论文中文题名: |
缓斜煤层综采面卸压瓦斯定向钻孔抽采技术研究及应用
|
姓名: |
张文琦
|
学号: |
19220214079
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085224
|
学科名称: |
工学 - 工程 - 安全工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
矿井瓦斯灾害防治
|
第一导师姓名: |
林海飞
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-17
|
论文答辩日期: |
2022-06-01
|
论文外文题名: |
Technology and application of directional drilling for gas drainage in fully mechanized mining of gently inclined Coal seam
|
论文中文关键词: |
缓斜煤层 ; 采动裂隙 ; 卸压瓦斯 ; 瓦斯抽采
|
论文外文关键词: |
gently inclined coal seam ; mining fissure ; pressure relief gas ; gas extra-ction
|
论文中文摘要: |
︿
煤炭是我国的重要能源,缓倾斜煤层分布广泛,开采过程中采空区卸压瓦斯涌入工作面,易造成上隅角瓦斯浓度超限。采空区瓦斯抽采是解决上隅角瓦斯超限的主要途径,但是针对缓倾斜煤层的采空区卸压瓦斯抽采技术仍需要进一步研究。论文以典型缓斜煤层工作面为例,通过理论研究、物理相似模拟、数值模拟及现场工业性试验手段研究了采动覆岩卸压范围及裂隙分布规律,依据现场瓦斯涌出量确定了缓斜煤层卸压瓦斯防治方法,建立了采空区流场数值计算模型,研究了卸压瓦斯运移规律,确定了定向钻孔抽采布置参数。
通过物理相似模拟实验研究了采空区上覆岩层移动及垮落规律、采动裂隙演化及分布规律。结果表明,工作面平均周期来压12.9 m,冒落带12 m,裂隙带68.5 m,底板支承应力变化呈“升高—降低—恢复”三个过程,覆岩离层率及裂隙密度呈驼峰形分布,回风巷裂隙区宽度及断裂角均大于进风巷裂隙区。
通过FLAC3D数值模拟软件研究了上覆岩层塑性区域、采动卸压范围及覆岩位移特征。研究表明,采场上方塑性区域呈梯台形态,下端头覆岩破坏程度更大,上覆岩层倾向方向卸压范围呈非对称抛物线形,工作面下端头位移量大于上端头。
分析并确定了缓斜煤层卸压瓦斯防治方法,通过Fluent数值模拟软件得到了采空区卸压瓦斯运移规律,卸压瓦斯向采空区深部及高处运移,瓦斯浓度随着与工作面距离增加而增大,进风巷侧采空区瓦斯浓度小于回风巷侧;上隅角瓦斯浓度随抽采钻孔距工作面顶板距离增加表现为先减小后增大,当钻孔距煤层顶板25 m时,卸压瓦斯防控效果最好,且瓦斯浓度随着钻孔孔径增大而减小。
现场布置6个高位定向钻孔后,通过监测抽采钻孔参数、上隅角及回风巷瓦斯浓度、工作面风量等数据以验证抽采效果。结果表明,高位定向钻孔有效防止了上隅角瓦斯积聚,抽采期内上隅角瓦斯浓度最大0.71%,日平均0.47%,回风巷最大瓦斯浓度0.69%,日平均0.46%。该研究可为同类型缓倾斜煤层综采工作面卸压瓦斯防治提供一定借鉴,对卸压瓦斯精准抽采具有一定指导意义。
﹀
|
论文外文摘要: |
︿
Coal is an important energy source in China. The gently inclined coal seams are widely distributed. During the mining process, the pressure relief gas in the goaf flows into the working face, which is easy to cause the gas concentration in the upper corner to exceed the limit. Gob gas drainage is the main way to solve the gas overrun in the upper corner, but the gob pressure relief gas drainage technology for gently sloping coal seams still needs further research. Taking the typical gently inclined coal seam working face as an example, the paper studies the pressure relief range and fracture distribution law of the overlying rock in the stope by means of theoretical research, physical similarity simulation, numerical simulation and field industrial test. The control method of decompression gas in inclined coal seam was established, the numerical calculation model of the flow field in the goaf was established, the migration law of decompression gas was studied, and the parameters of directional drilling and drainage were determined.
