论文中文题名: |
预制钻孔煤体加载变形及瓦斯吸附解吸渗流规律实验研究
|
姓名: |
郭晨华
|
学号: |
20220226080
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
085224
|
学科名称: |
工学 - 工程 - 安全工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
矿井瓦斯灾害防治
|
第一导师姓名: |
肖鹏
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-15
|
论文答辩日期: |
2023-06-03
|
论文外文题名: |
Experimental study on loading deformation and gas adsorption desorption seepage law of prefabricated borehole coal body
|
论文中文关键词: |
钻孔参数 ; 煤体变形 ; 瓦斯渗流 ; 数值模拟 ; 吸附解吸
|
论文外文关键词: |
Drilling parameters ; Coal deformation ; Gas migration ; Numerical simulation ; Adsorption desorption
|
论文中文摘要: |
︿
我国是煤炭消费大国,深部开采逐渐成为我国煤炭开采的新局面,随着开采深度的不断增加,瓦斯赋存条件更加复杂。我国煤矿瓦斯事故频发,瓦斯抽采作为降低瓦斯事故的重要手段之一被广泛运用,而钻孔布置参数影响着瓦斯抽采效率及瓦斯渗流过程,因此必须明确钻孔布置参数对煤体变形及瓦斯吸附解吸渗流规律的影响,对提高瓦斯灾害防治水平具有一定的指导意义。
实验煤样选自澄合某矿,利用三维光学散斑技术分析不同参数煤体单轴加载过程中的变形破坏特征,得出随着钻孔直径和钻孔角度增大,煤体抗压强度都减小;当钻孔直径和钻孔角度较小时,破坏形式主要为拉伸破坏;当钻孔直径和钻孔角度较大时,破坏形式主要为拉伸和剪切复合破坏。
采用自主研发的煤层气流固耦合综合测试实验平台,得出随着钻孔角度增大,煤体吸附、解吸变形量呈现上升趋势,渗透率增大;随着钻孔直径增大,吸附变形量增加,解吸变形量有增有减,渗透率的变化区间为2.12~3.66×10-16m2;随着瓦斯压力增大,吸附、解吸变形量呈现上升趋势,渗透率与变形量呈现正相关的变化趋势。分析煤体瓦斯运移各阶段变化,得到瓦斯吸附量随着钻孔角度增大呈现上升趋势,解吸率依次为86.7%、84.29%、84.21%、82.87%,煤体的瓦斯流量呈现增加趋势;随着钻孔直径增大,煤体瓦斯吸附量变化范围为2.45ml/g~2.67ml/g,瓦斯解吸率逐渐增加,瓦斯流量增加;随着瓦斯压力增大,瓦斯吸附量呈增加趋势,煤体瓦斯解吸量呈现增加的趋势,煤体解吸量峰值是最小值的1.76倍,瓦斯流量的变化区间为9.54ml/min~16.47ml/min。
通过COMSOL数值模拟软件验证了物理实验结果,二者的变化规律具有较好的一致性;通过现场验证,得到随着抽采时间的增加,瓦斯压力逐渐减小,抽采孔径越大,有效抽采半径的变化幅度越大。研究成果为优化煤层瓦斯抽采钻孔布置、提高瓦斯抽采效率、增强矿井瓦斯灾害防治水平提供了一定的工程实践意义。
﹀
|
论文外文摘要: |
︿
China is a big country of coal consumption. Deep mining has gradually become a new situation of coal mining in China. With the increasing depth of mining, the conditions of gas occurrence are more complicated. Gas accidents occur frequently in coal mines in China.Gas extraction is widely used as one of the important means to reduce gas accidents, and borehole layout parameters affect gas extraction efficiency and gas seepage process. Therefore, it is necessary to clarify the influence of borehole layout parameters on coal body deformation and gas adsorption and desorption seepage law, which has certain guiding significance for improving the level of gas disaster prevention and control.
The experimental coal sample was selected from a mine in Chenghe. The deformation and failure characteristics of coal with different parameters during uniaxial loading were analyzed by three-dimensional optical speckle technique. It is concluded that the compressive strength of coal decreases with the increase of borehole diameter and borehole angle. When the borehole diameter and borehole angle are small, the failure mode is mainly tensile failure. When the borehole diameter and borehole angle are large, the failure mode is mainly tensile and shear composite failure.
