- 无标题文档
查看论文信息

论文中文题名:

 N00    

姓名:

 李鑫    

学号:

 19220089007    

保密级别:

     

论文语种:

 chi    

学科代码:

 083700    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

     

第一导师姓名:

 刘超    

第一导师单位:

  西安科技大学    

第二导师姓名:

 张超    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Study on temporal and spatial characteristics of overburden migration and surface subsidence in shallow coal seam under N00 mining method    

论文中文关键词:

 N00工法 ; 切顶卸压 ; 覆岩运移 ; 微震监测 ; 开采沉陷    

论文外文关键词:

 N00 mining method ; Top cutting and pressure relief ; Overburden migration ; Mining subsidence ; Microseismic monitoring    

论文中文摘要:
<p>使N00绿</p> <p>1N00&ldquo;&rdquo;&ldquo;&rdquo;N00N00</p> <p>2ESGS12012N00S1201238.25m91.24m21.25mN00&ldquo;U+Y&rdquo;65.8m135m</p> <p>3N00退</p> <p>4S12012N00</p>
论文外文摘要:
<p>For a long time, coal plays a leading role in China&#39;s energy system and has made indelible contributions to China&#39;s economic development. Coal is a non renewable energy, and its reserves are extremely limited. With the continuous extraction of underground resources, its reserves are becoming less and less. The problem of resource waste caused by the traditional coal pillar mining technology is becoming increasingly prominent. In order to solve this problem, the roof cutting and pressure relief non pillar mining technology was bred. This technology is not only in line with the important development direction of sustainable mining of coal resources, but also to solve the problems of gas and power disasters in coal mines It is an important guarantee to reduce the tunneling rate of roadway engineering and realize scientific mining. However, according to the current research at home and abroad, the optimization of roof structure by roof cutting and pressure relief pillar free mining makes the law of overburden rock movement and surface subsidence very different from the traditional mining method. Therefore, this paper takes the N00 construction method test face of shallow coal seam in Shenfu mining area as the research basis, and comprehensively uses the research methods of theoretical analysis, microseismic monitoring, surface observation and so on, The temporal and spatial characteristics of overburden rock movement and surface subsidence in roof cutting and pressure relief non pillar mining are studied. The research results can provide a certain reference value for the prediction of surface subsidence and the green mining of coal under the pressure relief and pillar free mining of shallow coal seams. The main research results are as follows:</p> <p>(1) Based on the structural characteristics of self forming roadways without coal pillars, the &quot;deformation structure&quot; and &quot;stable structure&quot; of roof strata under N00 construction method are studied, and the asymmetry of ground pressure behavior is analyzed. Combined with the laws of overburden fracture and fracture development under N00 construction method, the relationship model between overburden fracture and surface subsidence with space-time characteristics is established, which provides a theoretical basis for the prevention and control of surface subsidence under N00 construction method.</p> <p>(2) Using ESG high-precision microseismic monitoring system, the temporal and spatial evolution law of microseismic events and the law of overburden fracture and migration are studied. This paper summarizes the distribution characteristics of microseismic events in time and space during N00 working method mining in Ningtiaota S12012 working face, and describes the overburden fracture layer with the number, distribution range and energy release of microseismic events. According to the microseismic events, the height of the collapse zone of working face S12012 is 38.25m, the height of the fracture zone is 91.24m, and the average pressure step distance is about 21.25m. The basic roof shows &quot;U+Y&quot; fracture under N00 construction method. The sub key layer is broken after 65.8m of mining, and the main key layer is broken after 135m of mining.</p> <p>(3) By setting up surface observation stations to monitor the characteristic <font color='red'>parameter</font>s of surface subsidence, subsidence speed, horizontal displacement, surface cracks and so on under N00 construction method, the characteristics of surface deformation in the initial weak stage, development sudden increase stage and stable decline stage are summarized. The relationship between overburden fracture and surface cracks is analyzed, and the temporal and spatial characteristics of overburden movement and surface subsidence in the process of mining are explored.</p> <p>(4) The existing surrounding rock control scheme of S12012 working face in Ningtiaota Coal Mine is optimized, which provides a new idea for the surrounding rock control of N00 method and the selection of roadway support structure. After the field implementation, the stability of the surrounding rock roadway in the mining process is improved, which provides a guarantee for the safe and efficient mining of the working face.</p>
参考文献:

[1] 中国煤炭工业协会. 2021年全国原煤产量分省完成情况分析[N/OL]. 国家统计局网站, 2022-01-21.

