论文中文题名: |
基于微观有序结构的聚合物基导热复合材料的制备与导热性能研究
|
姓名: |
刘超
|
学号: |
19211203039
|
保密级别: |
内部
|
论文语种: |
chi
|
学科代码: |
085204
|
学科名称: |
工学 - 工程 - 材料工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料工程
|
研究方向: |
聚合物基导热复合材料
|
第一导师姓名: |
李颖
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-15
|
论文答辩日期: |
2022-05-31
|
论文外文题名: |
Preparation and thermal conductivity of thermal conductive polymer composites based on micro-ordered structure
|
论文中文关键词: |
聚合物基复合材料 ; 有序结构 ; 柔性导热材料 ; 液晶单体 ; 电场诱导取向
|
论文外文关键词: |
polymer composites ; ordered structure ; flexible thermally conductive material ; liquid crystal monomer ; electric field-induced orientation
|
论文中文摘要: |
︿
近年来,电子元器件的小型化和高度集成化,导致器件功率密度急剧上升。长期高温运行将缩短元器件的使用效率和工作寿命。散热问题在极大程度上制约了行业发展。导热聚合物具有良好的电绝缘性能、加工性能、机械性能成为解决器件散热问题的关键材料。然而,绝大多数聚合物材料的由于微观分子链的无规则排列导致导热系数偏低,难以直接运用于散热领域。通过向聚合物材料中引入高导热填料粒子来提升聚合物的导热性能成为了最简便、高效的手段,常用的导热填料有氧化铝、氮化铝、石墨烯等。受制于填料分散性和界面相容性,直接将导热填料与聚合物混合制备导热聚合物复合材料,导热性能提升效果难以达到预期。本论文以氮化硼纳米片(BNNS)为填料,从提高BNNS的分散性和界面相容性入手,采用化学改性法对BNNS进行表面功能化,同时以环氧-硫醇(Epoxy-thiol)聚合物和液晶/环氧-硫醇(LCM/Epoxy-thiol)聚合物为基体,制备了一系列功能化氮化硼纳米片填充的环氧-硫醇聚合基导热复合材料,并进行了力学性能、红外光谱(FT-IR)、X射线衍射(XRD)、X射线光电子光电子能谱(XPS)、扫描电子显微镜(SEM)、导热系数等表征测试,系统研究了功能化氮化硼纳米片对复合材料微观结构和导热性能的影响,主要研究内容如下:
(1)采用单烷氧基焦磷酸酯型钛酸酯偶联剂(MPTCA)对BNNS进行了表面功能化改性,成功制备了表面功能化改性BNNS(f-BNNS)。结果表明BNNS表面功能化改性成功,改性前后BNNS的晶格结构未发生改变,MPTCA的最佳使用量为4.8 wt%。
(2)分别采用BNNS和f-BNNS为填料,以Epoxy-thiol聚合物为基体,采用混合-浇铸法制备了BNNS/Epoxy-thiol和f-BNNS/Epoxy-thiol复合材料膜。结果表明,相同含量填料情况下,f-BNNS/Epoxy-thiol 薄膜的拉伸强度和断裂伸长率要优于BNNS/Epoxy-thiol膜。f-BNNS 均匀分散于Epoxy-thiol 基体内,与基体界面结合紧密,导热系数测试结果表明,f-BNNS/Epoxy-thiol 膜具有更好的导热系数。当f-BNNS含量为30 wt%时,f-BNNS/ Epoxy-thiol 膜的导热系数达到1.41 W/m·K,相比于纯Epoxy-thiol提升了420.37%。
(3)采用高温热固化-浇铸工艺,以f-BNNS 为填料,LCM/Epoxy-thiol为基体,制备了f-BNNS/LCM/Epoxy-thiol膜。结果表明,LCM在f-BNNS/LCM/Epoxy-thiol膜内仍然保持有序性,形成的球粒有序结构分布于f-BNNS片层之间。f-BNNS在f-BNNS/LCM/ Epoxy-thiol膜内保持良好的分散性和界面相容性。当f-BNNS含量为30 wt%时,f-BNNS/ LCM/Epoxy-thiol膜的导热系数提升至1.35 W/m·K,相比于LCM/Epoxy-thiol膜提升了98.38%。
(4)采用高压电场-高温热固化-浇铸工艺,以f-BNNS 为填料,LCM/Epoxy-thiol为基体,在电场环境下制备了E-f-BNNS/LCM/Epoxy-thiol膜。结果表明,电场作用可以显著提高E-f-BNNS/LCM/Epoxy-thiol膜的微观有序性,LCM在E-f-BNNS/LCM/Epoxy-thiol膜内仍保持有序性。当f-BNNS含量为10 wt%时,E-f-BNNS/LCM/Epoxy-thiol膜微观结构显示含有鱼鳞状有序结构,f-BNNS嵌插在鱼鳞结构中,保持良好的分散性和界面相容性。当f-BNNS含量为30 wt%时,E-f-BNNS/LCM/Epoxy-thiol膜的微观形成f-BNNS均匀分布在球状结构之间,两者协同构成了连续热导通路。导热系数测试结果表明,当f-BNNS含量为30 wt%时,E-f-BNNS/LCM/Epoxy-thiol 薄膜的导热系数达到1.65 W/m·K,相比于E-LCM/Epoxy-thiol薄膜提升了111.68%。
﹀
|
论文外文摘要: |
︿
In recent years, the miniaturization and high integration of electronic devices have led to a sharp rise in power density. Excessive heat accumulation will affect its quality stability, thus greatly shortening its service life of electronic devices. The heat dissipation problem has greatly restricted the development of the industry. Owing to the excellent electrical insulation performance, high flexibility, lightweight, high strength, chemical resistance, low