水力压裂条件下煤层流固耦合模型的建立及数值模拟研究[J]. 矿业安全与环保, 2020, 47(05): 18-22.

[38]张浩浩, 李胜, 范超军等. 煤岩渗透率各向异性模型及瓦斯抽采模拟研究[J]. 中国安全科学学报, 2018, 28(12): 109-115.

[39]史先志, 李鹏. 截流抽采顶板煤层越层瓦斯高位钻孔技术研究[J]. 煤炭技术, 2020, 39(05): 79-81.

[40]Krishnamurthy N. S., Rao V. A., Kumar D., et al. Electrical resistivity imaging technique to delineate coal seam barrier thickness and demarcate water filled voids[J]. Journal of the Geological Society of India, 2009, 73(05): 639-650.

[41]Peng G. Y, Gao M. Z., Xie J., et al. Field test research on gas migration law of mining coal and rock[J]. Thermal Science, 2019, 23(03): 1591-1597.

[42]Guang-Bin O. Gas migration law of coal mining in seam with short distance to protection seam[J]. Coal Science and Technology, 2008, (09): 50-52.

[43]Qin J. CFD simulations for longwall gas drainage design optimisation[J]. International Journal of Mining Science and Technology, 2017, 27(05): 777-782.

[44]Kumar P., Mishra D. P., Panigrahi D. C., et al. Numerical studies of ventilation effect on methane layering behaviour in underground coal mines[J]. Current science, 2017, 112(09): 1873-1881.

[45]郭勇义, 周世宁. 煤层瓦斯一维流场流动规律的完全解[J]. 中国矿业学院学报, 1984, 2(02): 22-31.

[46]杨英杰, 郭勇义, 谢建林, 等. 高位钻场瓦斯抽采技术在高瓦斯复杂煤层回采中的应用研究[J]. 太原理工大学学报, 2014, 45(05): 666-668.

[47]罗新荣. 可压密煤层瓦斯运移方程与数值模拟研究[J]. 中国安全科学学报, 1998, 8(05): 22- 26.

[48]罗新荣. 煤层瓦斯运移物理模拟与理论分析[J]. 中国矿业大学学报, 1991, 20(03): 58-64.

[49]李树刚, 石平五, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理, 1999, 16(Z1): 44-46.

[50]李树刚. 综放开采围岩活动影响下瓦斯运移规律及其控制[J]. 岩石力学与工程学报, 2000, 19(06): 809-810.

[51]李树刚, 钱鸣高, 石平五. 煤层采动后甲烷运移与聚集形态分析[J]. 煤田地质与勘探, 2000, 28(05): 31-33.

[52]李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014, 39(08): 1455-1462.

[53]王家臣, 赵洪宝. 工作面采掘空间流场特性数值模拟研究[J]. 金属矿山, 2010, 8(10): 151- 153.

[54]赵洪宝, 王家臣. 卸围压时含瓦斯煤力学性质演化规律试验研究[J]. 岩土力学, 2011, 32: 270-274.

[55]赵洪宝, 潘卫东, 汪昕. 开采薄煤层采空区瓦斯分布规律数值模拟研究[J]. 煤炭学报, 2011, 36: 440-443.

[56]赵洪宝, 张欢, 王宏冰, 等. 采空区瓦斯体积分数区域分布三维实测装置研制与应用[J]. 煤炭学报, 2018, 43(12): 3411-3418.

[57]张欢, 赵洪宝, 李晓白, 等. 分段留巷Y型通风采场瓦斯与流场分布三维实测与重构[J]. 中国安全生产科学技术, 2018, 14(07): 107-114.

[58]姜福兴, 孔令海, 刘春刚. 特厚煤层综放采场瓦斯运移规律[J]. 煤炭学报, 2011, 36(03): 407-411.

[59]李树刚, 魏宗勇, 林海飞, 等. 煤与瓦斯共采三维大尺度物理模拟实验系统的研制与应用[J]. 煤炭学报, 2019, 44(1): 236-245.