[2] 白宛松. 六部门联合印发《关于加快建设绿色矿山的实施意见》[N/OL]. 国土资源部网站, 2017-05-12.

[3] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211.

[4] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960.

[5] 钱鸣高. 加强煤炭开采理论研究 实现科学开采[J]. 采矿与安全工程学报, 2017, 34(04): 615.

[6] 钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(01): 1-13.

[7] 许家林, 秦伟, 陈晓军, 等. 采动覆岩卸荷膨胀累积效应的影响因素[J]. 煤炭学报, 2022, 47(01): 115-127.

[8] 钱鸣高, 缪协兴, 何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报, 1994, 19(06): 557-563.

[9] 钱鸣高, 张顶立, 黎良杰, 等. 砌体梁的“S-R”稳定及其应用[J]. 矿山压力与顶板管理, 1994(03): 6-11+80.

[10] 钱鸣高, 朱德仁, 王作棠. 老顶岩层断裂型式及对工作面来压的影响[J]. 中国矿业学院学报, 1986(02): 12-21.

[11] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 北京: 中国矿业大学出版社, 2010.

[12] 宋振骐, 郝建, 石永奎, 等. “实用矿山压力控制理论”的内涵及发展综述[J]. 山东科技大学学报(自然科学版), 2019, 38(01): 1-15.

[13] 杨洪兴, 杨天全, 唐睿. 卸压预裂爆破沿空留巷技术在急倾斜煤层中的应用[J]. 矿业安全与环保, 2016, 43(04): 87-89+108.

[14] 谭云亮, 于凤海, 宁建国, 等. 沿空巷旁支护适应性原理与支护方法[J]. 煤炭学报, 2016, 41(02): 376-382.

[15] 巨峰, 陈志维, 张强, 等. 固体充填采煤沿空留巷围岩稳定性控制研究[J]. 采矿与安全工程学报, 2015, 32(06): 936-942.

[16] 李舒霞, 姜福兴, 朱权洁. 复合墙体支护技术在沿空留巷中的应用研究[J]. 煤炭科学技术, 2014, 42(12): 32-36.

[17] 韩昌良, 张农, 李桂臣, 等. 大采高沿空留巷巷旁复合承载结构的稳定性分析[J]. 岩土工程学报, 2014, 36(05): 969-976.

[18] 王亚军, 何满潮, 张科学, 等. 无煤柱自成巷开采巷道矿压显现特征及控制对策[J]. 采矿与安全工程学报, 2018, 35(04): 677-685.

[19] 何满潮, 马新根, 牛福龙, 等. 中厚煤层复合顶板快速无煤柱自成巷适应性研究与应用[J]. 岩石力学与工程学报, 2018, 37(12): 2641-2654.

[20] 高玉兵, 何满潮, 杨军, 等. 无煤柱自成巷空区矸体垮落的切顶效应试验研究[J]. 中国矿业大学学报, 2018, 47(01): 21-31+47.

[21] He M, Zhu G, Guo Z. Longwall mining “cutting cantilever beam theory” and 110 mining method in China——The third mining science innovation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(05): 483-492.

[22] Wang Q, He M, Yang J, et al. Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 1-8.

[23] Ma X, He M, Sun J, et al. Research on the Design of Roof Cutting Parameters of Non Coal Pillar Gob-side Entry Retaining Mining with Roof Cutting and Pressure Releasing[J]. Geotechnical and Geological Engineering, 2019, 37(3): 1169-1184.

[24] 程建远, 朱梦博, 王云宏, 等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报, 2019, 44(08): 2285-2295.

[25] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(08): 2277-2284.

[26] 卢新明, 阚淑婷. 煤炭精准开采地质保障与透明地质云计算技术[J]. 煤炭学报, 2019, 44(08): 2296-2305.

[27] 李福兴, 李璐爔. 面向煤炭开采的大数据处理平台构建关键技术[J]. 煤炭学报, 2019, 44(S1): 362-369.

[28] 王国法, 赵国瑞, 任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报, 2019, 44(01): 34-41.

[29] 王国法, 张德生. 煤炭智能化综采技术创新实践与发展展望[J]. 中国矿业大学学报, 2018, 47(03): 459-467.

[30] 谢和平, 鞠杨, 高明忠, 等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报, 2018, 43(05): 1210-1219.

[31] 朱珍, 张科学, 何满潮, 等. 无煤柱无掘巷开采自成巷道围岩结构控制及工程应用[J]. 煤炭学报, 2018, 43(S1): 52-60.

