- 无标题文档
查看论文信息

论文中文题名:

 长距离砂卵石地层盾构隧道 施工风险评估研究    

姓名:

 刘莹    

学号:

 21204053035    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081405    

学科名称:

 工学 - 土木工程 - 防灾减灾工程及防护工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 防灾减灾工程及防护工程    

研究方向:

 防灾减灾及防护工程    

第一导师姓名:

 郑选荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Research on construction risk assessment of long distance sand pebble shield tunnel    

论文中文关键词:

 长距离砂卵石地层 ; 盾构法施工 ; WBS-RBS ; DBN    

论文外文关键词:

 Long distance sandy pebble formation ; Shield construction ; WBS-RBS ; DBN    

论文中文摘要:

砂卵石地层工程性质较为特殊,具有渗透性高、自稳性差、受扰动较为敏感以及区域差异性大等特性。盾构长距离掘进该地层时极易引起地层变形,甚至出现隧道失稳塌陷、地面建筑物开裂等事故,而且施工中刀盘磨损严重,增加了带压换刀的风险,影响盾构隧道施工安全和工程进度。因此,本文以西安地铁6号线田穆区间盾构隧道为依托工程,针对长距离砂卵石地层盾构施工风险评估进行研究,并应用于实际工程。主要工作和研究成果如下:

(1)通过分析砂卵石地层特性、盾构穿越该地层的扰动机理以及施工风险的产生机理,提出了一套系统的风险评估方法及体系。首先,采用工作分解结构(WBS)与风险因素分解(RBS)相结合的矩阵方法,对施工过程中可能遇到的风险进行识别和分类。然后,通过集成解释结构模型(ISM)与动态贝叶斯网络(DBN),对识别出的风险因素进行深入分析,从而对施工风险进行量化评价。最后,通过敏感性分析,识别出对系统风险影响大的关键因素。

(2)采用WBS-RBS结构矩阵方法,围绕盾构始发、盾构掘进、盾构到达三个施工阶段,分析风险与施工活动之间的关系。基于4M理论(人、机、法、环),分别从人的不安全行为、机械的不安全状态、管理措施不到位、环境因素不佳的角度进行WBS-RBS施工安全风险因素识别。通过构建WBS-RBS风险耦合矩阵,得出30项具体的安全风险因素,形成了长距离砂卵石地层盾构法施工安全风险清单。

(3)利用解释结构模型(ISM)结合问卷调查法,分析风险因素之间的关联性;将风险因素分为直接因子、中间因子和深层因子并建立风险层析结构图。基于解释结构模型,建立静态贝叶斯网络结构,结合风险的动态特征确定状态转移网络,设置了12个动态节点,进而研究风险的传递规律。采用三角模糊数和Noisy-or gate模型对原始数据进行处理,计算出先验概率、条件概率、转移概率,构建了动态贝叶斯网络模型。

(4)在建立各阶段动态贝叶斯网络的基础上,对长距离砂卵石地层地铁盾构法施工安全风险状态进行评价。利用动态贝叶斯网络的时间属性,揭示了安全风险因素随施工活动的推进而动态演化的过程。运用诊断推理方法,得出施工人员经验及能力不足(R2A31)--注浆系统控制不当(R2T23)--管片拼接不当(R2T21)--盾构掘进阶段风险(R2)在内的14条关键风险传递路径。通过对地铁盾构法各施工阶段进行敏感性分析筛选出负环管片拼装不到位、盾构参数设置不当、周围建筑物等11项敏感因素。

(5)结合西安地铁6号线的盾构施工项目,对其安全风险状态进行了详细的评估。评估结果显示,整体安全风险等级为II级,其中管理和环境风险评定为II级,人员操作和机械风险为III级。针对评定较高的风险,提出了具体的应对措施,以降低风险并保障施工安全。

论文外文摘要:

Sand and gravel stratum has special engineering properties, such as high permeability, poor self-stability, sensitive to disturbance and large regional differences. It is very easy for shield tunneling to cause formation deformation, even tunnel instability collapse, cracking of ground buildings and other accidents, and the cutter head wear is serious during construction, which increases the risk of pressure tool changing and affects the construction safety and project progress of shield tunnel. Therefore, based on the shield tunnel in Tianmu section of Xi 'an Metro Line 6, this paper studies the risk assessment of shield construction in long distance sand and gravel stratum, and applies it to practical projects. The main work and research achievements are as follows:

A set of systematic risk assessment method and system is proposed by analyzing the characteristics of sand and gravel formation, the disturbance mechanism of shield tunneling through the formation and the generation mechanism of construction risk. Firstly, the matrix method combining work breakdown structure (WBS) and risk factor decomposition (RBS) is used to identify and classify the risks that may be encountered in the construction process. Then, through the integration of interpretive structural model (ISM) and dynamic Bayesian network (DBN), the identified risk factors are deeply analyzed, and the construction risk is quantitatively evaluated. Finally, through sensitivity analysis, the key factors that have great influence on the system risk are identified.

