题名: |
深井高地温综放面风流热运移特征及降温方法研究
|
作者: |
刘尚明
|
学号: |
20120089029
|
保密级别: |
保密(2年后开放)
|
语种: |
chi
|
学科代码: |
083700
|
学科: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位: |
工学博士
|
学位年度: |
2024
|
学校: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
矿井热害防治
|
导师姓名: |
邓军
|
导师单位: |
西安科技大学
|
第二导师姓名: |
马砺
|
提交日期: |
2024-06-07
|
答辩日期: |
2024-05-26
|
外文题名: |
Study on the Characteristics of Heat Transfer in High-Temperature Comprehensive Mining Faces of Deep Well and Cooling Methods
|
关键词: |
矿井热害 ; 高地温综放面 ; 热运移 ; 温度场分布 ; 降温方法
|
外文关键词: |
Mine thermal hazards ; high-temperature comprehensive mining face ; heat transfer ; temperature field distribution ; cooling methods
|
摘要: |
︿
矿井热害是深井开采面临的四大职业危害之一。开采深度增加造成围岩温度升高,井下形成的高温环境严重威胁作业人员的身体健康和生命安全。探究高地温矿井综放工作面热运移规律,提出高效的制冷降温方法是解决矿井热害的有效途径。本文以山东巨野矿区热害矿井为研究对象,采用现场观测、实验研究、数值分析及试验应用相结合的方法,开展高地温综放面热源散热特性、热运移特征、温度场分布和降温方法等方面的研究,揭示风流温度、湿度和速度对热运移过程的影响作用机制,提出深井高地温综放面梯级降温方法并进行现场应用。
采用分布式光纤测温系统对7303高地温综放面风流温度进行连续监测,得到不同时间工作面温度变化规律:生产期间综放面围岩散热随开采时间呈指数增加,回风流最大温升为7.6℃;检修期间热源散热随通风时间先快速下降后趋于平缓,回风流平均温升为4.5℃;回风流温升幅度随生产时间呈周期性变化,风流温度沿综放面呈现升温速率动态波动的梯级升高规律。
基于网络热阻和热容链的热网模型分析综放面通风传热过程,揭示了风流与高温围岩热交换过程中,热量沿温度梯度由围岩向风流传递。综放面生产期间传热单元在空间维度散热量累积、时间维度周期性叠加的热量持续增加,检修期间煤壁温度在时间维度持续衰减,热源散热量动态降低。
搭建风流热运移实验系统,研究风流温度、湿度和速度变化对热表面换热过程及换热性能的影响规律。进风温度增加导致温升速率和风流焓值增量减缓,对流换热系数与进风温度呈线性负相关;湿度改变引发对流传热过程的不稳定性,加剧潜热交换对热运移的影响强度,风速增大加速了热传递过程。热表面降温过程中,进风温度与热表面降温时间呈非线性正相关,对流换热系数随通风时间呈高斯函数变化。风流湿度和速度较低时对热运移过程有正向影响,湿度和风速过高对热运移产生逆向作用,降温冷量的增加和热源放热变化,导致热量输入和输出逐渐趋于稳定,热系统中热运移达到平衡状态。
通过对综放面风流热力状态参数测定与温度场数值模拟,掌握了风流与煤壁热湿交换量的变化趋势,风流温度呈现快速下降后逐渐稳定的变化趋势,其中7303工作面的潜热传递量由1160 W降低至980 W后趋于稳定,显热传递量由3880 W下降至452 W后趋于稳定。绘制了风流温度、湿度及焓值的等值线和分布云图,风流温度场沿倾向呈温度梯度逆变的非均匀分布,靠近煤壁和采空区两侧热量高,而中间低的热量分布规律。进风温度升高导致整体温度上升,温度梯度变化幅度逐渐减小,围岩温度升高会导致综放面温度梯度增加。
针对综放面空间狭小、热量分布影响因素多、风机与空冷器不匹配等问题,设计了高地温综放面空冷器风机一体化降温装置,综放面空冷器外形(长1 m、直径0.5 m)为圆柱形,内部采用双螺旋换热管同心圆布置结构,制冷功率100 kW。风机与空冷器之间匹配最小风压为272.3 Pa,最大风量为133.7 m3/min,随支架移动降温。确定进风巷和工作面降温空冷器配置参数,提出降温装置分区布置的梯级降温方法;研发了综放面梯级降温效果和能量管控系统平台,能够对降温装置远程控制和自适应调节,实现了降温区域冷量集中管控。
通过在赵楼煤矿7303高地温综放面应用,结果表明:进风巷风流温度由30.4℃降低至19.8℃,每组降温装置对风流降温2.6℃,出口6.0 m、横向2.5 m范围为有效降温区;其中,工作面最高温度为27.5℃,回风流降温5℃。论文研究成果的应用改善了高地温综放面人员作业环境,为深井开采高温矿井综放面降温提供了新工艺和新方法。
﹀
|
外文摘要: |
︿
Mine heat damage is one of the four major occupational hazards faced by deep shaft mining. The increase in mining depth causes the temperature of surrounding rock to rise, and the high temperature environment formed underground seriously threatens the health and life safety of operators. It is an effective way to solve the problem of mine heat damage by exploring the heat transport law of the comprehensive release working face in high temperature mines and proposing efficient cooling methods. Therefore, this thesis takes the heat damage mine in Shandong Juye mining area as the research object. The combined methods of field observation, experimental research, numerical analysis and experimental application are used to carry out the research on the heat dissipation characteristics of heat source, heat transport characteristics, temperature field distribution and cooling method of the high-geothermal comprehensive release face. Then, the influence mechanism of the temperature, humidity and speed of the wind flow on the process of heat transport is revealed. Finally, the stepped-cooling method of high-temperature comprehensive mining face is proposed and applied in the field.