[60]杨科, 刘帅. 深部远距离下保护层开采多关键层运移-裂隙演化-瓦斯涌出动态规律研究[J]. 采矿与安全工程学报, 2020, 37(5): 991-1000.

[61]赵鹏翔, 卓日升, 李树刚, 等. 综采工作面推进速度对瓦斯运移优势通道演化的影响[J]. 煤炭科学技术, 2018, 46(7): 99-108.

[62]Li L., Qin B., Ma D., et al. Unique spatial methane distribution caused by spontaneous coal combustion in coal mine goafs: An experimental study[J]. Process Safety and Environmen-tal Protection, 2018, 116: 199-207.

[63]Xia T. Q., Gao F., Kang J. H., et al. A fully coupling coal gas model associated with inertia and slip effects for CBM migration[J]. Environmental Earth Sciences, 2016, 75(7): 582-592.

[64]Liu T., Lin B., Yang W., et al. Coal Permeability Evolution and Gas Migration Under None-quilibrium State[J]. Transport in Porous Media, 2017, 118(3): 393-416.

[65]Liu T., Lin B., Fu X., et al. Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam[J]. Energy, 2020, 195: 117005.

[66]Valliappan S, Wohua Z. Numerical Modelling of Methane Gas Migration in Dry Coal Sea-ms[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(8): 571-593.

[67]洛锋, 曹树刚, 李国栋, 等. 采动应力集中壳和卸压体空间形态演化及瓦斯运移规律研究[J]. 采矿与安全工程学报, 2018, 35(01): 155-162.

[68]罗振敏, 郝苗, 苏彬, 等. 采空区瓦斯运移规律实验及数值模拟[J]. 西安科技大学学报, 2020, 40(01): 31-39.

[69]罗振敏, 王子瑾, 苏彬, 等. 基于FLUENT的采空区瓦斯运移规律数值模拟研究[J]. 矿业安全与环保, 2020, 47(03): 17-21.

[70]李成武, 付帅, 崔永国, 等. 高浓瓦斯井巷运移规律及致灾时空特征研究[J]. 中国矿业大学学报, 2017, 46(01): 27-32.

[71]赵鹏翔, 刘李东, 李树刚, 等. 煤层倾角对仰斜工作面覆岩压实区裂隙演化规律的影响[J]. 煤炭科学技术, 2021, 49(11): 65-72.

[72]赵鹏翔, 卓日升, 李树刚, 等. 综采工作面瓦斯运移优势通道演化规律采高效应研究[J]. 采矿与安全工程学报, 2019, 36(04): 848- 856.

[73]Zhao P. X., Wang J. A., Li S. G., et al. Effects of recovery ratio on the fracture evolution of the overburden pressure-relief gas migration channel for a fully mechanized working face[J]. Natural Resources Research, 2022, 31(02): 1011-1026.

[74]Zhao P. X., Zhuo R. S., Li S. G., et al. Research on the effect of coal seam inclination on gas migration channels at fully mechanized coal mining face[J]. Arabian Journal of Geosciences, 2019, 12(18): 1-14.

[75]Gorbaty M. L., George G. N., Kelemen S. R. Chemistry of organically bound sulphur forms during the mild oxidation of coal[J]. Fuel, 1990, 69(8):1065-1067.

[76]Noack K . Control of gas emissions in underground coal mines[J]. International Journal of Coal Geology, 1998, 35(1-4):57-82.

[77]Karacan C., Goodman G. Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine[J]. International Journal of Coal Geology, 2012, 98:110-127.

[78]Karacan C., Ruiz F.A , Michael C., et al. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J]. international journal of coal geology, 2011, 86(2-3):121-156.

[79]Aziz N., Black D., Ren T. Keynote paper Mine gas drainage and outburst control in Australian underground coal mines[J]. Procedia Engineering, 2011, 26: 84-92.

[80]Wang H., Dlugogorski B. Z., Kennedy E. M. Kinetic Modeling of Low-Temperature Oxidation of Coal[J]. Combustion and Flame, 2002, 131(4): 452-464.