cost and easy processability, thermally conductive polymers have widely used in electronic devices to manage heat dissipation issues. However, the thermal conductivity of most polymers is low due to the random entanglement of molecular chains, which far from meeting the increasing demand for thermal conduction/dissipation capabilities of electrical equipment or electronic components of electronic devices. The most common, simple, and effective method for thermal conductivity improvement is to fill polymer matrix with highly thermally conductive fillers. The commonly used thermally conductive fillers are alumina, aluminum nitride, graphene, and so on. This kind of thermal conductive composites are called filler-type polymer composites. Due to the poor dispersion of fillers and low interfacial compatibility, it is difficult to achieve the expected improvement of thermal conductivity by directly mixing thermally conductive fillers with polymers to prepare filler-type polymer composites. In this paper, boron nitride nanosheets (BNNS) were used to perform surface functionalization of BNNS by chemical modification method, improving the dispersibility and interfacial compatibility. A series of boron nitride-based thermal conductive composites were prepared by using flexible epoxy-thiol (Epoxy-thiol) polymer and liquid crystal monomer/Epoxy-thiol (LCM/Epoxy-thiol) polymer as a matrix and characterized by mechanical Performance, infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermal conductivity and other tests. Systematically investigated the effect of functionalized boron nitride nanosheets on the microstructure and thermal conductivity of composites. The main research contents of this paper are as follows:
(1) The surface functional modified BNNS (f-BNNS) was successfully prepared by using monoalkoxy pyrophosphate titanate coupling agent (MPTCA). The results showed that the surface functionalization of BNNS was successful, and the lattice structure of BNNS were not changed before and after functionalization. The optimal amount of MPTCA was 4.8 wt%.
(2) BNNS/Epoxy-thiol films and f-BNNS/Epoxy-thiol films were prepared by mixing- casting method using BNNS and f-BNNS as fillers and Epoxy-thiol polymer as matrix, respectively. The results showed that the tensile strength and elongation at break of f-BNNS/ Epoxy-thiol films were better than those of BNNS/Epoxy-thiol films with the same filler content. The f-BNNS were uniformly dispersed in the Epoxy-thiol matrix and had good interfacial compatibility with matrix. The thermal conductivity test results showed that the f-BNNS/Epoxy- thiol films were better than that of BNNS/Epoxy-thiol films. When the f-BNNS content was 30 wt%, the thermal conductivity of f-BNNS/Epoxy-thiol film reached 1.41 W/m·K, which was 420.37% higher than that of pure Epoxy-thiol film.