Distributed fiber-optic temperature measurement system is used to continuously monitor the temperature of the wind flow in the 7303 comprehensive mining face, and the change rule of the temperature of the working surface at different times is obtained: during the production period, the heat dissipation of the peripheral rock in the surface is exponentially increasing with the mining time, the maximum temperature rise is 7.6℃, during the maintenance period, the heat dissipation of the heat source is rapidly decreasing and then tends to be leveled off after the ventilation time, the average temperature rise in the return air flow is 4.5℃. Besides, the temperature rise of the return airflow changes periodically with the production time, and the temperature of the airflow along the synthesized surface shows the law of gradient rise with dynamic fluctuation of the temperature rise rate.
The heat network model based on network thermal resistance and heat capacity chain analyzes the ventilation heat transfer process in the comprehensive release face, revealing that heat is transferred from the surrounding rock to the wind flow along the temperature gradient in the process of heat exchange between the wind flow and the high-temperature surrounding rock. The heat transfer unit accumulates heat dissipated in the spatial dimension and the heat superimposed periodically in the time dimension continuously increases during the production period of the comprehensive release face, and the coal wall temperature continues to decay in the time dimension during the maintenance period, and the heat dissipated by the heat source dynamically decreases.
An experimental system for heat transport in airflow is set up to study the effects of changes in airflow temperature, humidity and velocity on the heat transfer process and heat transfer performance on hot surfaces. The increase of inlet temperature leads to the slowing down of temperature rise rate and enthalpy increment of airflow, and the convective heat transfer coefficient is linearly negatively correlated with the inlet temperature. Additionally, the change of humidity triggers the instability of the convective heat transfer process, which intensifies the intensity of the influence of latent heat exchange on the heat transport, and the increase of air velocity accelerates the heat transfer process. In the hot surface cooling process, the inlet air temperature is nonlinearly and positively correlated with the hot surface cooling time, and the convective heat transfer coefficient varies with the ventilation time as a Gaussian function. Therefore, there is a positive effect on the heat transport process, when the humidity and velocity of the wind flow are low, and the humidity and wind velocity are too high to have a reverse effect on the heat transport. Meanwhile, the increase of cooling cold and the exothermic change of the heat source lead to the gradual stabilization of the heat input and output, and the heat transport in the thermal system reaches an equilibrium state.
Through the measurement and numerical simulation of the thermal state parameters of the wind flow in the comprehensive face, the change trend of the heat and humidity exchange volume between the wind flow and the coal wall is mastered. It was proved that the temperature of wind flow showed a rapid decline and then gradually stable change trend, in which the latent heat transfer volume of the working face of 7303 tends to stabilize after it decreases from 1,160 W to 980 W, and the sensible heat transfer volume tends to stabilize after it decreases from 3880 W to 452 W. Then, the contours and distribution cloud diagrams of temperature, humidity and enthalpy of the wind flow are plotted, and the temperature field of the wind flow shows a non-uniform distribution of temperature gradient inversion along the tendency, with a high heat near the coal wall and both sides of the mining area and a low heat distribution law in the middle. Furthermore, the increase of inlet air temperature leads to the increase of overall temperature, and the amplitude of temperature gradient change decreases gradually, and the increase of surrounding rock temperature will lead to the increase of temperature gradient in the synthesized face.
In view of the problems of narrow space, many influencing factors of heat distribution, and mismatch between fan and air-cooler, an integrated cooling device of air-cooler and fan is designed for high-temperature comprehensive mining face, and the shape of the air-cooler of synthesized surface (length of 1 m, diameter of 0.5 m) is cylindrical, and the internal structure of concentric arrangement of double spiral heat exchanger tubes is adopted with a refrigeration power of 100 kW. In addition, the minimum air pressure of fan and air-cooler is 272.3 Pa, and maximum air volume is 133.7 m3/min. The maximum air volume is 133.7 m3/min, and the cooling power is 100 kW with the movement of the stent. Moreover, the configuration parameters of cooling air cooler in the air inlet lane and working face are determined, also the stepped cooling method with partitioned arrangement of cooling device is proposed. The platform of stepped cooling effect and energy management and control system for comprehensive mining face is developed, which can remotely control and adaptively adjust the cooling device, and realizes centralized management and control of the cooling capacity in the cooling area.