The movement and caving law of strata, the evolution law of mining fracture and the distribution law of mining fracture were studied by physical similarity simulation experiment. The results show that the average periodic weighting of the working face is 12.9 m, the height of the caving zone is 12 m, and the height of the fracture zone is 68.5 m. The change of the supporting stress of the floor presents three processes of ‘rise-decrease-recovery’. The separation rate of the eroded strata and the fracture density show a hump-shaped distribution. The width and fracture angle of the return air fracture zone are greater than those of the inlet air fracture zone.
The plastic zone, mining pressure relief range and displacement characteristics of overlying strata were studied by FLAC3D numerical simulation software. The results show that the plastic zone above the mining field is terrace shape, and the rock fragmentation degree at the lower end is greater. The pressure relief range in the upward trend direction of the strata is asymmetric parabolic shape. The displacement of the lower end is greater than that of the upper end.
The prevention and control method of pressure relief gas in gently inclined coal seam was analyzed and determined, and the migration law of pressure relief gas in goaf was obtained by Fluent numerical simulation software. The pressure relief gas migrated to the deep and high parts of the goaf, and the gas concentration increased with the increase of the distance from the working face, and the gas concentration in the goaf on one side of the inlet roadway was less than that on the other side of the return airway. The gas concentration in the upper corner decreases first and then increases with the increase of the distance between the extraction borehole and the roof of the working face. When the borehole is 25 m from the roof of the coal seam, the prevention and control effect of pressure relief gas is best, and the gas concentration decreases with the increase of the borehole diameter.
After six high-level directional boreholes were arranged on the site, the drainage effect was verified by monitoring the parameters of drainage boreholes, gas concentration in upper corner and return airway, and air flow rate of working face. The results show that the high level directional drilling effectively prevents the gas accumulation in the upper corner. During the extraction period, the maximum gas concentration in the upper corner was 0.71%, with a daily average of 0.47%, and the maximum gas concentration in the return wind tunnel was 0.69%, with a daily average of 0.46%. This study can provide some reference for the prevention and control of pressure relief gas in fully mechanized coal face of the same type of gently inclined coal seam, and has certain guiding significance for precise extraction of pressure relief gas.