(3) The f-BNNS/LCM/Epoxy-thiol films were prepared by high temperature thermal curing-casting process with f-BNNS as filler and LCM/Epoxy-thiol as matrix. The results showed that LCM still maintained the ordered arrangement within the f-BNNS/LCM/Epoxy- thiol film, and the formed spherical ordered structure is distributed between the f-BNNS. f-BNNS maintained good dispersion and interfacial compatibility within f-BNNS/ LCM/Epoxy- thiol films. When the content of f-BNNS was 30 wt%, the thermal conductivity of f-BNNS/ LCM/Epoxy-thiol film was improved to 1.35 W/m·K, which was 98.38% higher than that of LCM/Epoxy-thiol film.
(4) E-f-BNNS/LCM/Epoxy-thiol films were prepared by high voltage electric field-high temperature thermal curing-casting process with f-BNNS as filler and LCM/Epoxy-thiol as matrix. The results showed that the electric field can significantly improve the microscopic order of the E-f-BNNS/LCM/Epoxy-thiol film, and the LCM still maintained the ordered arrangement within the f-BNNS/LCM/Epoxy-thiol film. When the f-BNNS content was 10 wt%, the E-f- BNNS/LCM/Epoxy-thiol film microscopically formed squamous ordered structures. The f-BNNS were uniformly dispersed and embedded in the squamous ordered structure, and maintained good interfacial compatibility. When the content of f-BNNS was 30 wt%, the microscopic formation of E-f-BNNS/LCM/Epoxy-thiol film formed f-BNNS uniformly distributed in the spherical structure, which constituted continuous thermal conduction paths. The thermal conductivity test results showed that the thermal conductivity of the E-f-BNNS/ LCM/Epoxy-thiol film reached 1.65 W/m·K with 30 wt% f-BNNS content, compared to E-LCM/Epoxy-thiol film increased by 111.68%.
﹀
|
参考文献: |
︿
[1] 周文英, 丁小卫. 导热高分子材料 [M]. 北京: 国防工业出版社, 2015: 97. [2] 赵长生, 顾宜. 材料科学与工程基础 [M]. 北京: 化学工业出版社, 2020. [3] 王金龙, 常延丽, 付翀, 等. 填充型高导热绝缘复合材料的研究进展 [J]. 化工新型材料, 2021, 49(06): 21-24+28. [4] 丁会利等. 高分子材料及应 [M]. 北京: 化学工业出版社, 2012. [5] 戴永正, 刘永高, 顾宇峰, 等. 热塑性材料替代中压设备中环氧绝缘体的可行性研究 [J]. 电工电气, 2018, (04): 59-64. [6] Jiang C, Cui X, Song N, et al. Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites [J]. Composites Communications, 2020, 20: 100350. [7] Guo Y, Leung S N. Strain-induced oriented crystallization of UHMWPE: Enhanced thermal conductivity through molecular chain alignment [J]. AIP Advances, 2018, 8(4): 045126. [8] Xu Z, Lin G, Sui G. The synergistic effects on enhancing thermal conductivity and mechanical strength of h-BN/CF/PE composite [J]. Journal of Applied Polymer Science, 2020, 137: e49212. [9] Lee S, Kwon Y, Ryu S, et al. Enhanced through-plane thermal conductivity of polypropylene composite using boron nitride/SiO2/glass fiber [J]. Polymer Engineering Science, 2021, 61: 1991-1996. [10] Li Y, Pan P, Liu C, et al. Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity [J]. Journal of Polymer Engineering. 2020, 40(7): 573-581. [11] 刘运学, 康啸天, 史俊彦, 等. 石墨烯/聚氨酯复合热界面材料的制备与性能研究 [J]. 聚氨酯工业, 2020, 35(04): 21-23. [12] 张一铭, 郑小磊, 温变英. PBT/PC/GNP复合材料导电导热性能的温度依赖性 [J]. 工程塑料应用, 2019, 47(10): 18-23. [13] Li Y, Gong C, Li C, et al. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films [J]. Journal of Materials Science & Technology, 2021, 82: 250-256. [14] Jin X, Wang J, Dai L, et al. Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube [J]. Composites Science and Technology, 2019, 184: 107862. [15] 卢虹, 师雯, 周聪, 等. 双连续相导热HDPE/PS/SiC复合材料的制备及性能研究 [J]. 