Through the application in 7303 comprehensive mining face of Zhaolou coal mine, the results show that: the temperature of the wind flow in the inlet lane is reduced from 30.4℃ to 19.8℃, and each group of cooling device reduces the temperature of the wind flow by 2.6℃, and the range of 6.0 m in the outlet and 2.5 m in the lateral direction is the effective cooling area; among them, the highest temperature of the working face is 27.5℃, and the return air flow reduces the temperature by 5℃. The application of the thesis research results improves the working environment of the personnel in the high geothermal surface, and provides a new process and a new method for cooling down the surface of the high-temperature mining surface in deep shaft mining.
﹀
|
参考文献: |
︿
[1] 谢和平, 高峰, 鞠杨, 等. 深部开采的定量界定与分析[J]. 煤炭学报, 2015, 40(1):1-10. [2] 谢和平, 周宏伟, 薛东杰, 等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报, 2012, 37(4):535-542. [3] 何满潮, 郭平业. 深部岩体热力学效应及温控对策[J]. 岩石力学与工程学报, 2013, 32(12):2377-2393. [4] 康红普, 王国法, 姜鹏飞, 等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报, 2018, 43(7):1789-1800. [5] 康红普, 范明建, 高富强, 等. 超千米深井巷道围岩变形特征与支护技术[J]. 岩石力学与工程学报, 2015, 34(11):2227-2241. [6] Donoghue A M, Sinclair M J, Bates G P. Heat exhaustion in a deep underground metalliferous mine[J]. Occupational and environmental medicine, 2000, 57(3):165-174. [7] 罗威, 宋选民, 刘成. 千米深井热害防治技术[J]. 煤矿安全, 2014, 45(8):88-91. [8] Chang Z, Ji J, Wang K, et al. Heat absorption control equation and its application of cool-wall cooling system in mines[J]. Journal of Central South University, 2021, 28(9):2735-2751. [9] 陈柳, 刘浪, 张波, 等. 基于蓄热充填体深井吸附降温机理[J]. 煤炭学报, 2018, 43(2):483-489. [10] Trapani K, Romero A, Millar D. Deep mine cooling, a case for Northern Ontario: Part II[J]. International Journal of Mining Science and Technology, 2016, 26(6):1033-1042. [11] 胡华瑞, 陈庆发, 陈青林, 等. 高温深井风温影响因子特性与降温基础研究[J]. 矿业研究与开发, 2017, 37(7):101-106. [12] Crawford J A, Joubert H P R, Mathews M J, et al. Optimised dynamic control philosophy for improved performance of mine cooling systems[J]. Applied Thermal Engineering, 2019, 150:50-60. [13] 秦跃平, 党海政, 曲方. 回采工作面围岩散热的无因次分析[J]. 煤炭学报, 1998(1):64-68. [14] 杨伟, 郭东升, 张树光. 煤岩体接触面不同倾角的传热影响[J]. 煤炭学报, 2014, 39(7):1257-1261. [15] 张一夫, 谢倩楠, 董子文, 等. 巷道断面形状对围岩散热规律的影响研究[J]. 安全与环境学报, 2021, 21(6):2595-2601. [16] 郭平业, 卜墨华, 李清波, 等. 岩石有效热导率精准测量及表征模型研究进展[J]. 岩石力学与工程学报, 2020, 39(10):1983-2013. [17] 秦跃平, 党海政, 刘爱明. 用边界单元法求解巷道围岩的散热量[J]. 中国矿业大学学报, 2000(4):63-66. [18] 秦跃平, 秦凤华, 于明学. 用有限单元法研究回采工作面围岩散热[J]. 辽宁工程技术大学学报, 1999(4):342-346. [19] 吴世跃, 王英敏. 湿壁巷道传热系统及传质系数的研究[J]. 煤炭学报, 1993, 18(1):41-51. [20] 吴世跃, 王英敏. 干壁巷道传热系数的研究[J]. 铀矿冶, 1989, 8(4):55-58. [21] Zhang Y, Wan Z, Gu B, et al. Finite difference analysis of transient heat transfer in surrounding rock mass of high geothermal roadway[J]. Mathematical Problems in Engineering, 2016. [22] 李学杰. 布尔台煤矿采煤工作面热源分析及治理技术[J]. 煤炭技术, 2021, 40(4): 112-115. [23] 李文菁, 邹声华, 杨万鑫,等. 空气隔热夹层围岩温度场数值计算及试验分析[J]. 