(2) The WBS-RBS structure matrix method was adopted to analyze the relationship between risk and construction activities by focusing on three construction stages: shield initiation, shield tunneling and shield arrival. Based on 4M theory (man, machine, technology and environment), WBS-RBS construction safety risk factors are identified from the perspectives of unsafe behavior of man, unsafe state of machinery, inadequate management measures and poor environmental factors. Through the construction of WBS-RBS risk coupling matrix, 30 specific safety risk factors are obtained, and the safety risk list of long distance sand pebble formation shield construction is formed.

(3) Interpretive structure model (ISM) combined with questionnaire survey was used to analyze the correlation between risk factors; The risk factors are divided into direct factors, intermediate factors and deep factors, and the risk chromatographic structure is established. Based on the interpretive structure model, the static Bayesian network structure is established, and the state transfer network is determined according to the dynamic characteristics of risks, and 12 dynamic nodes are set up to study the law of risk transfer. Using triangular fuzzy number and Noisy orgate model to process the original data, the prior probability, conditional probability and transition probability are calculated, and the dynamic Bayesian network model is constructed.

(4) On the basis of the establishment of the dynamic Bayesian network at each stage, the safety risk state of the construction of the shield method of the long-distance sandy and gravel stratum subway is evaluated. Using the time attribute of dynamic Bayesian network, the dynamic evolution of safety risk factors with the advancement of construction activities is revealed. Using the diagnostic reasoning method, 14 key risk transmission paths were obtained, including lack of experience and ability of construction personnel (R2A31)--improper control of grouting system (R2T23)--improper splintering of segments (R2T21)-- risk of shield tunneling stage (R2). Through the sensitivity analysis of each construction stage of subway shield method, 11 sensitive factors were screened out, such as inadequate assembly of negative ring tubes, improper setting of shield parameters, and surrounding buildings.

(5) Combined with the shield construction project of Xi 'an Metro Line 6, a detailed assessment of its safety risk status is carried out. The overall safety risk was rated at Level II, with management and environmental risks also rated at Level II and personnel operations and machinery risks rated at level III. In view of the high risk assessed, specific countermeasures are put forward to reduce risk and ensure construction safety.

参考文献:

[1]Liu W, Zhao T, Zhou W, et al. Safety risk factors of metro tunnel construction in China: An integrated study with EFA and SEM[J]. Safety Science, 2018, 105: 98-113.

[2]李顺平,周红,舒婷.基于三维程式的海底通道地铁项目施工风险识别[J].建筑经济,2019,40(12):36-40.

[3]余宏亮.基于FMEA的地铁盾构始发与到达施工风险识别及评估[J].价值工程,2014,33(10):123-125.

[4]余群舟,廖志强,周诚,向前明.基于WBS-RBS的地铁盾构始发安全风险巡视内容研究[J].工程管理学报,2018,32(04):64-69.

[5]朱牧原,魏力峰,陈爽,方勇.复合地层泥水平衡盾构刀具磨损情况分析[J].铁道标准设计,2022,66(10):117-123.

[6]王国富,王建,路林海,王渭明.盾构始发施工风险分析及控制技术研究[J].施工技术,2016,45(19):91-95.

[7]黄俐,梁鹏.基于因子分析的地铁盾构施工沉降风险辨识[J].内蒙古大学学报(自然科学版),2016,47(02):209-216.

[8]樊燕燕,王瑞.物元可拓法在地铁盾构施工安全风险评估中的应用[J/OL].安全与环境学报:1-12[2023-03-23].

[9]周红波,何锡兴,蒋建军,蔡来炳.地铁盾构法隧道工程建设风险识别与应对[J].地下空间与工程学报,2006(03):475-479.

[10]钟威,陈建平,孙金山.武汉地铁2号线矿山法施工区间隧道风险分析及其控制[J].安全与环境工程,2012,19(01):103-107+111.

[11]黄宏伟.隧道及地下工程建设中的风险管理研究进展[J].地下空间与工程学报,2006(01):13-20.

[12]Suwansawat S, Einstein H H. Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling[J]. Tunnelling and underground space technology, 2006, 21(2): 133-150.