By using the self-developed comprehensive test platform for fluid-solid coupling of coalbed methane, it is concluded that with the increase of drilling angle, the deformation of coal adsorption and desorption shows an upward trend, and the permeability increases. With the increase of borehole diameter, the amount of adsorption deformation increases, and the amount of desorption deformation increases and decreases. The change range of permeability is 2.12 ~ 3.66 × 10-16 m2. As the gas pressure increases, the amount of adsorption and desorption deformation shows an upward trend, and the permeability and deformation show a positive correlation trend. By analyzing the changes of each stage of gas migration in coal body, it is found that the gas adsorption capacity increases with the increase of drilling angle, and the desorption rate is 86.7 %, 84.29 %, 84.21 % and 82.87 % respectively, and the gas flow of coal body shows an increasing trend. With the increase of borehole diameter, the gas adsorption capacity of coal body varies from 2.45ml/g to 2.67ml/g, the gas desorption rate increases gradually, and the gas flow rate increases. With the increase of gas pressure, the amount of gas adsorption shows an increasing trend, and the amount of coal gas desorption shows an increasing trend. The peak value of coal desorption is 1.76 times the minimum value, and the change range of gas flow is 9.54ml/min~16.47ml/min.
The physical experiment results are verified by COMSOL numerical simulation software, and the variation rules of the two are in good agreement. Through on-site verification, it is obtained that with the increase of extraction time, the gas pressure gradually decreases, and the larger the extraction aperture, the greater the change range of the effective extraction radius. The research results provide a certain engineering practical significance for optimizing the layout of coal seam gas extraction boreholes, improving the efficiency of gas extraction, and enhancing the level of mine gas disaster prevention and control.
﹀
|
参考文献: |
︿
[1] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(01): 1-6. [2] 中华人民共和国2022年国民经济和社会发展统计公报[N]. 人民日报. [3] 钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(01): 1-13. [4] 钱鸣高. 煤炭的科学开采[J]. 煤炭学报, 2010, 35(04): 529-534. [5] 袁亮. 我国煤炭工业高质量发展面临的挑战与对策[J]. 中国煤炭, 2020, 46(01): 6-12. [6] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(05): 1283-1305. [7] 谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报, 2014, 39(08): 1391-1397. [8] 谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术, 2017, 49(02): 1-16. [9] 刘洪永, 程远平, 周红星, 等. 