应用力学学报, 2022, 39(2):394-402. [24] Su Z, Jiang Z, Sun Z. Study on the heat hazard of deep exploitation in high-temperature mines and its evaluation index[J]. Procedia Earth and Planetary Science, 2009, 1(1):414-419. [25] 张源, 万志军, 周长冰, 等. 巷道/隧道围岩非稳态导热模化试验方法[J]. 采矿与安全工程学报, 2014, 31(3):441-446. [26] 吴强, 秦跃平, 郭亮, 等. 巷道围岩非稳态温度场有限元分析[J]. 辽宁工程技术大学学报, 2002(5):604-607. [27] 吴强, 秦跃平, 郭亮, 等. 掘进工作面围岩散热的有限元计算[J]. 中国安全科学学报, 2002(6):36-39. [28] 王长彬. 不同风量及围岩温度下围岩传热的实验研究[J]. 煤矿安全, 2019, 50(9):57-60. [29] Xie Z. Distribution law of high temperature mine's thermal environment parameters and study of heat damage's causes[J]. Procedia Engineering, 2012, 43:588-593. [30] Zhang Y, Wan Z, Gu B, et al. An experimental investigation of transient heat transfer in surrounding rock mass of high geothermal roadway[J]. Thermal Science, 2016, 20(6):2149-2158. [31] 刘桂平. 掘进巷道回头热及其影响因素分析研究[J]. 矿业安全与环保, 2018, 45(6): 10-14. [32] Tu Q, Yu C, Li Z, et al. Computer simulation study on heat transfer of surrounding rock in mine roadway of coal mine enterprises[J]. Thermal Science, 2020, 24(5 Part B):3049-3058. [33] 孙培德. 深井巷道围岩地温场温度分布可视化模拟研究[J]. 岩土力学, 2005, 26(S2):222-226. [34] Panigrahi D. The analysis and simulation of heat flow in longwall coal faces[J]. Archives of Mining Sciences, 2002, 47(4):539-558. [35] Yao W, Pang J, Ma Q, et al. Influence and sensitivity analysis of thermal parameters on temperature field distribution of active thermal insulated roadway in high temperature mine[J]. International Journal of Coal Science & Technology, 2021, 8(1):47-63. [36] Wang K, Li Q, Wang J, et al. Thermodynamic characteristics of deep space: hot hazard control case study in 1010-m-deep mine[J]. Case Studies in Thermal Engineering, 2021, 28:101656. [37] 马维清, 何磊, 臧冀川. 深井高温热害对井下作业人员的影响研究[J]. 建井技术, 2021, 42(4):19-26. [38] 秦跃平, 刘宏波, 朱郴伟, 等. 高温采煤工作面采空区热风数值模拟研究[J]. 煤矿安全, 2011, 42(6):11-14. [39] 郭一铭, 何启林, 苏勇. 新柳煤矿采空区高温区域漏风规律的研究[J]. 煤炭技术, 2019, 38(8):84-86. [40] 辛嵩, 孟祥喜, 屈永良, 等. 大倾角采煤工作面热害机理分析[J]. 山东科技大学学报, 2016, 35(5):42-48. [41] Michaylov M, Vlasseva E. On void aerodynamics in a porous media of a gob area[R]. Society for Mining, Metallurgy, and Exploration, Inc., Littleton, CO, 1995. [42] 王济凯, 鲍学彬, 丁仰卫. 采空区漏风流场的Fluent数值模拟[J]. 山东煤炭科技, 2009(1):86-87. [43] 郭平业, 卜墨华, 张鹏, 等. 矿山地热防控与利用研究进展[J]. 工程科学学报, 2022, 44(10):1632-1651. [44] 付会龙, 孙学峰, 辛嵩. 局部降温系统在深井掘进中的应用[J]. 煤矿安全, 2012, 43(2):99-101. [45] Zhang Y, Huang P. Influence of mine shallow roadway on airflow temperature[J]. Arabian Journal of Geosciences, 2020, 13(1):1-6. [46] Wang K, Li Q, Wang J, et al. Thermodynamic characteristics of deep space: hot hazard control case study in 1010-m-deep mine[J]. Case Studies in Thermal Engineering, 2021, 28:101656. [47] Nie X, Feng S, Shudu Z, et al. Simulation study on the dynamic ventilation control of single head roadway in high-altitude mine based on thermal comfort[J]. Advances in Civil Engineering, 2019. [48] 王明斌, 许峰, 周伟. 制冷降温技术在三山岛金矿热害控制中的应用[J]. 现代矿业, 2021, 37(8):220-222. [49] 刘何清, 王浩, 邵晓伟. 高温矿井湿润巷道表面与风流间热湿交换分析与简化计算[J]. 安全与环境学报, 2012, 12(3):208-212. [50] 高建良, 魏平儒. 掘进巷道风流热环境的数值模拟[J]. 煤炭学报, 2006(2):201-205. [51] 孙勇, 王伟. 基于Fluent的掘进工作面通风热环境数值模拟[J]. 煤炭科学技术, 2012, 40(7):31-34. [52] 姬建虎, 廖强, 胡千庭, 等. 