- 无标题文档
查看论文信息

论文中文题名:

 大规模MIMO系统能效优化算法研究    

姓名:

 李甜    

学号:

 19207040025    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081001    

学科名称:

 工学 - 信息与通信工程 - 通信与信息系统    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 信息与通信工程    

研究方向:

 数字移动通信    

第一导师姓名:

 李国民    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-06-10    

论文外文题名:

 Research on Energy Efficiency Optimization Algorithm for Massive MIMO system    

论文中文关键词:

 大规模MIMO ; 能效 ; 天线选择 ; 预编码 ; 朗伯W函数 ; 凸优化    

论文外文关键词:

 Massive MIMO ; Energy Efficiency ; Antenna Selection ; Precoding ; Lambert W Function ; Convex Optimization    

论文中文摘要:

       大规模多输入多输出(Multiple Input Multiple Output,MIMO)技术作为5G关键技术之一,可有效改善系统频谱效率和能量效率,由于其能够应对用户所需的高数据率,从而受到广泛的关注和研究。但大规模天线的使用导致射频链路急剧增加,产生较大的能量消耗,如何提高系统的能效,是大规模MIMO亟待解决的核心问题。天线选择和预编码技术是提高大规模MIMO系统能量效率的两项重要技术,因此,本文对其进行研究以优化大规模MIMO系统的能效。主要研究工作如下:

       本文考虑单小区多用户大规模MIMO系统的下行链路,通过使用迫零(Zero Forcing,ZF)预编码处理,从能效最大化的角度出发,重点研究了发射天线数、发射功率和最佳发射天线矩阵对系统能效的影响,提出一种在ZF准则下,基于天线选择的能效优化资源分配算法。首先利用朗伯W函数推导出基站发射天线数和发射功率的最佳表达式,经迭代求解得出最佳发射功率和发射天线数;其次求最佳发射天线矩阵,主要思想是以最大化能效为目标,使用一种低复杂度的天线选择策略,利用凸优化方法选出最佳发射天线矩阵,该算法的目的在于降低系统运算复杂度,提高系统能效;最后通过联合调整基站发射天线数、发射功率、发射天线矩阵来优化系统能效。仿真结果表明,所提算法能够有效降低计算复杂度,提高系统能效和容量。

       ZF预编码方案虽可一定程度上消除用户间干扰,但该方案也导致加性噪声被加权放大。因此,为了提高系统性能,本文提出一种结合天线选择的信漏噪比(Signal to Leakage and Noise Radio,SLNR)预编码算法优化系统能效。首先表明SLNR预编码方案系统性能优于ZF预编码方案;其次使用改进的天线选择算法得到最佳发射天线矩阵,该算法主要思想是以最大化用户接收功率和最大化系统容量为优化目标,并利用凸优化选出最佳发射天线矩阵;然后以最大化SLNR为准则求最佳用户预编码矩阵;最后通过联合调整发射天线矩阵和预编码矩阵来优化系统能效。仿真结果表明,所提联合算法显著提高了系统能效和容量。

论文外文摘要:

       As one of the key technologies of 5G, massive multiple-input multiple-output (Multiple Input Multiple Output, MIMO) technology can effectively improve the spectral efficiency and energy efficiency of the system, and it has received extensive attention and research due to its ability to cope with the high data rates required by users. However, as the use of large-scale antennas leads to a dramatic increase in RF links and generates large energy consumption, How to improve the energy efficiency of the system is the core problem that needs to be solved in large-scale MIMO. Antenna selection and precoding techniques are two important techniques to improve the energy efficiency of large-scale MIMO systems, so they are investigated in this paper to optimize the energy efficiency of large-scale MIMO system. The main research work is as follows:

       This paper considers the downlink of a single-cell multi-user large-scale MIMO system, By using zero forcing (Zero Forcing, ZF) precoding processing, the impact of the number of transmitting antennas, transmitting power and the optimal transmitting antenna matrix on the energy efficiency of the system is taken account of the perspective of maximizing energy efficiency, and an energy-efficient optimal resource allocation algorithm based on antenna selection under the ZF criterion is proposed. Firstly, the optimal expressions for the number of transmitting antennas and transmitting power of the base station are derived using the Lambert W function, and the optimal transmitting power and number of transmitting antennas are obtained by iterative solution; Secondly, the optimal transmit antenna matrix is found. The main idea of this method is to aim to maximizing system energy efficiency,It uses a low-complexity antenna selection strategy, and selects the final transmitting antenna matrix using convex optimization, The purpose of the algorithm is to reduce the computational complexity of the system and improve the energy efficiency of the system; Finally, the number of transmitting antennas, transmitting power and transmitting antenna matrix of the base station are jointly adjusted to optimise the energy efficiency of the system. The simulation results show that the proposed algorithm can effectively reduce the computational complexity and improve the system energy efficiency and capacity.

