- 无标题文档
查看论文信息

论文中文题名:

 Sr、Ce共掺PZT基铁电陶瓷制备与机理研究    

姓名:

 吴利娜    

学号:

 18201036033    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 080901    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位) - 物理电子学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 物理电子学    

研究方向:

 铁电材料研究    

第一导师姓名:

 张涛    

第一导师单位:

 西安科技大学    

第二导师姓名:

 田玉仙    

论文提交日期:

 2021-06-22    

论文答辩日期:

 2021-06-04    

论文外文题名:

 Preparation And Mechanism Studies Of Sr And Ce Co-Doped PZT Based Ferroelectric Ceramics    

论文中文关键词:

 PZT ; 掺杂 ; 第一性原理 ; 固相烧结 ; 正电子湮没 ; 高压拉曼    

论文外文关键词:

 PZT ; Doped ; First-Principles ; Solid-Phase Sintering ; Positron Annihilation    

论文中文摘要:

~锆钛酸铅(PbZrxTi1-xO3, PZT)材料因具有良好的铁电、介电、压电与热释电性能,在动态存储器、热传感器、可调谐微波器与雷达移相器等领域有着广泛的应用前景。随着通信系统与微电子技术的快速发展,PZT已不能满足高性能微波调谐器件的设计需求,而调控改性是改善其性能的重要手段。本文从理论计算与实验制备两个方面研究了Sr、Ce掺杂PZT陶瓷材料的电子结构、介电、光学与铁电性质,本文中选取的Sr单掺含量为5%, 10%, 20%;Ce单掺含量为5%, 10%, 20%;Sr-Ce共掺杂含量为10%Sr-5%Ce, 10%Sr-10%Ce, 10%Sr-20%Ce。
理论上采用基于密度泛函理论的第一性原理方法研究了Sr、Ce掺杂PZT体系,通过超晶胞法建立不同Sr、Ce掺杂比例的PZT理论模型,计算分析了掺杂体系的电子结构、介电性、光学性与铁电性。主要研究结论如下:
(1) Sr掺杂PZT体系的带隙值随Sr含量的增加而增大,在PZT体系中O原子与A位原子之间呈现出了很强的离子键特性;静态介电常数由6.197减小至5.981;在紫外光可见光区内,PZT体系的折射率、消光率与反射率均降低,透光率提高;铁电自发极化值由28.6 μC/cm2增大至66.2 μC/cm2,可有效提高与改善PZT体系的铁电性能。
(2) Ce掺杂PZT体系的带隙值随着Ce含量的增加而增大。费米能级附近主要由O-2p,Ti-3d,Zr-4d轨道电子及Ce的d轨道电子所贡献;Ce含量为5%时,B位原子与O原子间电荷转移强烈,共价键相互作用增强;静态介电常数由7.1减小至6.3;在紫外光可见光区内,体系折射率、消光率与反射率降低,透光率提高;Ce掺杂含量增大至20%时铁电自发极化为51 μC/cm2,相对比未掺杂PZT体系有了明显提高。
(3) Sr、Ce共掺PZT体系含量为10%Sr-10%Ce时带隙值由1.466 eV减小至1.26 eV,禁带宽度变窄;O原子与B位原子形成了强烈的共振峰,局域性强,含量为10%Sr-20%Ce时B位原子与O原子周围的电荷转移可有效改变电荷的成键极化方向;静态介电常数由6.854增大至7.243;改善了体系在20 eV~30 eV光存储效率与光透过率;共掺含量为10%Sr-20%Ce时铁电自发极化由28.6 μC/cm2增大至64.5 μC/cm2,可有效提高材料的铁电性能。
实验上采用固相烧结法制备了PZT及Sr、Ce掺杂PZT陶瓷,通过改变不同烧结温度与掺杂含量,探究了PZT及Sr、Ce掺杂对PZT陶瓷电学性能影响,对陶瓷的微观形貌、晶体结构、介电、铁电及正电子湮没寿命谱和高压拉曼光谱进行了测试表征,得到的主要研究结论如下:
(1) 通过对非掺杂PZT陶瓷表征与性能研究可知,烧结温度为1000 °C时PZT陶瓷结晶性最好,表面致密;其具有较高的介电常数,同时具有良好的铁电性能;正电子湮没测试表明在PZT陶瓷中存在缺陷,且缺陷主要为B位缺陷;拉曼光谱结果分析表明,在0~30 Gpa的压力范围内,压力为2.61 Gpa和8.68 Gpa时,PZT发生了明显的结构相变。
(2) 通过对Sr掺杂PZT陶瓷表征与性能研究,发现1100 °C时20%Sr掺杂PZT陶瓷表面最为致密,衍射峰尖锐,生长良好,形成钙钛矿结构;其相对介电常数最大且损耗较小,饱和极化和剩余极化最大;正电子湮没测试研究表明Sr掺杂PZT后,B位缺陷变大,但缺陷的寿命强度基本未发生改变。拉曼光谱结果分析表明,压力在2.13 Gpa时,出现新的结构相,压力增大至6.88 Gpa时,PSZT的拉曼峰基本消失。
(3) 通过对Ce掺杂PZT陶瓷表征与性能研究,发现1000 °C时5%Ce掺杂PZT陶瓷表面较为致密,衍射峰尖锐,生长良好,形成良好固溶体;其介电性能与铁电性能都得到了有效的提高与改善;正电子湮没测试研究表明Ce掺杂使得PZT样品缺陷长大,缺陷浓度降低;拉曼光谱结果分析表明,PCZT在压力点为2.42 Gpa, 5.54 Gpa和9.91 Gpa时出现相变,拉曼峰增多。
(4) 通过对Sr、Ce共掺PZT陶瓷表征与性能研究,发现1100 °C时10%Sr-5%Ce掺杂PZT陶瓷表面较为致密,衍射峰尖锐且生长良好,形成钙钛矿结构;对体系介电性能提高更为理想;其具有较高剩余极化和较小矫顽场,可有效改善陶瓷材料的铁电性能;正电子湮没测试研究表明共掺使PZT缺陷长大,可捕获缺陷浓度减小;拉曼光谱结果分析表明,PSCZT陶瓷压力点在4.4 Gpa和5.54 Gpa附近处产生相变,对物质结构变化影响较大。
本文通过理论与实验相结合,分析了Sr、Ce掺杂PZT基材料掺杂改性微观机理,探究不同烧结温度、掺杂含量对Sr、Ce掺杂PZT陶瓷结构与电学性能的影响,对于高可调控性能PZT基材料研究及应用具有一定意义,有望促进PZT材料在微机电器件、动态存储器等领域中的广泛应用。
关 键 词:PZT;掺杂;第一性原理;固相烧结;正电子湮没;高压拉曼
研究类型:基础研究
项    目:国家自然科学基金项目(Grant No.11974275,No. 61834005);
陕西省创新人才推进计划-科技创新团队项目(Grant No. 2019TD-026);
陕西省科技统筹计划项目(Grant No. 2012KTCL01-12);