[32] 朱珍, 何满潮, 王琦, 等. 柠条塔煤矿自动成巷无煤柱开采新方法[J]. 中国矿业大学学报, 2019, 48(01): 46-53.

[33] 何满潮, 王亚军, 杨军, 等. 切顶卸压无煤柱自成巷开采与常规开采应力场分布特征对比分析[J]. 煤炭学报, 2018, 43(03): 626-637.

[34] 何满潮, 王亚军, 杨军, 等. 切顶成巷工作面矿压分区特征及其影响因素分析[J]. 中国矿业大学学报, 2018, 47(06): 1157-1165.

[35] 杨军, 王宏宇, 王亚军, 等. 切顶卸压无煤柱自成巷顶板断裂特征研究[J]. 采矿与安全工程学报, 2019, 36(06): 1137-1144.

[36] 杨军, 付强, 高玉兵, 等. 切顶卸压无煤柱自成巷全周期围岩受力及变形规律[J]. 煤炭学报, 2020, 45(S1): 87-98.

[37] 张百胜, 王朋飞, 崔守清, 等. 大采高小煤柱沿空掘巷切顶卸压围岩控制技术[J]. 煤炭学报, 2021, 46(07): 2254-2267.

[38] 苏超, 弓培林, 康红普, 等. 深井临空高应力巷道切顶卸压机理研究[J]. 采矿与安全工程学报, 2020, 37(06): 1104-1113.

[39] 王琦, 江贝, 辛忠欣, 等. 无煤柱自成巷三维地质力学模型试验系统研制与工程应用[J]. 岩石力学与工程学报, 2020, 39(08): 1582-1594.

[40] 李迎富, 华心祝. 沿空留巷上覆岩层关键块稳定性力学分析及巷旁充填体宽度确定[J]. 岩土力学, 2012, 33(04): 1134-1140.

[41] Liu Y, Wu X, Zhu T, et al. Influence of Mechanical Properties of Filling Paste on Overlying Strata Movement and Surface Settlement[J]. Shock and Vibration, 2022, 2022: 1-9.

[42] Zhao Y, Yang Y, Li X, et al. Overlying Strata Movement and Abutment Pressure Evolution Process of Fully Mechanized Top Coal Caving Mining in Extra Thick Coal Seam[J]. Geofluids, 2021, 2021: 1-11.

[43] Lin H, Yang R, Lu B, et al. Overlying strata movement law of continuous mining and continuous backfilling cemented-fill mining[J]. Environmental Earth Sciences, 2021, 80(20): 1-15.

[44] Ma Z, Liu C, Li H. Research on the Ground Pressure Features of Long Wall Top Coal Caving Working Face in Extra-Thick Coal Seam[J]. International Journal of Oil, Gas and Coal Engineering, 2021, 9(2): 105-109.

[45] 许家林, 秦伟, 陈晓军, 等. 采动覆岩卸荷膨胀累积效应的影响因素[J]. 煤炭学报, 2022, 47(01): 115-127.

[46] 弓培林, 靳钟铭. 大采高综采采场顶板控制力学模型研究[J]. 岩石力学与工程学报, 2008, 27(01): 193-198.

[47] 姜福兴, 刘懿, 张益超, 等. 采场覆岩的“载荷三带”结构模型及其在防冲领域的应用[J]. 岩石力学与工程学报, 2016, 35(12): 2398-2408.

[48] 赵毅鑫, 刘文超, 张村, 等. 近距离煤层蹬空开采围岩应力及裂隙演化规律[J]. 煤炭学报, 2022, 47(01): 259-273.

[49] 赵毅鑫, 许多, 张康宁, 等. 采动地表浅层隐蔽裂缝的无人机红外识别现场试验[J/OL]. 煤炭学报, 2022-05-30.

[50] 赵毅鑫, 许多, 孙波, 等. 基于无人机红外遥感和边缘检测技术的采动地裂缝辨识[J]. 煤炭学报, 2021, 46(02): 624-637.

[51] 张兵, 崔希民, 赵玉玲, 等. 开采沉陷倾向主断面动态预计模型与算法[J]. 煤炭学报, 2021, 46(06): 1864-1873.

[52] 于广明, 杨伦, 苏仲杰, 等. 地层沉陷非线性原理 监测与控制[M]. 辽宁: 吉林大学出版社, 2000.

[53] 煤炭科学研究院北京开采研究所. 煤矿地表移动与覆岩破坏规律及其应用[M]. 北京:煤炭工业出版社, 1981.