胶体与聚合物, 2021, 39(04): 163-165. [16] Xie Z, Wu K, Liu D, et al. One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss [J]. Composites Science and Technology, 2021, 208: 108756. [17] Cao H, Gu S, Liu H, et al. Disordered graphite platelets in polypropylene (PP) matrix by spherical alumina particles: Increased thermal conductivity of the PP/flake graphite composites [J]. Composites Communications, 2021, 27: 100856. [18] Ryu S, Oh H, Kim J. Facile liquid-exfoliation process of boron nitride nanosheets for thermal conductive polyphthalamide composite [J]. Polymers, 2019, 11(10): 1628. [19] Li C, Li Y, Gong C, et al. High thermal conductivity of liquid crystalline monomer-poly (vinyl alcohol) dispersion films containing microscopic-ordered structure [J]. Journal of Applied Polymer Science, 2021, 138: e49791. [20] 吴仲伟. 热固性塑料机械物理法再生及再资源化研究 [D]. 合肥: 合肥工业大学, 2013. [21] Isarn I, Bonnaud L, Massagués L, et al. Study of the synergistic effect of boron nitride and carbon nanotubes in the improvement of thermal conductivity of epoxy composites [J]. Polymer International, 2020, 69: 280-290. [22] 胡冰, 梁兵. 氮化硼纳米片的修饰及其在导热复合材料中的应用 [J]. 当代化工, 2019, 48(9): 1909-1903. [23] 张晨旭, 毛大厦, 曾小亮, 等. 球型Al2O3-AlN颗粒复配填充型硅橡胶的制备及导热性能研究 [J]. 集成技术, 2021, 10(01): 14-22. [24] 刘蓉, 李良锋, 陈果, 等. 氧化锌@石墨烯/环氧导热绝缘复合材料的制备及性能研究 [J]. 功能材料, 2021, 52(06): 6006-6012. [25] Li M, Wang M, Hou X, et al. Highly thermal conductive and electrical insulating polymer composites with boron nitride [J]. Composites Part B: Engineering, 2020, 184: 107746. [26] Liu X, Han Q, Yang D, et al. Thermally conductive elastomer composites with poly(catechol-polyamine)-modified boron nitride [J]. ACS Omega, 2020, 5(23): 14006-14012. [27] Guo Y, Wang S, Ruan K, et al. Highly thermally conductive carbon nanotubes pillared exfoliated graphite/polyimide composites [J]. npj Flexible Electronics, 2021, 5: 16. [28] 顾军渭, 程蓓, 杨旭彤. 液晶功能化氮化硼/液晶环氧树脂导热复合材料的制备 [J]. 应用化学, 2021, 38(10): 1382-1388. [29] Li Y, Liu C, Zhou W, et al. Microscopic ordered structure compactness and intrinsic thermal conductivity improvement of dispersed liquid crystal films of flexible epoxy-thiol polymers [J]. Materials Today Communications, 2021, 29: 102792. [30] 王楠, 胡程耀, 郭世艳, 等. 多巴胺修饰氮化硼对环氧树脂复合材料性能的影响 [J]. 材料导报, 2019, 33(22): 3837-3841. [31] Keshebo D, Hu C, Huang W, et al. Simultaneous exfoliation and functionalization of hexagonal boron nitride in the aqueous phase for the synthesis of high-performance wastewater treatment membrane [J]. Journal of Cleaner Production, 2021, 314: 128083. [32] Luo W, Zhou L, Yang Z, et al. Protection of boron nitride nanosheets by atomic layer deposition toward thermal energy management applications [J]. Nano Energy, 2017, 40: 149-154. [33] Yetgin H, Veziroglu S, Aktas O, et al. Enhancing thermal conductivity of epoxy with a binary filler system of h-BN platelets and Al2O3 nanoparticles [J]. International Journal of Adhesion and Adhesives, 2020, 98: 102540. [34] Kim Y, Kim J. Fabrication of Fe3O4 coated boron nitride nanoplatelets by liquid-phase exfoliation for thermally enhanced epoxy composites via magnetic alignment [J]. Composites Science and Technology, 2020, 188: 107961. [35] Shi H, Liu W, Liu C, et al. Polyethylenimine-assisted exfoliation of h-BN in aqueous media for anticorrosive reinforcement of waterborne epoxy coating [J]. Progress in Organic Coatings, 2020, 142: 105591. [36] Yao Y, Zeng X, Sun R, et al. Highly thermally conductive composite papers prepared based on the thought of bioinspired engineering [J]. ACS Applied Materials & Interfaces, 2016, 8: 15645-15653. [37] Rosely C, Joseph A, Leuteritz A, et al. Phytic acid modified boron nitride nanosheets as sustainable multifunctional nanofillers for enhanced properties of poly(L‑lactide) [J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 1868-1878. [38] 王秀, 俞智怀, 房桂干, 等. 