掘进工作面冲击射流换热特性[J]. 煤炭学报, 2013, 38(4):554-560. [53] 吴学慧, 孙树欣, 陈凡, 等. 风流与湿润围岩的热-质交换特性及其影响因素研究[J]. 煤炭科学技术, 2018, 46(2):187-192. [54] Guo P, Su Y, Pang D, et al. Numerical study on heat transfer between airflow and surrounding rock with two major ventilation models in deep coal mine[J]. Arabian Journal of Geosciences, 2020, 13(16):1-10. [55] 陈平. 均匀供冷采煤工作面送风器的布置[J]. 矿业安全与环保, 2004(4):7-9. [56] 褚召祥, 辛嵩, 王保齐. 回采工作面空冷器组合降温方式试验研究[J]. 煤炭科学技术, 2010, 38(11):81-84. [57] 肖林京, 肖洪彬, 李振华. 基于ANSYS的综采工作面降温优化设计[J]. 矿业安全与环保, 2008(1):21-23. [58] 姬建虎, 廖强, 胡千庭, 等. 热害矿井掘进工作面换热特性[J]. 煤炭学报, 2014, 39(4):692-698. [59] 高玉坤, 陶彦丹, 王远, 等. 基于VUMA的某矿井下热环境模拟研究[J]. 矿业研究与开发, 2022, 42(4):120-126. [60] 陈青林, 陈庆发, 钟琼英, 等. 深井巷道风流性质与围岩调热圈参数匹配关系研究[J]. 金属矿山, 2017(4):169-176. [61] Donoghue A M, Bates G P. The risk of heat exhaustion at a deep underground metalliferous mine in relation to surface temperatures[J]. Occupational medicine, 2000, 50(5):334-336. [62] Kamyar A, Aminossadati S M, Leonardi C, et al. Current developments and challenges of underground mine ventilation and cooling methods[J]. 2016. [63] 周西华, 王继仁, 梁栋. 采煤机对回采工作面风流温度场影响[J]. 辽宁工程技术大学学报, 2003(4):514-516. [64] 周西华, 王继仁, 卢国斌, 等. 回采工作面温度场分布规律的数值模拟[J]. 煤炭学报, 2002(1):59-63. [65] 秦跃平, 贾敬艳, 刘伟, 等. 导热问题中4种有限体积方案对比[J]. 辽宁工程技术大学学报, 2013, 32(6):763-767. [66] 秦跃平, 孟君, 贾敬艳, 等. 非稳态导热问题有限体积法[J]. 辽宁工程技术大学学报, 2013, 32(5):577-581. [67] 易欣, 王振平, 张广文, 等. 济宁三号煤矿热环境测试和工作面热源分布[J]. 中国煤炭, 2013, 39(3):116-118. [68] 董怀军. 基于Surfer8.0的回采工作面热湿源分布及变化规律[J]. 煤矿安全, 2015, 46(8):22-25. [69] Aminossadati S M, Mohammed N M, Shemshad J. Distributed temperature measurements using optical fibre technology in an underground mine environment [J]. Tunnelling and Underground Space Technology, 2010, 25(3):220-229. [70] Taraba B, Michalec Z. Effect of longwall face advance rate on spontaneous heating process in the gob area–CFD modelling[J]. Fuel, 2011, 90(8):2790-2797. [71] 杨胜强, 汪峰, 王雷, 等. 单元法测定工作面的热湿源分布状态[J]. 煤矿安全, 2005(4):21-23. [72] 汪峰, 杨胜强, 姜希印, 等. 工作面热湿源分布的单元法测定[J]. 能源技术与管理, 2005(2):1-3. [73] 张健, 张鹏妍, 魏建平, 等. 巷道围岩调热圈分布特性研究:以羊场湾煤矿为例[J]. 中国安全科学学报, 2023, 33(8):125-133. [74] 高建良, 张学博. 潮湿巷道风流温度及湿度计算方法研究[J]. 中国安全科学学报, 2007(6):114-119. [75] 石乃敏. 某锡矿山深井局部巷道排热降温通风优化方案[J]. 中国矿山工程, 2019, 48(5):1-5. [76] 陈柳, 杨岚. 深井降温技术研究述评[J]. 煤炭技术, 2016, 35(1):152-154. [77] Sunkpal M, Roghanchi P, Kocsis K C. A method to protect mine workers in hot and humid environments[J]. Safety and health at work, 2018, 9(2):149-158. [78] Wang M, Liu L, Chen L, et al. Cold load and storage functional backfill for cooling deep mine[J]. Advances in Civil Engineering, 2018. [79] 纪海维, 张进, 范红, 等.矿井涌水冷热利用深井降温系统[J]. 西安科技大学学报, 2022, 42(1):83-90. [80] Wei D, Du C, Lin Y, et al. Thermal environment assessment of deep mine based on analytic hierarchy process and fuzzy comprehensive evaluation[J]. Case Studies in Thermal Engineering, 2020, 19:100618. [81] 马恒, 尹彬, 刘剑. 矿井风流温度预测分析研究[J]. 中国安全科学学报, 2010, 20(11):91-95. [82] 张素芬, 杨国栋, 秦跃平. 高温采面热力特性的研究[J]. 煤炭科学技术, 1991(9):30-33. [83] 刘星光, 高峰, 刘冠男. 工作面热源分析与热环境预测[J]. 煤, 2010, 19(6):35-36. [84] 张培红, 董清明, 李忠娟, 等. 