[81]Scott S., Anderson B., Crosdale P., et al. Coal petrology and coal seam gas contents of the Walloon Subgroup-Surat Basin, Queensland, Australia[J]. International Journal of Coal Geology, 2007. 70(1/3): 209-222.

[82]马丕梁, 范启伟. 我国煤矿抽放瓦斯现状及展望[J]. 中国煤炭, 2004, 030(002): 5-7.

[83]赵社会. 穿层钻孔预抽区域煤层瓦斯增透关键技术研究[J]. 煤炭工程, 2010(09): 59-61.

[84]Wang H. F., Cheng Y. P.,Wang L. Regional gas drainage techniques in Chinese coal mines[J]. 2012. 22(6): 873-878.

[85]Liang B., Sun W. J., Qi Q. X., et al. Technical evaluation system of co-extraction of coal and gas[J]. International Journal of Mining Science and Technology. 2012, 22(06): 891-894.

[86]Karacan C. Ö., Goodman G. V. R. Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine[J]. International Journal of Coal Geology, 2012, 98(03): 110-127.

[87]程远平, 俞启香, 袁亮. 上覆远程卸压岩体移动特性与瓦斯抽采技术[J]. 辽宁工程技术大学学报, 2003, 22(04): 483-486.

[88]Aziz N., Black D., Ren T. Keynote paper mine gas drainage and outburst control in Australian underground coal mines[J]. Procedia Engineering, 2011, 26(02): 84-92.

[89]程远平, 俞启香, 袁亮, 等. 煤与远程卸压瓦斯安全高效共采试验研究[J]. 中国矿业大学学报, 2004, 33(02): 8-12.

[90]袁亮. 高瓦斯矿区复杂地质条件安全高效开采关键技术[J]. 煤炭学报, 2006, 31(02): 174-178.

[91]Balusu R., Deguchi G., Holland R., et al. Goaf gas flow mechanics and development of gas and sponcom control strategies at a highly gassy coal mine[J]. Coal and Safety, 2002, 31(07): 17- 34.

[92]Shang Z., Wang H. F., Cheng Y. P., et al. Optimal selection of coal seam pressure-relief gas extraction technologies: a typical case of the panyi coal mine, Huainan coalfield, China[J]. Energy Sources, 2019, 44(01): 1105-1125.

[93]卢义玉, 李瑞, 鲜学福, 等. 地面定向井+水力割缝卸压方法高效开发深部煤层气探讨[J]. 煤炭学报, 2021, 46(03): 876-884.

[94]徐全, 杨胜强, 王成, 等. 立体抽采下采场瓦斯流动规律及模拟[J]. 采矿与安全工程学报, 2010, 27(01): 62-66.

[95]Cheng X., Zhao G. M., Li Y. M., et al. Researches of fracture evolution induced by soft rock protective seam mining and an omni-directional stereo pressure-relief gas extraction technical system: a case study[J]. Arabian Journal of Geosciences, 2018, 11(12): 1-17.

[96]杨前意, 罗伙根, 石必明, 等. 基于COMSOL的采空区埋管抽采参数优化数值研究[J]. 中国安全生产科学技术, 2019, 15(04): 90- 95.

[97]刘彦青, 孙永新, 赵灿, 等. 采空区密闭联络巷埋管抽采瓦斯技术参数优化及应用[J]. 煤炭科学技术, 2020, 48(12): 131-140.

[98]王启明, 刘浩, 高巍, 等. 肖家洼煤矿采空区埋管瓦斯抽采布置间距模拟与应用研究[J]. 煤炭技术, 2019, 38(12): 111-113.

[99]吴兵, 雷柏伟, 华明国, 等. 回采工作面上隅角瓦斯拖管抽采技术参数研究[J]. 采矿与安全工程学报, 2014, 31(02): 315- 321.

[100]刘垒. 高瓦斯综采工作面采空区长立管埋管瓦斯抽采技术[J]. 煤矿安全, 2018, 49(01): 148-152.

[101]冯国兴, 任仲久. 埋管抽采技术在工作面瓦斯治理中的应用[J]. 煤炭技术, 2014, 33(03): 49-51.