﹀
|
参考文献: |
︿
[1] 国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[R]. 北京: 国家统计局, 2022. [2] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019,44(7):1949-1960. [3] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021,46(7):2197-2211. [4] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016,41(1):1-6. [5] 杜计平. 采矿学[M]. 第三版. 徐州: 中国矿业大学出版社, 2019. [6] 钱鸣高, 石平武, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2000. [7] Mao B, Elsworth D. Some aspects of mining under aquifers in China[J]. Mining Science and Technology, 1990,10(1):81-91. [8] Kim J M. Fully coupled poroelastic governing equations for groundwater flow and solid skeleton deformation in variably saturated true anisotropic porous geologic media[J]. Geosciences Journal, 2004,8(3):291-300. [9] 钱鸣高, 缪协兴, 许家林, 等. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2000. [10] 宋振骐. 实用矿山压力控制[M]. 徐州: 中国矿业大学出版社, 1988. [11] 宋振骐, 郝建, 石永奎, 等. “实用矿山压力控制理论”的内涵及发展综述[J]. 山东科技大学学报(自然科学版), 2019,38(1):1-15. [12] 缪协兴, 茅献彪, 钱鸣高. 采动覆岩中关键层的复合效应分析[J]. 矿山压力与顶板管理, 1999(Z1):19-21. [13] 许家林, 钱鸣高. 绿色开采的理念与技术框架[J]. 科技导报, 2007(7):61-65. [14] 刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报, 1995(1):1-5. [15] 高延法. 岩移“四带”模型与动态位移反分析[J]. 煤炭学报, 1996(1):51-56. [16] 程关文, 王悦, 马天辉, 等. 煤矿顶板岩体微震分布规律研究及其在顶板分带中的应用——以董家河煤矿微震监测为例[J]. 岩石力学与工程学报, 2017,36(S2):4036-4046. [17] Wenbing G, Gaobo Z, Gaozhong L, et al. A New Method of Predicting the Height of the Fractured Water-Conducting Zone Due to High-Intensity Longwall Coal Mining in China[J]. Rock Mechanics and Rock Engineering, 2019,52(8):2789-2802. [18] 黄志安, 童海方, 张英华, 等. 采空区上覆岩层“三带”的界定准则和仿真确定[J]. 北京科技大学学报, 2006(7):609-612. [19] 王文学, 隋旺华, 董青红. 应力恢复对采动裂隙岩体渗透性演化的影响[J]. 煤炭学报, 2014,39(6):1031-1038. [20] Gao R, Huo B, Xia H, et al. Numerical simulation on fracturing behaviour of hard roofs at different levels during extra-thick coal seam mining.[J]. Royal Society open science, 2020,7(1):191383. [21] Sun D, Li X, Zhu Z, et al. Height of the Fractured Zone in Coal Mining under Extra-Thick Coal Seam Geological Conditions[J]. Advances in Civil Engineering, 2021,2021(1):1-9. [22] 钱鸣高, 许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报, 1998(5):3-5. [23] 李树刚, 石平五, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理, 1999(Z1):44-46. [24] 杨科, 谢广祥. 采动裂隙分布及其演化特征的采厚效应[J]. 煤炭学报, 2008(10):1092-1096. [25] 袁亮, 郭华, 沈宝堂, 等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报, 2011,36(3):357-365. [26] 林海飞, 李树刚, 赵鹏翔, 等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术, 2018,46(1):28-35. [27] 左建平, 吴根水, 孙运江, 等. 