[13]Pan H, Gou J, Wan Z, et al. Research on coupling degree model of safety risk system for tunnel construction in subway shield zone[J]. Mathematical Problems in Engineering, 2019, 2019: 1-19.

[14]郭卫社,粱奎生,游永峰.台山核电越海盾构隧洞主要风险及措施研究[J].现代隧道技术,2015,52(06):195-202.

[15]荀晓霖,袁永博.基于IFQFD的海底隧道施工风险因素排序[J].土木工程与管理学报,2020,37(06):101-107.

[16]曾铁梅,吴贤国,张立茂,方伟立,刘梦洁.公路地铁合建越江段大直径盾构隧道工程风险分析[J].城市轨道交通研究,2016,19(10):18-22.

[17]孙飞祥,张兵,彭正勇,杨振兴.厦门地铁3号线盾构法与矿山法海下对接施工风险分析及应对措施[J].施工技术,2020,49(01):67-71.

[18]顾伟红,王胜国.基于ISM和模糊故障树的铁路黄土隧道塌方风险分析[J].安全与环境学报,2016,16(05):31-36

[19]冯世昌,綦春明,卜波,陈阳海.基于改进DEMATEL-ISM的建筑施工安全风险影响因素分析[J/OL].工程管理学报:1-6[2023-03-23].

[20]Xu N, Liu Q, Ma L, et al. A Hybrid Approach for Dynamic Simulation of Safety Risks in Mega Construction Projects[J]. Advances in Civil Engineering, 2020, 2020: 1-12.

[21]肖尧,钟登华,任炳昱,余佳,赵梦琦,区丽雯.基于CSRAM的引水隧洞施工进度风险分析[J].水力发电学报,2017,36(03):90-100.

[22]刘文,赵挺生,张亚静,陈昱锟,周炜.地铁盾构施工安全风险规律分析与对策[J].中国安全科学学报,2017,27(10):130-136.

[23]吴贤国,张青英,张立茂,曾铁梅,仲景冰.基于动态故障树的盾构刀盘失效风险分析[J].土木工程与管理学报,2014,31(04):60-66.

[24]Labib A, Read M. Not just rearranging the deckchairs on the Titanic: Learning from failures through Risk and Reliability Analysis[J]. Safety Science, 2013, 51(1): 397-413.

[25]Einstein H H. Risk and risk analysis in rock engineering[J]. Tunnelling and Underground Space Technology, 1996, 11(2): 141-155.

[26]Beard A N. Tunnel safety, risk assessment and decision-making[J]. Tunnelling and Underground Space Technology, 2010, 25(1): 91-94.

[27]Olga `, Eva N, Michal `, et al. Probabilistic assessment of tunnel construction performance based on data[J]. Tunnelling and Underground Space Technology, 2013, 37: 62-78.

[28]Choi H, Cho H, Seo J W. Risk Assessment Methodology for Underground Construction Projects[J]. Journal of Construction Engineering and Management, 2004, 258-272.

[29]Zhou Y, Li C, Zhou C, et al. Using Bayesian network for safety risk analysis of diaphragm wall deflection based on field data[J]. Reliability Engineering & System Safety, 2018, 180: 152-167.

[30]Špačková O, Straub D. Dynamic Bayesian network for probabilistic modeling of tunnel excavation processes[J]. Computer‐Aided Civil and Infrastructure Engineering, 2013, 28(1): 1-21.

[31]Motawa I A, Anumba C J, El-Hamalawi A. A fuzzy system for evaluating the risk of change in construction projects[J]. Advances in Engineering Software, 2006, 37(9): 583-591.

[32]Wu X, Liu H, Zhang L, et al. A dynamic Bayesian network based approach to safety decision support in tunnel construction[J]. Reliability Engineering & System Safety, 2015, 134: 157-168.

[33]Xie H T, Li B, Zhao Y S. Study on risk trend assessment of metro tunnel crossing underground pipeline based on partial connection number[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2014, 580: 1283-1287.

[34]Wang Y, Zheng H, Lu X. Dynamic risk analysis in metro construction using statistical process control[J]. Mathematical Problems in Engineering, 2020, 2020: 1-11.

[35]Liu W, Cai L, Chen J, et al. Reliability analysis of operational metro tunnel based on a dynamic Bayesian copula model[J]. Journal of Computing in Civil Engineering, 2020, 34(3): 05020002.

[36]贺志军.山岭铁路隧道工程施工风险评估及其应用研究[D].长沙:中南大学,2009.

[37]安永林.结合邻近结构物变形控制的隧道施工风险评估研究[D].长沙:中南大学,2009.