       Although ZF precoding scheme can eliminate inter user interference to some extent, it also leads to weighted amplification of additive noise. Therefore, in order to improve the system performance, this paper proposes a signal to leakage and noise radio (Signal to Leakage and Noise Radio, SLNR) precoding algorithm combined with antenna selection to optimize the system energy efficiency. Firstly, it is shown that the system performance of the SLNR precoding scheme is better than that of the ZF precoding scheme; secondly, the optimal transmit antenna matrix is obtained by using the improved antenna selection algorithm. The main idea of the method is to maximize the user's received power and maximize the system capacity as the optimization objectives, and uses convex optimization to select the best transmit antenna matrix; then, based on the criterion of maximizing SLNR, the optimal user precoding matrix is obtained; finally, the system energy efficiency is optimized by jointly adjusting the transmit antenna matrix and the precoding matrix. The simulation results show that the proposed joint algorithm significantly improves the system energy efficiency and capacity.

参考文献:

[1]Isabona J, Srivastava V M. Downlink Massive MIMO Systems: Achievable Sum Rates and Energy Efficiency Perspective for Future 5G Systems[J]. Wireless Personal Communications, 2017, 96(2): 2779-2796.

[2]Zhao H, Liu Z, Sun Y. Energy Efficiency Optimization for SWIPT in K-user MIMO

Interference Channels[J]. Physical Communication, 2018, 27: 197-202.

[3]Saatlou O, Ahmad M O, Swamy M N S. Spectral Efficiency Maximization of Multiuser Massive MIMO Systems with Finite-Dimensional Channel Via Control of Users’ Power[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 65(7): 883-887.

[4]Pan S, Chen J, Chen Y, et al. An Energy Efficiency Maximization Scheme for the Wireless Information and Power Transfer System with MU-MIMO Uplink Access[J]. IEEE Access, 2018, 6: 58754-58763.

[5]周胜, 李天璞. 城市场景5G eMBB网络速率提升研究与应用[J]. 电信科学, 2021, 37(02): 55-62.

[6]Al-Nahari A, Sakran H, Su W, et al. Energy and Spectral Efficiency of Secure Massive MIMO Downlink Systems[J]. IET Communications, 2019, 13(10): 1364-1372.

[7]Ge X, Yang J, Gharavi H, et al. Energy Efficiency Challenges of 5G Small Cell Networks[J]. IEEE Communications Magazine, 2017, 55(5): 184-191.

[8]Chen S, Zhang J, Jin Y, et al. Wireless Powered IoE for 6G: Massive Access Meets Scalable Cell-Free Massive MIMO[J]. China Communications, 2020, 17(12): 92-109.

[9]Panwar N, Sharma S, Singh A K. A Survey on 5G: The Next Generation of Mobile Communication[J]. Physical Communication, 2016, 18: 64-84.

[10]Lin Y, Yang Z, Guo H. Proportional Fairness-Based Energy-Efficient Power Allocation in Downlink MIMO-NOMA Systems with Statistical CSI[J]. China Communications, 2019, 16(12): 47-55.

[11]Purushothaman K E, Nagarajan V. Evolutionary Multi-Objective Optimization Algorithm for Resource Allocation Using Deep Neural Network in 5G Multi-User Massive MIMO[J]. International Journal of Electronics, 2020, 108(7): 1214-1233.

[12]Marzetta T L. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600.

[13]Marzetta T L, Larsson E G, Yang H, et al. Fundamentals of Massive MIMO[M]. Cambridge University Press, 2016: 115-138.

[14]王正强, 杨晓娜, 万晓榆, 等. 大规模MIMO系统能效优化算法研究综述[J]. 重庆邮电大学学报, 2019, 31(6): 743-752.

[15]Xu W, Chu J, Yu X, et al. Energy-efficiency Optimization Schemes Based on SWIPT in Distributed Antenna Systems[J]. KSII Transactions on Internet and Information Systems (TIIS), 2021, 15(2): 673-694.

[16]Li X, Li G, Liu Y, et al. Low-complexity Transmit Antenna Selection Algorithm for Massive MIMO[J]. The Journal of China Universities of Posts and Telecommunications, 2020, 27(5): 63-68.