岩层移动内外“类双曲线”整体模型研究[J]. 煤炭学报, 2021,46(2):333-343. [28] Zhang C, Tu S, Zhao Y. Compaction characteristics of the caving zone in a longwall goaf: a review[J]. Enviromental Earth Sciences, 2019,78(1). [29] 白建平, 郝春生, 杨昌永, 等. 综采工作面覆岩采动裂隙三维分布规律研究[J]. 煤炭科学技术, 2020,48(11):106-112. [30] Xiao P, Han K, Shuang H, et al. The effects of key rock layer fracturing on gas extraction during coal mining over a large height[J]. Energy Science & Engineering, 2021,9(4):520-534. [31] 张礼, 齐庆新, 张勇, 等. 采动覆岩裂隙场三维形态特征及其渗透特性研究[J]. 采矿与安全工程学报, 2021,38(4):695-705. [32] Bichuan Z, Haitao S, Yunpei L, et al. Characterization and Quantification of Mining-Induced Fractures in Overlying Strata: Implications for Coalbed Methane Drainage[J]. Natural Resources Research, 2020,29(4):2467-2480. [33] 林海飞, 李树刚, 成连华, 等. 覆岩采动裂隙带动态演化模型的实验分析[J]. 采矿与安全工程学报, 2011,28(02):298-303. [34] 伍永平, 解盘石, 任世广. 大倾角煤层开采围岩空间非对称结构特征分析[J]. 煤炭学报, 2010,35(2):182-184. [35] 伍永平, 解盘石, 王红伟, 等. 大倾角煤层开采覆岩空间倾斜砌体结构[J]. 煤炭学报, 2010,35(8):1252-1256. [36] 双海清. 缓倾斜煤层采动卸压瓦斯储运优势通道演化机理及应用[D]. 西安: 西安科技大学, 2017. [37] 陈高峰. 缓倾斜煤层综放开采卸压瓦斯运移规律研究及应用[D]. 西安: 西安科技大学, 2018. [38] 来兴平, 王宁波, 胥海东, 等. 复杂环境下急倾斜特厚煤层安全开采[J]. 北京科技大学学报, 2009,31(3):277-280. [39] 冯锦艳, 刘旭杭, 于志全. 大倾角煤层采动裂隙演化规律[J]. 煤炭学报, 2017,42(8):1971-1978. [40] 张勇, 张保, 李立, 等. 急倾斜综放开采顶板裂隙发育规律对瓦斯抽采影响研究[J]. 采矿与安全工程学报, 2014,31(5):809-813. [41] 霍丙杰, 路洋波, 付兴, 等. 乌东矿急倾斜特厚煤层水平分段综放开采顶板破断特征研究[J]. 安全与环境学报, 2017,17(3):883-887. [42] Yang W, Lai X, Cao J, et al. Study On Evolution Characteristics of Overburden Caving And Vold During Multi-Horizontal Sectional Mining In Steeply Inclined Coal Seams[J]. Thermal Science, 2020,24(6B):3915-3921. [43] Liu S, Yang K, Tang C, et al. Rupture and Migration Law of Disturbed Overburden during Slicing Mining of Steeply Dipping Thick Coal Seam[J]. Advances In Civil Engineering, 2020,2020(4):1-11. [44] 李树刚, 林海飞. 煤与甲烷共采学导论[M]. 北京: 科学出版社, 2015. [45] 周世宁. 瓦斯在煤层中流动的机理[J]. 煤炭学报, 1990(1):15-24. [46] 章梦涛, 王景琰. 采场空气流动状况的数学模型和数值方法[J]. 煤炭学报, 1983(3):46-54. [47] 丁广骧, 柏发松. 采空区混合气运动基本方程及其有限元解法[J]. 中国矿业大学学报, 1996(3):21-26. [48] 丁广骧. 矿井大气与瓦斯三维流动[M]. 中国矿业大学出版社, 1996. [49] 陈全. 矿井瓦斯气体的浮升与压强扩散[J]. 阜新矿业学院学报(自然科学版), 1997(1):34-38. [50] 李宗翔, 纪书丽, 题正义. 采空区瓦斯与大气两相混溶扩散模型及其求解[J]. 岩石力学与工程学报, 2005(16):2971-2976. [51] 唐德馨, 秦汝祥, 朱玉. 基于顶板裂隙条件下采空区漏风及瓦斯运移路径的研究[J]. 煤炭技术, 2019,38(6):121-123. [52] 翟景辉, 任帅, 王方田, 等. 综放开采矿压显现与瓦斯运移响应规律[J]. 采矿与岩层控制工程学报, 2022,4(1):51-59. [53] Szlazak J. The determination of a co-efficient of longwall gob permeability[J]. Archives of Mining Sciences, 2001,46(4):451-468. [54] 邓军, 徐精彩, 文虎. 采空区自然发火动态数学模型研究[J]. 湘潭矿业学院学报, 1998(1):11-16. [55] 李树刚, 钱鸣高. 