论文外文摘要:

~Lead zirconate titanate (PbZrxTi1-xO3, PZT) material has a broad application prospect in the fields lor='red'>of dynamic memory, thermal sensor, tunable microwave, and radar phase shifter due to its excellent ferroelectric, dielectric, pyroelectric, and piezoelectric properties. With the rapid d eVelopment lor='red'>of co mmunication systems and microelectronics technology, PZT can no longer meet the design requirements lor='red'>of high-performance microwave tuning devices, and controlling modification is an important means to improve its performance. In this paper, the electronic structure, dielectric properties, optical properties and ferroelectric properties lor='red'>of Sr and Ce co-doped PZT ceramic materials were studied by the first-principles calculation and experimental preparation. In this paper, the ratio lor='red'>of Sr single doping was 5%, 10%, and 20%. The single doping lor='red'>of Ce was 5%, 10%, 20%; The Sr-Ce co-doping ratio was 10%Sr-5%Ce, 10%Sr-10%Ce, 10%Sr-20%Ce.
In terms lor='red'>of theory, the Sr-Ce co-doped PZT system was studied by the first-principles method based on density functional theory. The theoretical model lor='red'>of PZT with different Sr-Ce doping ratios was established by the supercell method, and the electronic structure, dielectric, optical and ferroelectric properties lor='red'>of the doped system were calculated and analyzed. The main research conclusions summarized as follows:
(1)  The band gap value lor='red'>of the Sr-doped PZT increases with the increase lor='red'>of Sr ratio, and there is a strong ionic bond between O atom and A-site atom in PZT system. The static dielectric constant decreases from 6.197 to 5.981; in the near-ultraviolet light region, the refractive index, extinction rate, and reflectivity lor='red'>of PZT system decrease, the transmittance is improved; the ferroelectric properties lor='red'>of PZT system can be effectively improved by increasing the ferroelectric spontaneous polarization value from 28.6 μC/cm2 to 66.2 μC/cm2.
(2) With the increase lor='red'>of Ce ratio, the forbidden band breadth lor='red'>of Ce doped PZT system increases. The energy bands near Fermi level are mainly contributed by O-2p, Ti-3d, Zr-4d orbital electrons, and Ce d orbital electrons; When Ce ratio is 5 %, the charge transfer between B-site atom and O atom is strong, and the covalent bond interaction is enhanced. The static dielectric constant decreases from 7.1 to 6.3; in the near-ultraviolet region, the refractive index, extinction ratio, and reflectivity lor='red'>of the system decrease. When the Ce doping content increases to 20%, the ferroelectric spontaneously polarized to 51 μC/cm2, which is obviously higher than that lor='red'>of undoped PZT system.
(3) When the ratio lor='red'>of Sr and Ce co-doped PZT system is 10%Sr-10%Ce, the band gap value decreases from 1.466 eV to 1.26 eV, and the band gap width becomes narrower. There is a strong resonance peak between O atom and B-site atom with strong localization. The charge transfer around B atom and O atom can effectively change the bonding polarization direction lor='red'>of the charge when the ratio is 10%Sr-20%Ce.The static dielectric constant increased from 6.854 to 7.243; Meanwhile, its can improve the optical storage efficiency and optical transmittance lor='red'>of the system at 20 eV~30 eV; When the co-doping content is 10%Sr-20%Ce, the ferroelectric spontaneous polarization increases from 28.6 μC/cm2 to 64.5 μC/cm2, which can effectively improve the ferroelectric properties lor='red'>of the materials.
In the experiment, solid-phase sintering was adopted to prepare the PZT and Sr, Ce co-doping PZT ceramic. The effects lor='red'>of PZT and Sr, Ce co-doping on the electrical properties lor='red'>of PZT ceramics were explored by changing different high temperatures and doping ratios. The microstructure, crystal structure, dielectric properties, ferroelectric, positron annihilation lifetime spectrum and high pressure raman spectroscopy lor='red'>of the ceramics were tested and characterized. The main conclusions summarized as follows:
(1) The characterization and properties lor='red'>of PZT ceramics were studied. It was found that the crystal lattice lor='red'>of PZT ceramics grew well and the surface was compact when the sintering temperature was 1000 °C. The dielectric constant and loss lor='red'>of PZT ceramic materials are larger, which is more ideal for improving the ferroelectric properties lor='red'>of PZT ceramic materials; Positron annihilation show that there are defects in PZT ceramics, and the defects are mainly B-position defects; Raman spectrum analysis shows that the PZT underwent obvious structural phase transition at the pressures lor='red'>of 2.61 Gpa and 8.68 Gpa in the range lor='red'>of 0~30 Gpa.
(2) Through the characterization and properties lor='red'>of Sr-doped PZT ceramics, it was found that at 1100 °C, the surface lor='red'>of 20%Sr-doped PZT ceramics is the densest, the diffraction peak is sharp, and the perovskite structure is formed. The relative dielectric constant is the largest and the loss is small. The saturation polarization and residual polarization are the largest. The results lor='red'>of positron annihilation test showed that Sr doping made the B-site defects become larger, but the lifetime strength lor='red'>of the defects is basically unchanged; Raman spectrum shows that a new structural phase appears when the pressure is 2.13 Gpa, and the Raman peak lor='red'>of PSZT basically disappears when the pressure is 6.88 Gpa.
(3) The characterization and properties lor='red'>of Ce-doped PZT ceramics were studied. It can be found that when the sintering temperature is 1000 °C, the surface lor='red'>of 5%Ce-doped PZT ceramics is the densest. Besides, the diffraction peak is sharp, the grain grows well, and the perovskite structure is formed. Its dielectric properties and ferroelectric properties have been improved effectively; the results lor='red'>of positron annihilation showed that Ce doping made the defects lor='red'>of PZT samples grow larger and the defect concentration decreased; Raman spectrum showed that PCZT phase transition occurs at the pressure points lor='red'>of 2.42 Gpa, 5.54 Gpa and 9.91 Gpa, and raman peaks increase.
(4) By studying the characterization and properties lor='red'>of Sr and Ce co-doped PZT ceramics, it can be found that when the sintering temperature is 1100 °C, 10%Sr-5%Ce doped PZT ceramic has the densest surface. Its sharp diffraction peak and good growth show that the perovskite structure was formed. The dielectric constant is the highest and the loss is relatively small, which is more ideal for improving the dielectric performance lor='red'>of the system. It has higher residual polarization and a smaller coercive field, which can effectively enhance the ferroelectric properties lor='red'>of ceramic materials; the positron annihilation results show that the co-doped PZT defects grow larger and the concentration lor='red'>of the captured defects decreases; Raman spectrum shows that the phase transition lor='red'>of PSCZT ceramics occurs at the pressure points lor='red'>of 4.4 Gpa and 5.54 Gpa, which has a great effect on the material structure change.
Through the combination lor='red'>of theory and experiment, this paper analysis the Sr, Ce co-doping PZT materials doped modified microscopic mechanism, and the preparation lor='red'>of the PZT ceramics. Exploring the effects lor='red'>of different high temperatures and doping ratios on Sr and Ce co-doped PZT ceramics is lor='red'>of certain significance for the research and application lor='red'>of PZT-based ceramics with high adjustable performance, which is expected to promote the wide application lor='red'>of pyroelectric ceramics in the fields lor='red'>of MEMS devices and dynamic memory.
Key words: PZT; Doped; First-Principles; Solid-Phase Sintering; Positron Annihilation;
High pressure-Raman
Thesis: Fundamental Research
Foundation Project:
The National Natural Science Foundation lor='red'>of China (Grant No. 11974275, No. 61834005);
The Shaanxi Innovative Talents Promotion Plan-Science and Technology Innovation Team Project (Grant No. 2019TD-026);
The Shaanxi Provincial Innovation Project for Science and Technology Overall Planning (Grant No. 2012KTCL01-12);

中图分类号:

 TB383    

开放日期:

 2023-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式