[54] 何国清, 马伟民, 王金庄. 威布尔分布型影响函数在地表移动计算中的应用——用碎块体理论研究岩移基本规律的探讨[J]. 中国矿业学院学报, 1982(01): 4-23.

[55] 张华兴, 焦传武. 地表移动精确预计法——线积分运算[J]. 矿山测量, 1988(04): 23-31.

[56] 邹友峰, 邓喀中, 马伟民. 矿山开采沉陷工程[M]. 河南: 中国矿业大学出版社, 2003.

[57] 戴华阳, 易四海, 鞠文君, 等. 矿山工程技术——矿山地质学——急倾斜煤层水平分层综放开采岩层移动规律[J]. 中国学术期刊文摘, 2006, 12(18): 1.

[58] 史继彪. 概率积分法沉降预测参数高效统计方法[J]. 能源技术与管理, 2021, 46(06): 197-200.

[59] 李金洋, 臧明东, 徐能雄, 等. 基于概率积分法的采空区残余变形对桑掌隧道的影响研究[J]. 工程地质学报, 2021, 29(02): 564-574.

[60] 朱广轶, 秦艳芬, 杨广宁, 等. 采动地表全盆地残余移动变形数学模型[J]. 沈阳大学学报(自然科学版), 2020, 32(04): 331-339.

[61] 朱忠华, 胡杰, 陶干强, 等. 自然崩落法高阶段多漏斗放矿矿岩流动模拟及结构参数优化[J]. 重庆大学学报, 2017, 40(05): 49-59.

[62] 朱庆伟, 李航, 杨小虎, 等. 采动覆岩结构演化特征及对地表沉陷的影响分析[J]. 煤炭学报, 2019, 44(S1): 9-17.

[63] 刘宝琛, 戴华阳. 概率积分法的由来与研究进展[J]. 煤矿开采, 2016, 21(02): 1-3.

[64] 余学义, 郭文彬, 赵兵朝, 等. 厚黄土层煤层开采沉陷规律研究[J]. 煤炭科学技术, 2015, 43(07): 6-10+24.

[65] 丁玉龙, 雷少刚, 卞正富, 等. 开采沉陷区四合木根系抗变形能力分析[J]. 中国矿业大学学报, 2013, 42(06): 970-974+981.

[66] 迟宝锁, 王强, 高彬. 基于GIS的采掘接续编排预警系统[J]. 煤矿安全, 2021, 52(02): 138-141.

[67] 王明柱, 郭广礼, 王磊, 等. 基于岭估计的概率积分法预计参数的求取[J]. 煤矿开采, 2012, 17(02): 17-19+85.

[68] 张国华, 韩立鑫, 侯凤才, 等. 基于框架结构理论的地表防沉技术研究与应用[J]. 煤炭学报, 2011, 36(08): 1270-1275.

[69] Hou D, Li D, Xu G, et al. Superposition model for analyzing the dynamic ground subsidence in mining area of thick loose layer[J]. International Journal of Mining Science and Technology, 2018, 28(04): 663-668.

[70] Yu G, Mi W, Wang D, et al. Research on the Relationship between the Surface Dynamic Subsidence and Overburden Separated Strata of Coal Mine and Its Model[J]. Procedia Engineering, 2017, 191: 196-205.

[71] Teng, Hao, Jialin, et al. Surface subsidence characteristics of grout injection into overburden: case study of Yuandian No. 2 coalmine, China[J]. Environmental earth sciences, 2016, 75(06): 1-11.

[72] Zhang B, Cui X. Optimization of segmented Knothe time function model for dynamic prediction of mining subsidence[J]. Yantu Lixue/Rock and Soil Mechanics, 2017, 38(2): 541-548 and 556.

[73] Wang B, Xu J, Xuan D. Time function model of dynamic surface subsidence assessment of grout-injected overburden of a coal mine[J]. International Journal of Rock Mechanics & Mining ences, 2018, 104: 1-8.

[74] 许家林, 钱鸣高, 金宏伟. 岩层移动离层演化规律及其应用研究[J]. 岩土工程学报, 2004, 26(05): 632-636.

[75] 朱卫兵, 许家林, 施喜书, 等. 覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J]. 岩石力学与工程学报, 2009, 28(02): 403-409.

[76] 缪协兴, 黄艳利, 巨峰, 等. 密实充填采煤的岩层移动理论研究[J]. 中国矿业大学学报, 2012, 41(06): 863-867.

[77] 缪协兴. 综合机械化固体充填采煤技术研究进展[J]. 煤炭学报, 2012, 37(08): 1247-1255.