深部开采矿井通风系统降温效果分析[J]. 沈阳建筑大学学报, 2013, 29(1):127-131. [85] Zhou Z, Cui Y, Tian L, et al. Study of the influence of ventilation pipeline setting on cooling effects in high-temperature mines[J]. Energies, 2019, 12(21):4074. [86] Zhu S, Wu S, Cheng J, et al. An underground air-route temperature prediction model for ultra-deep coal mines[J]. Minerals, 2015, 5(3):527-545. [87] Alymenko N I, Kamenskikh A A, Nikolaev A V, et al. Numerical modeling of heat and mass transfer during hot and cool air mixing in air supply shaft in underground mine[J]. Eurasian mining, 2016, 2:45-47. [88] 徐佳昕, 游波, 施式亮, 等. 基于模糊层次分析的深井热害风险评价及防治[J]. 采矿技术, 2018, 18(6):68-71. [89] 朱红青, 于之江, 谭波. 矿井风温预测与降温效果分析专家系统应用[J]. 煤炭科学技术, 2007(3):80-82. [90] 杨胜强. 高温、高湿矿井中风流热力动力变化规律及热阻力的研究[J]. 煤炭学报, 1997(6):69-73. [91] Ren T, Wang Z, Zhang J. Improved dust management at a longwall top coal caving (LTCC) face–A CFD modelling approach[J]. Advanced Powder Technology, 2018, 29(10):2368-2379. [92] Nakayama S, Uchino K, Inoue M. Anlysis of ventilation air flow at handing face by computational fluid dynamics [J]. Shigen-to-Sozai,1995,111(4):225-230. [93] Nakayama S, Uchino K, Inoue M. Three dimensional flow measurement at heading face and application of CFD [J]. Shigen To Sozai, 1996,112. [94] Gong P, Ma Z, Ni X, et al. Floor heave mechanism of gob-side entry retaining with fully-mechanized backfilling mining[J]. Energies, 2017, 10(12):2085. [95] Zhu S, Cheng J, Wang Z, et al. Physical simulation experiment of factors affecting temperature field of heat adjustment circle in rock surrounding mine roadway[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020:1-18. [96] Huang P, Huang W, Zhang Y, et al. Simulation study on sectional ventilation of long-distance high-temperature roadway in mine[J]. Arabian Journal of Geosciences, 2021, 14(16):1-9. [97] 马玖辰, 易飞羽, 张秋丽, 等. 富水型热储层深井套管式换热器传热特性研究[J]. 化工学报, 2021, 72(8):4134-4145. [98] 王春光, 李豪, 董国强, 等. 深井开采个体防护降温服试验研究[J]. 黄金, 2021, 42(1):80-83. [99] 焦习燕, 王志远, 任一鑫. 高温深井煤矿降温系统集成体系研究[J]. 矿冶工程, 2018, 38(1):127-131. [100] Ma H, Wang L, Jia H, et al. Experimental study on desorption characteristics of coalbed methane under variable loading and temperature in deep and high geothermal mine[J]. Advances in Civil Engineering, 2020. [101] Zhang Y L, Lu S Q. Measurement method of original rock temperature of deep well in metal mine[J]. Electronic Journal of Geotechnical Engineering, 2016, 21(26):10317-23. [102] Wang X F, Gao M Z, Wang Q, et al. Study on High-Temperature Heat Harm Control Technology in Deep Mine[J]. Applied Mechanics and Materials, 2013, 401:287-290. [103] 亓玉栋. 深井降温冰制冷空调系统的负荷确定方法与应用[J]. 采矿技术, 2019, 19(6):123-126. [104] Kong B, Wang E, Li Z. The effect of high temperature environment on rock properties—an example of electromagnetic radiation characterization[J]. Environmental Science and Pollution Research, 2018, 25: 29104-29114. [105] Pretorius J G, Mathews M J, Maré P, et al. Implementing a DIKW model on a deep mine cooling system[J]. International Journal of Mining Science and Technology, 2019, 29(2):319-326. [106] Hao X H, Ma H, Liu Y X, et al. Calculation model of airflow temperature and simulation system in coal mine[J]. Advanced Materials Research, 2014, 1010:1449-1453. [107] 郭平业, 朱艳艳. 