[38]张成平,张顶立,王梦恕等. 城市隧道施工诱发的地面塌陷灾变机理及其控制[C]//中国岩石力学与工程学会工程安全与防护分会.第2届全国工程安全与防护学术会议论文集(上册).[出版者不详],2010:61-67.

[39]成炜康. 成都砂卵石地层大直径盾构下穿建筑物安全控制技术研究[D].西安科技大学,2022.DOI:10.27397/d.cnki.gxaku.2021.000936.

[40]赵金先,孙斐,孟玮.基于SHEL和组合赋权的地铁盾构施工安全可拓评价[J].青岛理工大学学报,2020,41(03):32-39+108.

[41]姚春桥,王金峰,杨赛,等.基于云模型和改进证据理论的盾构下穿铁路安全风险评价[J].铁道建筑,2021,61(05):60-65.

[42]张开坤.富水砂卵石地层长距离曲线下穿既有地铁施工技术[J].建筑技术,2020,51(07):802-805.

[43]党红章.成都地铁密实砂卵石地层工程地质特性及施工方法浅析[J].现代隧道技术,2007,(05):7-11.DOI:10.13807/j.cnki.mtt.2007.05.002.

[44]荣雪宁,刘旭东,文祝,卢浩,戎晓力.基于人工神经网络的砂卵石地层盾构地表沉降预测[J].地下空间与工程学报,2022,18(S2):958-966.

[45]吴恒生.盾构法全断面富水砂卵石地层长距离下穿开元湖快速掘进施工技术[J].施工技术(中英文),2021,50(19):49-53.

[46]卢鑫月,许成顺,侯本伟,杜修力,李立云.基于动态贝叶斯网络的地铁隧道施工风险评估[J].岩土工程学报,2022,44(03):492-501.

[47]尹紫微. 基于DBN的地铁隧道系统运行韧性评估研究[D].华中科技大学,2022.DOI:10.27157/d.cnki.ghzku.2020.000917.

[48]郭宏斌,宋战平,孟晨,等.基于非线性模糊层次分析法的盾构施工风险评价研究[J].隧道建设(中英文),2023,43(11):1862-1871.

[49]方俊,郭佩文,朱科,等.基于结构方程模型-模糊认知图的矿山法地铁隧道施工安全风险分析[J].安全与环境学报,2023,23(07):2191-2202.DOI:10.13637/j.issn.1009-6094.2022.0540.

[50]李雪,龚子邦,张玉申,陈霖,任伟,刘瑜志.砂卵石地层重叠盾构隧道掘进加固方案比选研究[J].现代隧道技术,2022,59(S1):918-927.

[51]刘丹娜,周勋,王伟,马鹏达,张书建.砂卵石地层盾构区间地表沉降变化规律及参数控制研究[J].公路,2022,67(08):410-416.

[52]韩龙强,吴顺川,高永涛,王广和,王慧珍,刘洋,严琼,张化进.富水砂卵石地层露天矿止水固坡技术研究及应用[J].岩石力学与工程学,2022,41(12):2460-2472.

[53]都敬娜. 基于随机多尺度数值极限分析方法的砂卵石地层盾构隧道开挖面稳定性研究[D].长安大学,2022.

[54]李雪,张玉申,王洋洋,郭庆飞,向乔,龚子邦.砂卵石地层重叠盾构隧道掘进相互影响及控制措施研究[J].工业建筑,2022,52(03):10-16.

[55]刘泓志,干聪豫,赵亮,左世荣,张晗硕.基于地质条件变化的泥水盾构动态施工技术研究[J].现代隧道技术,2022,59(03):246-253.

[56]张晋勋,殷明伦,江华,周刘刚.砂卵石地层盾构长距离掘进先行刀优化配置研究[J].都市快轨交通,2021,34(04):119-127.

[57]许娜. 基于数据挖掘德城市轨道交通建设项目安全风险传递研究[D]. 徐州: 中国矿业大学, 2018.

[58]刘丹娜,周勋,王伟,等.砂卵石地层盾构区间地表沉降变化规律及参数控制研究[J].公路,2022,67(08):410-416.

[59]陆炳德. 多项目风险传递理论模型及及其应用研究[D]. 北京: 华北电力大学, 2012.

[60]李存斌. 通用型广义项目目标风险分析理论模型研究的新思路[J]. 技术经济, 2004(07): 56-58.

[61]李存斌. 项目风险元传递理论与应用[M]. 北京: 中国水利水电出版社, 2009.

[62]Anthony J P, Smithwick J B, Hurtado K C, et al. Project Risk Distribution during the Construction Phase of Small Building Projects[J].Journal Of Management In Engineering, 2015, 32: 174-184.