综放采空区冒落特征及瓦斯流态[J]. 矿山压力与顶板管理, 1997(Z1):79-81. [56] 王少锋, 王德明, 曹凯, 等. 采空区及上覆岩层空隙率三维分布规律[J]. 中南大学学报(自然科学版), 2014,45(3):833-839. [57] 孟召平, 张娟, 师修昌, 等. 煤矿采空区岩体渗透性计算模型及其数值模拟分析[J]. 煤炭学报, 2016,41(8):1997-2005. [58] Haidong C, Yuanping C, Tingxiang R, et al. Permeability distribution characteristics of protected coal seams during unloading of the coal body[J]. International Journal of Rock Mechanics and Mining Sciences, 2014,71:105-116. [59] Guangyao S, Ji-Quan S, Sevket D, et al. Monitoring and modelling of gas dynamics in multi-level longwall top coal caving of ultra-thick coal seams, Part II: Numerical modelling[J]. International Journal of Coal Geology, 2015,144-145. [60] Wang F, Zhang C, Liang N. Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining[J]. Energies, 2017,10(9):1382. [61] Cun Z, Shihao T, Lei Z. Field Measurements of Compaction Seepage Characteristics in Longwall Mining Goaf[J]. Natural Resources Research, 2020,29(2):905-917. [62] Karacan C. A new method to calculate permeability of gob for air leakage calculations and for improvements in methane control: Proceedings of the 13th U.S./North American Mine Ventilation Symposium, Sudbury, Canada, 2010[C]. [63] Hossein A, Gholamreza S, Mohammad A E F, et al. A New Model for Calculation of the Plastic Compression Index and Porosity and Permeability of Gob Materials in Longwall Mining[J]. Geotechnical and Geological Engineering, 2020,38(2020):6407-6420. [64] 胡千庭, 梁运培, 刘见中. 采空区瓦斯流动规律的CFD模拟[J]. 煤炭学报, 2007(7):719-723. [65] 金龙哲, 姚伟, 张君. 采空区瓦斯渗流规律的CFD模拟[J]. 煤炭学报, 2010,35(9):1476-1480. [66] Jian-rang Z, Chun-qiao W, Ding-wen D. Numerical simulation study of gob air leakage field and gas migration regularity in downlink ventilation[J]. Journal of Coal Science and Engineering (China), 2011,17(3):316-320. [67] Zhou H, Liu J, Xue D, et al. Numerical simulation of gas flow process in mining-induced crack network[J]. International Journal of Mining Science and Technology, 2012,22(6):793-799. [68] 高建良, 王立峰, 刘明信. 采空区瓦斯涌出源位置对瓦斯浓度及自燃带分布的影响[J]. 安全与环境学报, 2015,15(2):47-50. [69] Qin Z, Yuan L, Guo H, et al. Investigation of longwall goaf gas flows and borehole drainage performance by CFD simulation[J]. International Journal of Coal Geology, 2015,150:51-63. [70] Cao J, Li W. Numerical simulation of gas migration into mining-induced fracture network in the goaf[J]. International Journal of Mining Science and Technology, 2017,27(4):681-685. [71] Ming Y, Jianliang G. Numerical simulation on the influence of gob permeability on distribution of air leakage flow field[J]. International Journal of Computational Science and Engineering, 2014,9(1/2):147-152. [72] 朱南南, 舒龙勇, 范喜生, 等. 