深井降温冷负荷反分析计算方法[J]. 采矿与安全工程学报, 2011, 28(3):483-487. [108] Han Q, Zhang Y, Li K, et al. Computational evaluation of cooling system under deep hot and humid coal mine in China: A thermal comfort study[J]. Tunnelling and Underground Space Technology, 2019, 90:394-403. [109] Guo P, Chen C. Field experimental study on the cooling effect of mine cooling system acquiring cold source from return air[J]. International Journal of Mining Science and Technology, 2013, 23(3):453-456. [110] 薛韩玲, 郭佩奇, 彭俊杰, 等. 高地温掘进巷水玻璃膨胀蛭石隔热围岩传热与降温特性[J]. 西安科技大学学报, 2021, 41(6):997-1005. [111] 汪杰, 毛国勇, 陈海琴. 采煤工作面降温系统布置方式优化研究[J]. 工矿自动化, 2018, 44(12):43-48. [112] 苗德俊, 徐越. 采煤工作面局部降温技术研究[J]. 煤炭技术, 2017, 36(10):116-119. [113] 苗德俊, 程卫民, 隋秀华. 高温矿井采煤工作面进风巷空冷器有效位置的确定[J]. 中国矿业, 2010, 19(3):110-112. [114] 陈延杰. 井下局部制冷系统在高温高湿工作面的试验及应用[J]. 煤矿安全, 2016, 47(7):34-36. [115] 易欣, 王振平, 冯小平, 等. 全风量井口降温技术在赵楼煤矿热害治理中的应用[J]. 中国煤炭, 2014, 40(9):125-129. [116] Xu G, Jong E C, Luxbacher K D, et al. Remote characterization of ventilation systems using tracer gas and CFD in an underground mine[J]. Safety science, 2015, 74:140-149. [117] Nie X, Wei X, Li X, et al. Heat treatment and ventilation optimization in a deep mine[J]. Advances in Civil Engineering, 2018, 2018(4). [118] 李锦峰, 谢贤平, 纪承子. 受控循环通风技术降温理论分析及应用探讨[J]. 有色金属, 2013, 65(1):83-86. [119] Liu G, Gao F, Ji M, et al. Investigation of the ventilation simulation model in mine based on multiphase flow[J]. Procedia Earth and Planetary Science, 2009, 1(1). [120] 杜明忠, 张永亮. 热害矿井多级机站通风降温的实践[J]. 黄金, 2014, 35(9):45-48. [121] Yang Z, Hao T. Development of intellingent monitoring and control system for mine ventilation safety [J]. Industry and Mine Automation, 2017, 43(9):110-114. [122] Li J, Yu X, Huang C, et al. Research on the mobile refrigeration system at a high temperature working face of an underground mine[J]. Energies, 2022, 15(11):4035. [123] Feng X P, Jia Z, Liang H, et al. A full air cooling and heating system based on mine water source[J]. Applied Thermal Engineering, 2018, 145:610-617. [124] Chen X, Zhang Y, Ji J, et al. Ventilation and cooling of coal mining face based on CFD model optimization[J]. Process Safety and Environmental Protection, 2023, 172:764-777. [125] 张正开. 高温矿井采煤工作面风温模拟与应用[J]. 科学技术创新, 2020(12):147-148. [126] Zhao H, Tu S, Liu X, et al. Comprehensive and Dynamic Cooling Technology of High-Temperature Working Face with Multiple Heat Sources in Coal Seam Prone to Spontaneous Combustion[J]. Available at SSRN 3973307. [127] 刘召胜, 朱坤磊, 周育, 等. 极厚大矿床深井开采通风降温技术研究[J]. 金属矿山, 2016(6):144-148. [128] 王万红, 王远, 杜翠凤, 等. 基于多目标决策的深井降温方法优选[J]. 矿业研究与开发, 2021, 41(3):154-158. [129] 杜翠凤, 徐喆, 唐占信, 等. 掘进巷道通风降温的数值模拟及影响因素分析[J]. 金属矿山, 2016(2):151-155. [130] 杜翠凤, 李新华, 余正方, 等. 自然风压对Ⅰ~#铜矿井主风机运行稳定性的影响[J]. 矿业研究与开发, 2016, 36(2):81-85. [131] Chen X, Song X, Zhang X, et al. Analysis of Mine Cooling System Optimal Selection Based on Fuzzy Analytic Hierarchy Process[J]. Coal technology, 2014, 33:265-267. [132] 冯小平, 龙惟定. 