导热氮化硼复合绝缘纸的制备与性能研究 [J]. 中国造纸学报, 2019, 34(4): 7-13. [39] Jin X, Li W, Liu Y, et al. Self-constructing thermal conductive filler network via reaction-induced phase separation in BNNSs/epoxy/polyetherimide composites [J]. Composites Part A, 2020, 130: 105727. [40] Wang J, Chen H, Li X, et al. Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets [J]. Chemical Engineering Journal, 2020, 383: 123147. [41] He Z, Zhao J, Guo F, et al. Polymer grafting of boron nitride nanosheets via reduction chemistry and their reinforcement for polymeric composite [J]. Macromolecular Materials and Engineering, 2020, 305(12): 2000450. [42] Sun C, Zhao J, Zhang D, et al. Covalent functionalization of boron nitride nanosheets via reductive activation [J]. Nanoscale, 2020,12: 18379-18389. [43] Kuo C, Chen J, Chen P, et al. Preparation of boron nitride nanosheets using a chemical exfoliation method as a thermal conductive filler for the development of silicone thermal composites Part I: effect of single- and hybrid-filler additions on the silicone composite performance [J]. Textile Research Journal, 2020, 90(5-6):666-684. [44] 陈莹, 吉海峰, 张效洁, 等. 丙氨酸改性氮化硼在PVA导热水凝胶中的应用[J]. 当代化工研究, 2020, 3: 128-130. [45] Wang Z, Priego P, Meziani M, Wirth K, et al. Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties [J]. Nanoscale Advances, 2020, 2: 2507-2513. [46] Zhao L, Yan L, Wei C, et al. Aqueous-phase exfoliation and functionalization of boron nitride nanosheets using tannic acid for thermal management applications [J]. Industrial & Engineering Chemistry Research, 2020, 59: 16273-16282. [47] Ryu S, Oh H, Kim J. Facile Liquid-exfoliation process of boron nitride nanosheets for thermal conductive polyphthalamide composite [J]. Polymers, 2019, 11(10): 1628. [48] Meng Q, Han S, Liu T, et al. Noncovalent modification of boron nitrite nanosheets for thermally conductive, mechanically resilient epoxy nanocomposites [J]. Industrial & Engineering Chemistry Research, 2020, 59(47): 20701-20710. [49] Pan D, Zhang X, Yang G, et al. Thermally conductive anticorrosive epoxy nanocomposites with tannic acid-modified boron nitride nanosheets [J]. Industrial & Engineering Chemistry Research, 2020, 59(46): 20371-20381. [50] Tian X, Wu N, Zhang B, et al. Glycine functionalized boron nitride nanosheets with improved dispersibility and enhanced interaction with matrix for thermal composites [J]. Chemical Engineering Journal, 2021, 408: 127306. [51] Xie Z, Wu K, Liu D, et al. One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss [J]. Composites Science and Technology, 2021, 208: 108756. [52] Zhou S, Xu T, Jiang F, et al. High-performance polyamide-imide films: Effect of functionalization degree of BN nanosheets [J]. Composites Science and Technology, 2021, 213: 108907. [53] Yang X, Zhu J, Yang D, et al. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers [J]. Composites Part B, 2020, 185: 107784. [54] Kang D, Kim N, Park M, et al. Interfacial engineering for the synergistic enhancement of thermal conductivity of discotic liquid crystal composites [J]. ACS Applied Materials & Interfaces, 2018, 10: 3155-3159. [55] Lin Y, Hsu S, Ho T, et al. Preparation and thermomechanical properties of ketone mesogenic liquid crystalline epoxy resin composites with functionalized boron nitride [J]. Polymers, 2020, 12: 1913. [56] 曹金梅, 田付强, 雷清泉. 高导热聚合物复合绝缘材料研究进展 [J]. 科学通报, 2022, 67(07): 640-654. [57] 肖超. 三维导热网络的构筑及其环氧树脂复合材料性能研究 [D]. 合肥: 中国科学技术大学, 2020. [58] 曲绍宁, 汪叶舟, 江珊, 等. 具有三维网络结构的环氧树脂基导热复合材料研究进展 [J]. 