[17]Nguyen B C, Tran X N. Transmit Antenna Selection for Full-Duplex Spatial Modulation Multiple-Input Multiple-Output System[J]. IEEE Systems Journal, 2020, 14(4): 4777-4785.

[18]Rao I V, Malleswara Rao V. Optimal Transmit Antenna Selection Using Improved GSA in Massive MIMO Technology[J]. Wireless Personal Communications, 2019, 109(5): 1217-1235.

[19]Hanif M, Yang H C, Boudreau G, et al. Antenna Subset Selection for Massive MIMO Systems: A Trace-Based Sequential Approach for Sum Rate Maximization[J]. Journal of Communications and Networks, 2018, 20(2): 144-155.

[20]Kuai Z, Wang S. Thompson Sampling Based Antenna Selection with Partial CSI for TDD Massive MIMO Systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7533-7546.

[21]Mendonça M O K, Diniz P S R, Ferreira T N, et al. Antenna Selection in Massive MIMO Based on Greedy Algorithms[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 1868-1881.

[22]Khalid S, Mehmood R, Abbas W B, et al. Joint Transmit Antenna Selection and Precoding for Millimeter Wave Massive MIMO Systems[J]. Physical Communication, 2020, 76(3): 449-460.

[23]Amadori P V, Masouros C. Large Scale Antenna Selection and Precoding for Interference Exploitation[J]. IEEE Transactions on Communications, 2017, 65(10): 4529-4542.

[24]Arash M, Yazdian E, Fazel M S, et al. Employing Antenna Selection to Improve Energy Efficiency in Massive MIMO Systems[J]. Transactions on Emerging Telecommunications Technologies, 2017, 28(12): 1-15.

[25]Marinello J C, Abro T, Amiri A, et al. Antenna Selection for Improving Energy Efficiency in XL-MIMO Systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13305-13318.

[26]Xue Y, Zhang J, Gao X. Resource Allocation for Pilot-Assisted Massive MIMO Transmission[J]. Science China Information Sciences, 2017, 60(4): 1-13.

[27]Li H, Wang Z, Wang H. Power Allocation for an Energy-Efficient Massive MIMO System With Imperfect CSI[J]. IEEE Transactions on Green Communications and Networking, 2020, 4(1): 46-56.

[28]Li H, Wang Z, Wang H. An Energy-Efficient Power Allocation Scheme for Massive MIMO Systems with Imperfect CSI[J]. Digital Signal Processing, 2021, 112: 102964.

[29]Liu P, Li Y, Cheng W, et al. Energy-Efficient Power Allocation for Millimeter Wave Beamspace MIMO-NOMA Systems[J]. IEEE Access, 2019, 7: 114582-114592.

[30]Sobhi-Givi S, Shayesteh M G, Kalbkhani H. Energy-efficient Power Allocation and User Selection for mmWave-NOMA Transmission in M2M Communications Underlaying Cellular Heterogeneous Networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9866-9881.

[31]Bonsu K A, Zhou W, Pan S, et al. Optimal Power Allocation with Limited Feedback of Channel State Information in Multi-user MIMO Systems[J]. China Communications, 2020, 17(2): 163-175.

[32]Kasim N S M, Nordin R, Ismail M. Improved Water-Filling Power Allocation for Energy-Efficient Massive MIMO Downlink Transmissions[J]. International Journal of Electronics and Telecommunications, 2017, 63(1): 79-84.

[33]Qi X, Khattak S, Zaib A, et al. Energy Efficient Resource Allocation for 5G Heterogeneous Networks Using Genetic Algorithm[J]. IEEE Access, 2021, 9: 160510-160520.

[34]Souto V D P, Souza R D, Uchoa-Filho B F, et al. Beamforming Optimization for Intelligent Reflecting Surfaces without CSI[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1476-1480.

[35]Selvam K, Kumar K. Optimal Resource Allocation in NOMA‐Based M2M Communication Using Hybrid Rider Optimization with FireFly: Power Saving Strategy of IoT[J]. International Journal of Communication Systems, 2020, 33(12): 1-22.

[36]Zhao Y, Niemegeers I G, Groot S. Power Allocation in Cell-free Massive MIMO: A Deep Learning Method[J]. IEEE Access, 2021, 9: 102953-102965.

[37]Al-Nahari A, Sakran H, Su W, et al. Energy and Spectral Efficiency of Secure Massive MIMO Downlink Systems[J]. IET Communications, 2019, 13(10): 1364-1372.

[38]Albreem M A, Al Habbash A H, Abu-Hudrouss A M, et al. Overview of Precoding Techniques for Massive MIMO[J]. IEEE Access, 2021, 9: 60764-60801.