综采长壁工作面推进速度对优势瓦斯通道的诱导与控制作用[J]. 煤炭学报, 2015, 40(04): 809-815. [10] T. P. Medhurst, E.T. Brown. A study of the Mechanical Behavior of coal for Pillar Design[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1998, 35(08): 1087-1104. [11] Wong T F. Micromechanics of aulting in westerly granite[J]. International Journal of Rock Mechanics &Mining Sciences & Geomechanics Abstracts, 1982, 19(02): 49-64. [12] Wong R H C, Chau K T, Tang C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws—Part I: experimental approach[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(07): 909-924. [13] Lajtai E Z. Brittle Fracture in compression[J]. International Journal of Fracture, 1974, 10(04): 525-536. [14] Lajtai E Z, Lajtaivn. The collapse of cavities[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1975, 12(04): 81-86. [15] Carter B J, Lajtai EZ, Petukhov A. Primary and remote fracture around underground cavities[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 15(01): 21-40. [16] Martin C D. Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal, 1997, 34(05): 698-725. [17] Cai M, Kaiser P K, Tasaka Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(05): 833-847. [18] Jing C, Zhang L.et al. Characterization of Tensile Crack Propagation and Energy Evolution during the Failure of Coal–Rock Samples Containing Holes[J]. Sustainability, 2022, 14(21): 142-157. [19] Xiang L, Sheng Y, Yan H, et al. Experimental study on the strength and fracture mechanism of sandstone containing elliptical holes and fissures under uniaxial compression[J], Engineering Fracture Mechanics, 2019, 20(05): 205-217. [20] Ashish Juneja,Partha Pinaki. A Numerical Study on Extent of Crushed Zone Around Blasthole in Basalt Rock[J]. Geotechnical and Geological Engineering,2019,37(07):1283-1286. [21] 石占山, 梁冰, 王岩, 等. 加载与卸载过程瓦斯抽采钻孔变形特征[J]. 煤炭学报, 2017, 42(06): 1458-1465. [22] 张学博, 高建良. 深部开采松软煤层抽采钻孔变形特性研究[J]. 中国安全生产科学技术, 2017, 13(08): 152-158. [23] 罗新荣, 李青, 刘泉霖, 等. 钻孔倾角对煤体应力及变形破坏的影响数值模拟研究[J]. 煤炭技术, 2018, 37(02): 1-3. [24] 张起, 魏国营, 秦宾宾, 等. 基于蠕变变形的顺煤层钻孔筛管封孔技术研究[J]. 中国安全科学学报, 2019, 29(03): 133-138. [25] 焦荣坤, 张学博, 栗翌. 钻孔不同变形失稳时抽采负压分布规律研究[J]. 工矿自动化, 2019, 45(05): 40-45. [26] 王猛, 郑冬杰, 王襄禹, 等. 深部巷道钻孔卸压围岩弱化变形特征与蠕变控制[J]. 采矿与安全工程学报, 2019, 36(03): 437-445. [27] 郝晋伟, 舒龙勇, 齐庆新, 等. 钻孔密封段异质结构变形损伤及影响因素分析[J]. 煤矿安全, 2019, 50(06): 172-175+180. [28] 贾牛骏, 吕鹏, 申晨峰. 松软煤层本煤层瓦斯抽采钻孔变形规律研究及稳定性分析[J]. 现代矿业, 2019, 35(08): 210-214. [29] 杨伟东, 霍中刚, 舒龙勇, 等. 钻孔密封段异质结构变形破坏特征试验研究[J]. 煤炭科学技术, 2020, 48(06): 122-128. [30] 华明国, 秦贵成, 景晨, 等. 不同应力状态下钻孔孔周变形规律研究[J]. 煤炭工程, 2019, 51(09): 127-131. [31] 黄长国. 