化学推进剂与高分子材料, 2021, 19(06): 31-35. [59] 石林, 马忠雷, 景佳瑶, 等. 双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能 [J]. 复合材料学报, 2022, 39: 1-7. [60] Liu X, Zhou H, Wang Z, et al. Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity [J]. Composites Science and Technology, 2022, 22: 109289. [61] Zhou W, Zhang Y, Wang J, et al. Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets [J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46767-46778. [62] Han Q, Zhang J, Wang X, et al. Enhanced through-thickness thermal conductivity of epoxy with cellulose-supported boron nitride nanosheets [J]. 2019, 179: 121653. [63] Chen C, Xue Y, Li Z, et al. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles [J]. Chemical Engineering Journal, 2019, 369: 1150-1160. [64] Yang W, Wang Y, Li Y, et al. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation [J]. Composites Part B: Engineering, 2021, 224: 109168. [65] Hu B, Zhang W, Guo H, et al. Nacre-mimetic elastomer composites with synergistic alignments of boron nitride/graphene oxide towards high through-plane thermal conductivity [J]. Composites Part A: Applied Science and Manufacturing, 2022, 156: 106891. [66] Wu H, Chao Y, Xia G, et al. Enhanced adsorption performance for antibiotics by alcohol-solvent mediated boron nitride nanosheets [J]. Rare Metals, 2022, 41: 342-352. [67] Yu J, Huang X, Wu C, et al. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties [J]. Polymer, 2012, 53: 471-480. [68] Zhang Y, Ding C, Zhang N, et al. Surface modification of silica micro-powder by titanate coupling agent and its utilization in PVC based composite [J]. 2021, 307: 124933. [69] Guo X, Geng J, Sun B, et al. Great enhancement of efficiency of intumescent flame retardants by titanate coupling agent and polysiloxane [J]. Polymers for Advanced Technologies, 2021, 32: 41-53. [70] Shan Q, Shi X, Wang X, et al. Preparation of functionalized boron nitride nanosheets by high-gravity liquid phase exfoliation technology [J]. Chemical Engineering and Processing: Process Intensification, 2021, 169: 108602. [71] Liu F, Han R, Naficy S, et al. Few-layered boron nitride nanosheets for strengthening polyurethane hydrogels [J]. ACS Applied Nano Materials, 2021, 4: 7988-7994. [72] Jiang H, Cai Q, Mateti S, et al. Boron nitride nanosheet dispersion at high concentrations [J]. ACS Applied Materials & Interfaces, 2021, 13: 44751-44759. [73] Bose S, Kuila T, Mishra K, et al. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method [J]. Journal of Materials Chemistry, 2012, 22: 9696. [74] 王海花, 李璐璐, 邵彦明, 等. 水溶性钛酸酯偶联剂改性石墨烯的制备与性能[J]. 化工新型材料, 2019, 47(01): 96-99+104. [75] Fan D, Feng J, Liu J, et al. Hexagonal boron nitride nanosheets exfoliated by sodium hypochlorite ball mill and their pot ential application in catalysis [J]. Ceramics International, 2016, 42: 7155-7163. [76] Chen Y, Kang Q, Jiang P, et al. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries [J]. Nano Research, 2021,14: 2424-2431. [77] Zhang B, Wu Q, Yu H, et al. High-Efficient Liquid Exfoliation of Boron Nitride Nanosheets Using Aqueous Solution of Alkanolamine [J]. Nanoscale Research Letter, 2017, 12: 596. [78] Yuan F, Jiao W, Yang F, et al. Scalable exfoliation for large-size boron nitride nanosheets by low temperature thermal expansion-assisted ultrasonic exfoliation [J]. Journal of Materials Chemistry C, 2017, 5: 6359-6368. [79] 周文英, 党智敏, 丁小卫, 等. 聚合物基导热复合材料 [M]. 北京: 国防工业出版社, 2017: 6. [80] Zeng X, Ye L, Guo K, et al. Fibrous epoxy substrate with high thermal conductivity and low dielectric property for flexible electronics [J]. Advanced Electronic Materials, 2016, 2: 1500485. [81] Bai L, Zhao X, Bao R Y, et al. Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA [J]. Journal of Materials Science, 2018, 53(14): 10543-10553. [82] Lu C, Chiang S W, Du H, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO) [J]. Polymer, 2017, 115: 52-59. [83] Zeng X, Xiong Y, Fu Q, et al. Structure-induced variation of thermal conductivity in epoxy resin fibers [J]. Nanoscale, 2017, 9: 10585-10589. [84] Guo Y, Leung S N. Strain-induced oriented crystallization of UHMWPE: Enhanced thermal conductivity through molecular chain alignment [J]. AIP Advances, 2018, 8(4): 045126. [85] Wlodarska M, Maj A, Mossety-Leszczak B, et al. Liquid crystal epoxy resins based on biphenyl group cured with aromatic amines-studied by dielectric spectroscopy [J]. Journal of Polymer Research, 2013, 20: 227. [86] Ruan K, Guo Y, Gu J. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness [J]. Macromolecules, 2021, 54(10): 4934-4944. [87] Welford A, Maniam S, Gann E, et al. Influence of alkyl side-chain type and length on the thin film microstructure and OFET performance of naphthalene diimide-based organic semiconductors [J]. Organic Electronics, 2019, 75: 105378. [88] Untilova V, Biskup T, Biniek L, et al. Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT:F4TCNQ films [J]. Macromolecules, 2020, 53(7): 2441-2453. [89] Liu J, Yang R. Length-dependent thermal conductivity of single extended polymer chains [J]. Physical Review B-Condensed Matter and Materials Physics, 2012, 86(10): 104307. [90] Liu Y, Chen J, Zhang Y, et al. Highly thermal conductive benzoxazine-epoxy interpenetrating polymer networks containing liquid crystalline structures [J]. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55(24): 1813-1821. [91] Chen G, Zhang Q, Hu Z, et al. Liquid crystalline epoxies bearing biphenyl ether and aromatic ester mesogenic units: synthesis and thermal properties [J]. Journal of Macromolecular Science, Part A, 2019, 56: 484-495. [92] Lu Y, Zeng X, Jia D, et al. Thermal and phase transformation behavior of epoxy-functional graphene oxide/liquid crystalline epoxy composite [J]. Polymer Composites, 2018, 39: E1391-E1397. [93] Ruan K, Zhong X, Shi X, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review [J]. Materials Today Physics, 2021, 20: 100456. [94] Dai G, Wang L, Deng L. Flexible random laser from dye doped stretchable polymer film containing nematic liquid crystal [J]. Optical Materials Express, 2020, 10(1): 68-75. [95] 蒋莹,李颖,杨建业, 等. 新型含苯甲醚基团的向列型聚硅氧烷侧链液晶的合成与表征 [J]. 合成化学, 2013, 21(4): 420-423. [96] 王军会. 液晶的物理特性及其应用分析 [J]. 建筑工程技术与设计, 2018, 33: 5009. [97] Kang D, Ko H, Koo J, et al. Anisotropic thermal interface materials: Directional heat transfer in uniaxially oriented liquid crystal networks [J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35557-35562. [98] Harada H, Saito T, Tokita M. Effect of smecticl layers on thermal diffusivity of side-chain polymer liquid crystals[J]. Macromolecules, 2022, 55(4): 1178-1184. [99] Shin J, Kang M, Tsai T, et al. Thermally functional liquid crystal networks by magnetic field driven molecular orientation [J]. ACS Macro Letters, 2016, 5(8): 955-960. [100] Abdelhak H, Sylvain D, Stéphane L, et al. Heat transport in polymer-dispersed liquid crystals under electric field [J]. Journal of Applied Physics, 2011, 110: 033510. [101] Fowler H, Rothemund P, Keplinger C, et al. Liquid crystal elastomers with enhanced directional actuation to electric fields [J]. Advanced Materials, 2021, 33: 2103806.
﹀
|
中图分类号: |
TQ317
|
开放日期: |
2023-06-27
|