[102]Zhang C., Tu S. H., Chen M., et al. Pressure-relief and methane production performance of pressure relief gas extraction technology in the longwall mining[J]. Journal of Geophysics and Engineering, 2017, 14(01): 77-89.

[103]郭新红, 任仲久. 多煤层条件下高位钻孔瓦斯抽采层位优选研究[J]. 煤矿安全, 2021, 52(06): 194-198.

[104]王华, 王飞, 高亚斌, 等. 基于潞宁煤矿的采空区高位钻孔参数优化设计[J]. 中国矿业, 2019, 28(10): 131-137.

[105]张礼, 廉振山, 潘铁柱, 等. 基于覆岩裂隙分布特征的高位钻孔设计研究[J]. 煤矿安全, 2019, 50(03): 154-158.

[106]胡晋林, 赵晶, 王栓林, 等. 基于覆岩裂隙发育规律的高位钻孔合理布置研究[J]. 煤炭工程, 2021, 53(05): 90-93.

[107]赵丹, 王明玉, 贾进章, 等. 马堡煤矿高位钻孔布置参数的优化分析[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(02): 127-135.

[108]李春元, 张勇, 李佳, 等. 采空区瓦斯宏观流动通道的高位钻孔抽采技术[J]. 采矿与安全工程学报, 2017, 34(02): 391-397.

[109]王存权. 近距离煤层复合采空区超前导流钻孔合理抽采流量数值模拟[J]. 煤矿安全, 2016, 47(05): 166-169.

[110]刘洪永, 程远平, 周红星, 等. 综采长壁工作面推进速度对优势瓦斯通道的诱导与控制作用[J]. 煤炭学报, 2015, 40(04): 809-815.

[111]李树刚, 徐培耘, 赵鹏翔, 等. 采动裂隙椭抛带时效诱导作用及卸压瓦斯抽采技术[J]. 煤炭科学技术, 2018, 46(09): 146-152.

[112]朱红青, 霍雨佳, 方书昊, 等. 寺家庄矿综采工作面顶板走向高抽巷合理层位研究[J]. 煤炭科学技术, 2021, 49(01): 234-239.

[113]Li S. G., Shuang H. Q., Wang H. S. Determining the rational layout parameters of the lateral high drainage roadway serving for two adjacent working faces[J]. International Journal of Mining Science and Technology, 2016, 26(05): 795-801.

[114]Li S. G., Shuang H. Q., Wang H. S., et al. Extraction of pressurized gas in low air-conductivity coal seam using drainage roadway[J]. Sustainability, 2017, 9(02): 223-230.

[115]王红胜, 李树刚, 双海清, 等. 外错高抽巷高位钻孔卸压瓦斯抽采技术[J]. 中南大学学报(自然科学版), 2016, 47(04): 1319-1326.

[116]王红胜, 杜政贤, 樊启文, 等. 外错高抽巷卸压瓦斯抽采钻孔测斜与纠偏技术[J]. 煤炭科学技术, 2015, 43(08): 77-81.

[117]康建宏, 邬锦华, 李绪明, 等. 采空区高抽巷及埋管抽采下瓦斯分布规律研究[J]. 采矿与安全工程学报, 2021, 38(01): 191-198.

[118]栾恒杰, 蒋宇静, 林惠立. 基于沿空留巷与多方位抽采的瓦斯综合治理技术应用[J]. 山东科技大学学报(自然科学版), 2017, 36(03): 38-44.

[119]李臣武. 突出煤层沿空留巷综采工作面瓦斯综合治理技术[J]. 煤炭科学技术, 2015, 43(S1): 89-92.

[120]李臣武, 顾文广. 缓倾斜沿空留巷采煤工作面瓦斯涌出规律及治理[J]. 煤炭科学技术, 2005, (11): 8-10.

[121]高光超,李宗翔,张春等.基于三维“O”型圈的采空区多场分布特征数值模拟[J].安全与环境学报, 2017, 17(03): 931-936.

中图分类号:

 TD712    

开放日期:

 2023-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式