深部松软煤层钻孔孔周煤体变形产渣特征研究[J]. 煤炭工程, 2020, 52(04): 92-96. [32] 张学博, 王文元, 蔡行行. 深部煤层抽采钻孔变形失稳影响因素研究[J]. 煤炭科学技术, 2021, 49(05): 159-166. [33] 张平松, 孙斌杨, 许时昂, 等. 煤系上覆地层移动变形钻孔多参数监测技术[J]. 煤炭学报, 2022, 47(08): 2907-2922. [34] 徐超, 秦亮亮, 王凯, 等. 非均匀应力场瓦斯抽采钻孔扰动煤体变形破坏特征研究[J/OL]. 煤炭学报:1-13[2023-04-11]. [35] Wang G, Jiang C, Shen J, et al. Deformation and water transport behaviors study of heterogenous coal using CT-based 3D simulation[J]. International Journal of Coal Geology,2019, 211(08): 1032-1039. [36] Zhou G, Zhang Q, Bai R, et al. Characterization of coal micro-pore structure and simulation on the seepage rules of low-pressure water based on CT scanning data[J]. Minerals, 2016, 16(05): 365-376. [37] Debosruti D, Brandon CW, Shreyas YB, et al. Enhanced gas adsorption on graphitic substrates via defects and local curvature: a density functional theory study[J]. Journal of Physical Chemistry, 2014, 118(07): 1141–1150. [38] Vishal V, Ranjith PG, Singh T. CO2 permeability of Indian bituminous coals: Implications for carbon sequestration[J]. International Journal of Coal Geology, 2013, 105(03): 36–47. [39] Shi J, Durucan S, Shimada S. How gas adsorption and swelling affects permeability of coal: A new modelling approach for analysing laboratory test data[J]. International Journal of Coal Geology, 2014, 128(08): 134–142. [40] Danesh NN, Chen Z, Aminossadati SM, et al. Impact of creep on the evolution of coal permeability and gas drainage performance[J]. Journal of Natural Gas Science and Engineering, 2016, 33(07): 469–482. [41] Mirosław W, Pavel K, Alena K. Permeability changes of coal cores and briquettes under tri-Axial stress conditions[J]. Archives of Mining Sciences, 2014, 59(04): 1131–1140. [42] Mateusz K. Investigating Permeability of coal samples of various porosities under stress conditions[J]. Energies, 2019, 12(04): 762–771. [43] Wang D, Lv R, Wei J, et al. An experimental study of seepage properties of gas-saturated coal under different loading conditions[J]. Energy Science & Engineering, 2019, 07(03): 799–808. [44] Chen Z, Li G, Wang Yi, et al. An experimental investigation of the gas permeability of tectonic coal mineral under triaxial loading conditions[J]. Minerals, 2022, 12(01): 70-85. [45] 李波波, 李建华, 杨康, 等. 考虑含水率影响的煤岩变形及渗透率模型[J]. 煤炭学报, 2019, 44(04): 1076-1083. [46] 宋红立, 赵洋, 李庆钊. 考虑煤体蠕变的瓦斯渗流规律及抽采钻孔布置[J]. 工矿自动化, 2019, 45(11): 42-48. [47] 李清淼, 梁运培, 邹全乐. 循环加卸载路径下不同含瓦斯煤渗流及损伤演化特征[J]. 煤炭学报, 2019, 44(09): 2803-2815. [48] 王刚, 刘志远, 王鹏飞, 等. 考虑瓦斯吸附作用的真三轴煤体剪切渗流特性试验研究[J]. 采矿与安全工程学报, 2019, 36(05): 1061-1070. [49] 张培森, 孙亚楠, 颜伟, 等. 饱和破碎砂岩承压变形及渗流特性试验研究[J]. 