回采工作面及采空区瓦斯运移的数学模型及数值模拟研究[J]. 安全与环境学报, 2021,21(1):210-216. [73] 吴奉亮, 高亚超, 常心坦. 矿井风网与采空区流场边界耦合模型与求解技术[J]. 中南大学学报(自然科学版), 2020,51(8):2333-2342. [74] 关智平. 高抽巷抽放技术在大佛寺煤矿的应用实践[J]. 中国煤炭工业, 2009(6):39-40. [75] 邵广印. 谢桥矿综采面高抽巷布置层位探讨[J]. 煤炭技术, 2008(1):144-146. [76] 靳晓华, 王娟, 华明国. 综放工作面高抽巷抽采瓦斯布置层位研究[J]. 中国安全生产科学技术, 2018,14(4):95-100. [77] 于宝种. 上隅角不同插管深度瓦斯抽采效果研究[J]. 煤矿安全, 2017,48(7):169-172. [78] 卢国斌, 郭宇箫, 田少波. 基于COMSOL的采空区瓦斯埋管抽采抽采口位置研究[J]. 辽宁工程技术大学学报(自然科学版), 2018,37(2):258-263. [79] 周爱桃, 张蒙, 王凯, 等. 布尔台矿综放工作面采空区瓦斯运移规律及瓦斯抽采优化研究[J]. 矿业科学学报, 2020,5(3):291-301. [80] 康建宏, 邬锦华, 李绪明, 等. 采空区高抽巷及埋管抽采下瓦斯分布规律研究[J]. 采矿与安全工程学报, 2021,38(1):191-198. [81] 杨前意, 罗伙根, 石必明, 等. 基于COMSOL的采空区埋管抽采参数优化数值研究[J]. 中国安全生产科学技术, 2019,15(4):90-95. [82] 李日富, 梁运培, 张军. 地面钻孔抽采采空区瓦斯效率影响因素[J]. 煤炭学报, 2009,34(7):942-946. [83] 袁亮, 郭华, 李平, 等. 大直径地面钻井采空区采动区瓦斯抽采理论与技术[J]. 煤炭学报, 2013,38(1):1-8. [84] 李杰. 特厚煤层综放工作面地面钻孔抽采治理瓦斯技术[J]. 煤炭科学技术, 2019,47(3):150-155. [85] 耿铭, 徐青云. 塔山矿地面L型钻孔抽采瓦斯技术应用[J]. 煤炭工程, 2019,51(12):82-85. [86] Zhang C, Tu S, Zhang L, et al. A methodology for determining the evolution law of gob permeability and its distributions in longwall coal mines[J]. Journal of Geophysics and Engineering, 2016,13(2):181-193. [87] 张晓磊, 程远平, 王亮, 等. 煤与瓦斯突出矿井工作面顶板高位钻孔优化设计[J]. 煤炭科学技术, 2014,42(10):66-70. [88] 刘啸, 年军, 杜刚. 高瓦斯综放工作面顶板破坏规律及高位钻孔抽采技术[J]. 煤炭科学技术, 2016,44(8):132-136. [89] 刘振明, 年军, 吕晓波, 等. 斜沟煤矿高位钻孔合理终孔位置模拟与试验研究[J]. 煤炭科学技术, 2018,46(5):120-124. [90] Li T, Wu B, Lei B. Study on the Optimization of a Gas Drainage Borehole Drainage Horizon Based on the Evolution Characteristics of Mining Fracture[J]. Energies, 2019,12(23):4499. [91] 李树刚, 徐培耘, 林海飞, 等. 倾斜煤层卸压瓦斯导流抽采技术研究与工程实践[J]. 采矿与安全工程学报, 2020,37(5):1001-1008. [92] 石智军, 李泉新, 姚克. 煤矿井下智能化定向钻探发展路径与关键技术分析[J]. 煤炭学报, 2020,45(6):2217-2224. [93] 石智军, 姚克, 田宏亮, 等. 煤矿井下随钻测量定向钻进技术与装备现状及展望[J]. 煤炭科学技术, 2019,47(5):22-28. [94] 童碧, 许超, 刘飞, 等. 淮南矿区瓦斯抽采中以孔代巷技术研究与工程实践[J]. 煤炭科学技术, 2018,46(4):33-39. [95] 毕慧杰, 邓志刚, 赵善坤, 等. 高瓦斯综采工作面定向高位钻孔瓦斯抽采技术研究[J]. 煤炭科学技术, 2019,47(4):134-140. [96] 林海飞, 杨二豪, 夏保庆, 等. 高瓦斯综采工作面定向钻孔代替尾巷抽采瓦斯技术[J]. 煤炭科学技术, 2020,48(1):136-143. [97] Shang Y, Wu G, Liu Q, et al. The Drainage Horizon Determination of High Directional Long Borehole and Gas Control Effect Analysis[J]. Advances In Civil Engineering, 2021,2021(5):1-11. [98] 李晓红, 卢义玉, 康勇, 等. 岩石力学实验模拟技术[M]. 北京: 科学出版社, 2007. [99] 周宏伟, 张涛, 薛东杰, 等. 长壁工作面覆岩采动裂隙网络演化特征[J]. 煤炭学报, 2011,36(12):1957-1962. [100] 林海飞. 综放开采覆岩裂隙演化与卸压瓦斯运移规律及工程应用[D]. 西安: 西安科技大学, 2009. [101] 丁洋, 朱冰, 李树刚, 等. 高突矿井采空区卸压瓦斯精准辨识及高效抽采[J]. 煤炭学报, 2021,46(11):3565-3577. [102] 朱红青, 霍雨佳, 方书昊, 等. 寺家庄矿综采工作面顶板走向高抽巷合理层位研究[J]. 煤炭科学技术, 2021,49(1):234-239.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2022-06-17
|