[39]Mostafa M, Newagy F, Hafez I. Complex Regularized Zero Forcing Precoding for Massive MIMO Systems[J]. Wireless Personal Communications, 2021, 120(1): 1-15.

[40]Peng W, Zheng L, Chen D, et al. Distributed Precoding for BER Minimization with PAPR Constraint in Uplink Massive MIMO Systems[J]. IEEE Access, 2018, 6: 6668-6676.

[41]Engda T K, Wondie Y, Steinbrunn J. mmWave and mmWave-Massive MIMO Communications: Performance Assessment with Beamforming Techniques[J]. IEEE Access, 2022, 10: 16365-16387.

[42]Tan W, Jin S, Yuan J. Spectral and Energy Efficiency of Downlink MU-MIMO Systems with MRT[J]. China Communications, 2017, 14(5): 105-111.

[43]李国民, 郭甜, 李新民 ,等. 多用户大规模MIMO系统能效资源优化算法[J]. 中国科技论文, 2021, 16(03): 320-324.

[44]赵迎芝, 唐宏, 叶宗刚, 等. 多用户大规模 MIMO系统中能效的研究[J]. 重庆邮电大学学报(自然科学版), 2016, 28(5): 737-742

[45]Salh A, Shah N S M, Audah L, et al. Energy-Efficient Power Allocation and Joint User Association in Multiuser-Downlink Massive MIMO System [J]. IEEE Access, 2020, 8: 1314-1326.

[46]Li H, Cheng J, Wang Z, et al. Joint Antenna Selection and Power Allocation for an Energy-efficient Massive MIMO System[J]. IEEE Wireless Communications Letters, 2019, 8(1): 257-260.

[47]Guo M, Gursoy M C. Statistical Learning Based Joint Antenna Selection and User Scheduling for Single-Cell Massive MIMO Systems[J]. IEEE Transactions on Green Communications and Networking, 2020, 5(1): 471-483.

[48]Tran T X, Teh K C. Spectral and Energy Efficiency Analysis for SLNR Precoding in Massive MIMO Systems with Imperfect CSI[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 4017-4027.

[49]Sedghi R, Azghani M. Sparsity-based MIMO Interference Suppression Technique in the Presence of Imperfect Channel State Information[J]. IET Communications, 2019, 13(19): 3201-3206.

[50]Hegde G, Masouros C, Pesavento M. Coordinated Hybrid Precoding for Iinterference Exploitation in Heterogeneous Networks[J]. IEEE Communications Letters, 2019, 23(11): 2109-2113.

[51]Huang H, Song Y, Yang J, et al. Deep-Learning-Based Millimeter-Wave Massive MIMO for Hybrid Precoding[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3027-3032.

[52]陶玉林. 探析无线通信技术及5G关键技术[J]. 信息通信, 2018(10): 235-236.

[53]Daza L, Misra S. Fundamentals of Massive MIMO (Marzetta, T., et al; 2016)[Book Reviews][J]. IEEE Wireless Communications, 2018, 25(1): 9-9.

[54]刘世美. Massive MIMO系统能效资源分配研究[D]. 贵州大学, 2018.

[55]Yang H, Marzetta T L. Total Energy Efficiency of Cellular Large Scale Antenna System Multiple Access Mobile Networks[C]// 2013 IEEE Online Conference on Green Communications (OnlineGreenComm). IEEE, 2013: 27-32.

[56]李洁. 基于天线选择技术的Massive MIMO系统能效优化问题研究[D]. 郑州大学, 2015.

[57]Liang S, Wang L Y, Yin G, et al. Distributed Smooth Convex Optimization with Coupled Constraints[J]. IEEE Transactions on Automatic Control, 2020, 65(1): 347-353.

[58]Berg C, Massa E, Peron A P. A Family of Entire Functions Connecting the Bessel Function J1 and the LambertW Function [J]. Constructive Approximation, 2021, 53(1): 121-154.

[59]刘紫燕, 刘世美, 唐虎, 等. 多用户Massive MIMO 系统能效资源分配方案[J]. 中国科技论文, 2018, 13(14): 1658-1663.

[60]Dao H T, Kim S. Power Allocation for Multiple User-Type Massive MIMO Systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10965-10974.

[61]Sun F G, Liu J, Xu H J, et al. Receive Antenna Selection Using Convex Optimization for MIMO Systems[C]//2008 IEEE 3th International Conference on Communications and Networking in China(ICCN). IEEE, 2008: 426-430.

中图分类号:

 TN929.5    

开放日期:

 2022-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式