[78] 夏小刚, 黄庆享. 基于“四带”划分的弯曲下沉带岩层移动预计模型[J]. 岩土力学, 2015, 36(08): 2255-2260.

[79] 黄庆享, 夏小刚. 采动岩层与地表移动的“四带”划分研究[J]. 采矿与安全工程学报, 2016, 33(03): 393-397.

[80] 陈庆发, 牛文静, 刘严中, 等. Knothe模型改进及充填开采岩层移动动态过程分析[J]. 中国矿业大学学报, 2017, 46(02): 250-256.

[81] 左建平, 孙运江, 王金涛, 等. 充分采动覆岩“类双曲线”破坏移动机理及模拟分析[J]. 采矿与安全工程学报, 2018, 35(01): 71-77.

[82] 左建平, 吴根水, 孙运江, 等. 岩层移动内外“类双曲线”整体模型研究[J]. 煤炭学报, 2021, 46(02): 333-343.

[83] 左建平, 于美鲁, 孙运江, 等. 采矿岩层破断力学及内外类双曲线整体移动模型[J]. 中国科学基金, 2022, 36(01): 128-136.

[84] Ye X, Jin T, Chen Y. Machine learning-based forecasting of soil settlement induced by shield tunneling construction[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2022, 124: 1-12.

[85] 翟栋梁, 刘川, 乔建伟, 等. 临汾盆地北张地裂缝发育特征与成因分析[J]. 地震工程学报, 2021, 43(06): 1326-1333.

[86] 王新静, 胡振琪, 杨耀淇, 等. 采动动态地裂缝发育特征监测装置的设计与应用[J]. 煤炭工程, 2014, 46(03): 131-133.

[87] 王强民, 董书宁, 王皓, 等. 西部风沙区采煤塌陷地裂缝影响下的土壤水分运移规律及调控方法[J]. 煤炭学报, 2021, 46(05): 1532-1540.

[88] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报, 2021, 40(01): 1-30.

[89] 李利萍, 李卫军, 潘一山. 冲击扰动对超低摩擦型冲击地压影响分析[J]. 岩石力学与工程学报, 2019, 38(01): 111-120.

[90] 张振杰, 朱杰兵, 汪斌, 等. 基于能量耗散机制的片麻状花岗岩损伤与剪胀演化规律[J]. 岩石力学与工程学报, 2018, 37(S1): 3441-3448.

[91] 杜时贵, 吕原君, 罗战友, 等. 岩体结构面抗剪强度尺寸效应联合试验系统及初级应用研究[J]. 岩石力学与工程学报, 2021, 40(07): 1337-1349.

[92] 蔡美峰. 深部开采围岩稳定性与岩层控制关键理论和技术[J]. 采矿与岩层控制工程学报, 2020, 2(03): 5-13.

[93] 李全生, 李晓斌, 许家林, 等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术, 2022, 50(01): 28-47.

[94] 宋解放, 陆菜平, 李振武, 等. 煤层夹矸赋存区应力分布特征及微震活动规律[J]. 采矿与岩层控制工程学报, 2021, 3(04): 120-128.

[95] 安艺敬一, P.G.理查兹著, 李钦祖, 等. 定量地震学——理论和方法 第1卷[M]. 美国: 地震出版社, 1986.

[96] 崔峰, 杨彦斌, 来兴平, 等. 基于微震监测关键层破断诱发冲击地压的物理相似材料模拟实验研究[J]. 岩石力学与工程学报, 2019, 38(04): 803-814.

[97] 张炜, 张东升, 陈建本, 等. 极近距离煤层回采巷道合理位置确定[J]. 中国矿业大学学报, 2012, 41(02): 182-188.

[98] 袁峰, 申涛, 谢晓深, 等. 基于深度学习的地震多属性融合技术在导水裂隙带探测中的应用"[J]. 煤炭学报, 2021, 46(10): 3234-3244.

[99] 李全生, 鞠金峰, 曹志国, 等. 采后10a垮裂岩体自修复特征的钻孔探测研究——以神东矿区万利一矿为例[J]. 煤炭学报, 2021, 46(05): 1428-1438.

[100] 柴敬, 雷武林, 杜文刚, 等. 分布式光纤监测的采场巨厚复合关键层变形试验研究[J]. 煤炭学报, 2020, 45(01): 44-53.

[101] 吕有厂, 何志强, 王英伟, 等. 超千米深部矿井采动应力显现规律[J]. 煤炭学报, 2019, 44(05): 1326-1336.

中图分类号:

 TD325    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式