采矿与安全工程学报, 2019, 36(05): 1016-1024. [50] 王刚, 秦相杰, 江成浩, 等. 温度作用下CT三维重建煤体微观结构的渗流和变形模拟[J]. 岩土力学, 2020, 41(05): 1750-1760. [51] 黄学满. 钻孔煤体破坏渗流模型及在煤层卸压抽采中的应用研究[J]. 矿业安全与环保, 2019, 46(05): 32-36. [52] 张天军, 彭文清, 庞明坤, 等. 基于雷诺数的级配结构破碎煤样渗流失稳特征研究[J]. 采矿与安全工程学报, 2019, 36(06): 1273-1280. [53] 王登科, 于充, 魏建平, 等. 基于LBM方法的裂隙煤岩应力–应变过程中渗流特性研究[J]. 岩石力学与工程学报, 2020, 39(04): 695-704. [54] 李治豪, 陈世江, 杜广盛, 等. 不同围压和水压加载下煤岩渗流规律研究[J]. 煤炭科学技术, 2020, 48(12): 101-108. [55] 吴信波, 李贵红, 刘钰辉, 等. 低阶煤煤体变形特征及渗流规律实验研究[J]. 科学技术与工程, 2021, 21(03): 906-910. [56] 蒋长宝, 余塘, 段敏克, 等. 瓦斯压力和应力对裂隙影响下的渗透率模型研究[J]. 煤炭科学技术, 2021, 49(02): 115-121. [57] 吴学海, 李波波, 王新, 等. 基于塑性变形的煤体损伤本构关系及渗透率模型研究[J]. 煤田地质与勘探, 2021, 49(06): 131-141. [58] 王登科, 田晓瑞, 魏建平, 等. 基于工业CT扫描和LBM方法的含瓦斯煤裂隙演化与渗流特性研究[J]. 采矿与安全工程学报, 2022, 39(02): 387-395. [59] 周银波, 李晓丽, 李晗晟, 等. 煤体吸附变形对3种气体渗透率演化的影响[J]. 煤矿安全, 2021, 52(11): 16-21. [60] 岑培山, 田坤云, 魏二剑, 等. 多级加卸载下层理裂隙煤体瓦斯渗流轴向效应及应用[J]. 煤矿安全, 2021, 52(12): 9-14. [61] 郝建峰, 梁冰, 孙维吉, 等. 煤与瓦斯的热流固耦合关系研究现状及展望[J]. 采矿与安全工程学报, 2022, 39(05): 1051-1060+1070. [62] 吴学海, 李波波, 高政, 等. 气体压力降低对煤岩变形和渗流的影响机制[J]. 中国安全科学学报, 2022, 32(04): 129-134. [63] 付佳乐, 李波波, 高政, 等. 不同孔隙压力和围压下煤岩渗透及力学特性试验研究[J/OL]. 煤炭科学技术: 1-11[2023-04-10]. [64] 张洪祯. 瓦斯抽采钻孔周围原位破碎煤岩体渗透特性试验研究[J]. 煤矿安全, 2022, 53(08): 33-41. [65] 王凯, 郭阳阳, 王刚, 等. 真三轴路径下含瓦斯复合煤岩体渗流及力学破坏特性[J]. 煤炭学报, 2023, 48(01): 226-237. [66] 张天军, 孟钰凯, 庞明坤, 等. 有效应力对孔周破裂煤体渗透率演化规律的影响[J/OL]. 煤炭科学技术: 1-10[2023-04-10]. [67] 王凯, 赵恩彪, 郭阳阳, 等. 中间主应力影响下含瓦斯复合煤岩体变形渗流及能量演化特征研究[J]. 矿业科学学报, 2023, 28(01): 74-82. [68] Duan H, Wang Y, Xiao Q, et al. Gas extraction technology and application of near horizontal high directional drilling[J]. Energy Reports, 2022, 08(07): 1326–1333. [69] Dong J, Cheng Y, Jin K, et al. Effects of diffusion and suction negative pressure on coalbed methane extraction and a new measure to increase the methane utilization rate[J]. Fuel, 2017, 197(06): 70–81. [70] Liu Z, Lin X, Wang Z, et al. Modeling and experimental study on methane diffusivity in coal mass under in-situ high stress conditions: A better understanding of gas extraction[J]. Fuel, 2022, 321(05): 124-135. [71] Qin Z, Yuan L, Guo H, et al. Investigation of longwall goaf gas flows and borehole drainage performance by CFD simulation[J]. International Journal of Coal Geology, 2015, 150(10): 51–63. [72] Si L, Zhang H, Wei J, et al. Modeling and experiment for effective diffusion coefficient of gas in water-saturated coal[J]. Fuel, 2021, 284(08): 256-271. [73] Si L, Wei J, Xi Y, et al. The influence of long-time water intrusion on the mineral and pore structure of coal[J]. Fuel, 2021, 290(01): 34-46. [74] Xu C, Wang K, Li X, et