[63]Cagliano A C, Grimaldi S, Rafele C. Choosing project risk management techniques. A theoretical framework[J]. Journal of risk research, 2014, 18(2): 232-248.

[64]黄宏伟, 顾雷雨.基坑工程风险管理研究进展[J]. 岩土工程学报, 2008, 30:651-657.

[65]林立, 范立础. 工程建设项目全寿命周期健康状态评价模型及其风险贡献因子[J]. 福建农林大学学报, 2011, 40(01): 110-112.

[66]李存斌, 陆龚曙. 工程项目风险元传递的系统动力学模型[J]. 系统工程理论与实践, 2012, 32(12): 2731-2739.

[67]武晋辉. 基于 BIM 技术的全寿命周期风险管理[J]. 山西建筑, 2016, 42(25): 215-216.

[68]聂明, 陈顺良. PPP 项目全寿命周期的风险评估模型及应用研究[J]. 江苏科技信息, 2015, 4: 34-37.

[69]聂相田, 赵天明, 庄濮瑞, 等. 长距离引水工程运行安全风险关联分析及风险传递研究[J]. 华北水利水电大学学报(自然科学版), 2022, 43(02): 45-53.

[70]李仕华, 王修山, 吴姸, 等. 论施工活动[J]. 湖南理工学院学报, 2019, 32(01): 81-86.

[71]卢有杰, 卢家仪. 项目风险管理[M]. 清华大学出版社, 2000.

[72]王䶮,刘保国,亓轶.基于WBS-RBS与故障树耦合的地铁施工风险与评价[J].地下空间与工程学报,2015,11(S2):772-779.

[73]杨青, 郑璐, 邹星琪. 基于风险传播网络和 K-shell 方法的复杂研发项目风险评价[J管理评论, 2021, 33(9): 119-127. 108109

[74]WEBER P, MEDINA-OLIVA G, SIMON C, et al. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 671–682.

[75]XIANG W, ZHOU W X. Integrated pipeline corrosion growth modeling and reliability analysis using dynamic Bayesian network and parameter learning technique[J]. Structure and Infrastructure Engineering, 2020, 16(8): 1161–1176.

[76]FENG X, JIANG J, WANG W. Gas pipeline failure evaluation method based on a Noisy-or gate Bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2020, 66: 104175.

[77]ZAGORECKI A, DRUZDZEL M J. An empirical study of probability elicitation under Noisy-or assumption[C]// American Association for Artificial Intelligence Flairs Conference, 2004, Florida.

[78]葛运飞. GeNle 的扩展研究[D]. 昆明: 云南大学, 2012.

[79]马德仲, 周真, 于晓洋, 等. 基于模糊概率的多状态贝叶斯网络可靠性分析[J]. 系统工程与电子技术, 2012, 34(12): 2607-2611.

[80]WICKENSC D. Engineering psychology and human performance[M]. New York: Harper Collins Publishers lnc, 1992: 211.

[81]曾明华, 王旭, 王转敏, 等. 基于模糊多态贝叶斯网络的地铁运营风险评估方法[J]. 城市轨道交通研究, 2019, 22(5): 28-33.

[82]张俊光, 徐振超, 贾赛可. 基于 Noisy-or Gate 和贝叶斯网络的研发项目风险评估方法[J].科技管理研究, 2015, 35(01): 193-196.

[83]HENRION M.Some practical issues in constructing belief network[D]. Amsterdam: Uncertainty in Artificial Intelligence: 1989.

[84]李其然, 史玉彬, 陈志华. 基于动态贝叶斯网络的民用机场空袭毁伤评估模型[J]. 弹道学报, 2018, 30(01): 93-96.

[85]吴全立,王梦恕,殷明伦.基于网络分析法盾构下穿隧道风险分析[J].地下空间与工程学报,2019,15(06):1881-1888.

[86]曹倩倩. 基于动态贝叶斯网络的汽车发动机系统可靠性评估[D]. 吉林: 东北大学, 2017.

[87]宗秋雷,王彬,王凯,等.基于梯形模糊数和C-OWA算子的地铁盾构施工风险评估方法[J].长江科学院院报,2020,37(12):98-104+111.

[88]刘一鹏,王军武,吴寒.基于DBN的水下地铁盾构施工安全风险动态演化分析[J].铁道标准设计,2021,65(05):141-148.DOI:10.13238/j.issn.1004-2954.202006170006.

[89]杨小伟,闫天俊,倪正茂,等.武汉地铁越江隧道施工风险分析与控制[J].安全与环境工程,2012,19(03):107-110.

中图分类号:

 TU714    

开放日期:

 2024-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式