al. Collaborative gas drainage technology of high and low level roadways in highly-gassy coal seam mining[J]. Fuel, 2022, 323(04): 124-138. [75] Xiang Z, Si G, Wang Y, et al. Goaf gas drainage and its impact on coal oxidation behaviour: A conceptual model[J]. International Journal of Coal Geology, 2021, 248(10): 278-289. [76] Wang Z, Sun Y, Li Z, et al. Multiphysics responses of coal seam gas extraction with borehole sealed by active support sealing method and its applications[J]. Journal of Natural Gas Science and Engineering, 2022, 100(02): 104-121. [77] 曹佐勇, 王恩元, 何学秋, 等. 近距离突出煤层群水力冲孔卸压瓦斯抽采及效果评价研究[J]. 采矿与安全工程学报, 2021, 38(03): 634-642. [78] 贾进章, 葛佳琪, 甄纹浩, 等. 水力压裂增透技术及应用研究[J]. 中国安全科学学报, 2020, 30(10): 63-68. [79] 陈亮, 施永威. 考虑启动压力梯度的低渗透煤层瓦斯渗流耦合模型及应用[J]. 矿业安全与环保, 2020, 47(02): 70-75+80. [80] 黄学满. 钻孔煤体破坏渗流模型及在煤层卸压抽采中的应用研究[J]. 矿业安全与环保, 2019, 46(05): 32-36. [81] 赵刚, 程健维, 龚选平, 等. 新型无机缓凝封孔浆液注浆扩散形态研究[J]. 西安科技大学学报, 2021, 41(03): 425-433. [82] 范飞杰. 高瓦斯工作面采空区高位瓦斯抽采钻孔优化布置研究[D]. 中国矿业大学, 2021. [83] 陈月霞, 褚廷湘, 陈鹏. 不同数量钻孔瓦斯抽采有效区域数值模拟分析[J]. 矿业安全与环保, 2021, 48(05): 23-27+32. [84] 王世斌, 王刚, 陈雪畅, 等. 基于PFC2D-COMSOL的煤层水力压裂增透促抽瓦斯数值模拟研究[J]. 煤矿安全, 2022, 53(10): 132-140. [85] 徐刚, 张剀文, 范亚飞. 叠加效应影响下钻孔有效抽采半径的数值模拟及布孔间距优化[J]. 矿业安全与环保, 2021, 48(01): 91-96. [86] 王广宏. 基于定向长钻孔抽采瓦斯的数值模拟研究[J]. 矿业安全与环保, 2021, 48(04): 38-42. [87] 李大旺. 顶底板岩层透气性对煤层瓦斯抽采的影响研究[J]. 矿业安全与环保, 2021, 48(05): 28-32. [88] 贾晓亮. 老厂矿区高位定向长钻孔“以孔代巷”瓦斯抽采技术研究[J]. 矿业安全与环保, 2021, 48(05): 103-107. [89] 李青松, 付金磊, 衡献伟, 等. 基于CO2相变致裂技术的低渗透煤层钻孔参数优化研究[J]. 煤炭技术, 2021, 40(11): 118-123. [90] 贾廷贵, 李颜兵, 曲国娜. 偏Y形通风工作面上隅角瓦斯抽采模拟[J]. 安全与环境学报, 2021, 21(06): 2472-2478. [91] 张育磊. 高瓦斯煤层群顶板定向长钻孔抽采技术研究[J]. 矿业安全与环保, 2022 ,49(01): 59-64. [92] 赵洋. 深部低透煤层孔内卸压强化瓦斯抽采过程中的多场耦合机制[D]. 中国矿业大学, 2022. [93] 刘军, 吴泽平, 张露伟, 等. 基于面积法优化缓倾斜煤层揭煤钻孔布置方式[J]. 中国安全生产科学技术, 2022, 18(04): 113-119. [94] 郭明功, 陶云奇, 张剑钊. 深部突出煤层采动断裂带发育高度确定研究[J]. 工矿自动化, 2022, 48(08): 62-68+91. [95] 慕兰兰, 传金平, 杨小彬, 等. 砚北煤矿特厚易自燃煤层邻近采空区瓦斯抽采与煤自燃耦合研究[J]. 矿业安全与环保, 2023, 50(01): 25-36. [96] 张小龙, 王飞, 刘红威, 等. 基于采动覆岩三维裂隙场演化规律的地面L型钻井瓦斯抽采技术[J]. 中国安全生产科学技术, 2022, 18(10): 56-61. [97] 赵鹏翔, 常泽晨, 李树刚, 等. 厚煤层采空区定向孔分域抽采研究及应用[J]. 中国安全科学学报, 2023, 33(01): 70-79. [98] 李颖, 赵东, 陈涛. 高抽巷层位变化对采空区瓦斯分布规律的影响研究[J]. 太原理工大学学报, 2023, 54(02): 313-320. [99] 仲照海, 何光安, 王青如. 超声波激励下煤体原位渗流实验与瓦斯抽采数值模拟[J]. 煤矿现代化, 2023, 32(02): 53-57+63. [100] 赵东, 冯增朝, 赵阳升. 高压注水对煤体瓦斯解吸特性影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(03): 547-555. [101] 靳晓敏. 液氮冷冻对煤体物性及瓦斯抽采效果影响实验研究[D]. 河南理工大学, 2018. [102] 郭平, 曹树刚, 张遵国, 等. 含瓦斯煤体固气耦合数学模型及数值模拟[J]. 煤炭学报, 2012, 37(02): 330-335. [103] 孔祥言. 高等渗流力学[M]. 中国科学技术大学出版社, 2010
﹀
|
中图分类号: |
TD712
|
开放日期: |
2025-06-15
|