区域供冷系统管网优化设计方法和应用[J]. 建筑科学, 2012, 28(S2):242-245. [133] 魏庆丰. 动态平衡电动调节阀在板式换热机组中应用[J]. 山东工业技术, 2015(1):3. [134] 旷金国, 王朝晖, 罗曙光. 区域供冷系统外管网冷量损失分析[J]. 暖通空调, 2021, 51(12):16-21. [135] 郎贵明, 高俊明. 基于热用户流量控制的二次管网平衡调节的应用分析[J]. 河北水利电力学院学报, 2020, 30(3):37-41. [136] Ambedkar P, Dutta T. Analysis of various separation characteristics of Ranque-Hilsch Vortex Tube and its applications-A Review[J]. Chemical Engineering Research and Design, 2023, 191:93-108. [137] 陈欣然, 黄强, 陈志辉, 等. 分区计量体系下的供水管网建模节点用水量分配[J]. 净水技术, 2021, 40(10):70-77. [138] 丁业凤, 冯劲梅, 蔡加熙. 基于CFD的通风辐射供暖系统特性研究[J]. 区域供热, 2021(6):26-36. [139] 时国华, 余丹, 蒋可, 等. 强制对流空浴式深冷翅片管气化特性研究[J]. 低温与超导, 2020, 48(12):13-18. [140] 张纪红, 王波. 近场热辐射的最新研究进展[J]. 红外, 2019, 40(6):27-34. [141] 李一帆, 孙亚松, 刘长号, 等. 基于微分单元的圆柱内辐射导热耦合传热分析[J]. 工程热物理学报, 2021, 42(12):3222-3231. [142] 关健, 方石. 地热系统的概念与传热机制综述[J]. 地质与资源, 2021, 30(2):207-213. [143] 宋立业, 罗晓光, 马汉东, 等. 喷雾冷却相变传热的建模与模拟计算[J].气体物理, 2021, 6(1):38-44. [144] 张冲, 王劲柏, 刚文杰, 等. 建筑外墙排风隔热机制的动态传热模型及实验研究[J]. 建筑科学, 2019, 35(4):2-9. [145] 高姗, 金雨蒙, 王月梅, 等. 基于营造及评价非均匀热环境目标的人体对流换热系数研究[J]. 暖通空调, 2023, 53(9):100-106. [146] 何敏, 白彦龙, 万兴勇. 城郊煤矿风流大气热物理参数测试与热源分析[J]. 中州煤炭, 2011(11):21-24. [147] 郑连存, 韩世豪. 基于流变协同机制的粘弹性非牛顿流体耦合流动与传热问题研究[J]. 科学观察, 2018, 13(6):32-39. [148] 张温宇, 施能博, 孙志新, 等. 稳态射流数值模拟中速度参量对传热的影响机制分析[J]. 福州大学学报, 2017, 45(6):898-906. [149] 周航, 张树光, 路平平. 高温矿井巷道通风降温的界面热阻效应[J]. 应用基础与工程科学学报, 2022, 30(3):673-683. [150] 李宗翔, 林琳, 贾进章, 等. 梯度升温地层中巷道风流温度分布计算研究[J]. 自然灾害学报, 2018, 27(2):116-121. [151] 吴星辉, 蔡美峰, 任奋华, 等. 深部矿井高温巷道热交换降温技术探讨[J]. 中南大学学报, 2021, 52(3):890-900. [152] 徐宝超,翟恩发,许时昂,等. 分布式光纤技术在矿井温度测试中的实验[J]. 矿业安全与环保, 2017, 44(4):32-36. [153] 马砺, 秦晓阳, 任立峰, 等. 基于光纤测温技术的矿井围岩调热圈研究[J]. 煤炭技术, 2017, 36(6):4-6. [154] 卞友艳. Surfer网格文件到GOCAD面文件转换方法研究[J]. 工程地球物理学报, 2022, 19(3):341-347. [155] 戴粤, 戴吾蛟. 基于Surfer平台的FLAC3D三维地质建模方法与模型验证[J]. 工程勘察, 2022, 50(3):43-46. [156] 陈柳, 薛韩玲. 高温矿井巷道风流对流换热相似实验研究[J]. 金属矿山, 2017(7):155-159. [157] 刘颖, 王如竹, 李云飞, 等. 变壁温平板空气强迫对流边界层扩展方程及相似解[J]. 上海交通大学学报, 2002(10):1462-1464. [158] 康建宏, 李晴, 周福宝, 等. 水蒸气模拟巷道火灾烟气的相似理论与数值计算[J]. 中国矿业大学学报, 2021, 50(4):691-700. [159] 刘承东, 黎庶, 唐宏辉, 等. 城市地下综合管廊通风缩尺模型的相似性分析[J]. 地下空间与工程学报, 2019, 15(6):1609-1619. [160] 姜婉, 魏建平, 徐向宇. 基于相似理论的掘进巷道流场结构分析[J]. 中国安全科学学报, 2018, 28(8):142-148. [161] 黄忠文, 张博文, 唐明哲, 等. 弹性力学与流体力学基本方程的统一性[J].力学与实践, 2022, 44(3):672-676. [162] 李皓, 刘小君, 张彤, 等. 表面粗糙度对接触界面间流体流动的影响[J]. 合肥工业大学学报, 2016, 39(11):1464-1467. [163] 李馨东, 胡宗民, 姜宗林. 可压缩流体体积黏性的连续介质理论[J]. 中国科学: 物理学力学天文学, 2016, 46(3):42-50. [164] 张一夫, 倪景峰, 戴文智. 基于热湿交换理论的巷道风流温、湿度影响因素研究[J]. 中国安全生产科学技术, 2019, 15(2):118-123. [165] 包继虎, 李亚运, 付炜, 等. 空气冷却器与空气加热器性能测试解析[J]. 流体机械, 2022, 50(10):70-75. [166] 楚玉杰, 袁益超. 螺旋翅片管空冷器换热与阻力性能研究及优化[J]. 化学工程, 2021, 49(4):29-34. [167] 王美丁, 马见青, 樊金生. 基于Surfer软件的数据网格化方法探析[J]. 工程地球物理学报, 2017, 14(6):694-700. [168] 陈练武, 牛菲. 用Surfer软件绘制等值线图中地质数据的处理方法[J]. 山东煤炭科技, 2017(8):156-158. [169] 张雪飞. 第三类边界条件估算热风干燥对流传质系数[J]. 内蒙古煤炭经济, 2021(4):136-138. [170] 陈俊, 沈超群, 王贺, 等. 液-液两相液层间传质过程的Rayleigh-Bénard-Marangoni对流特性[J]. 物理学报, 2019, 68(7):183-193. [171] 祁江羽, 杨杰, 沙勇. 液滴传质过程中Marangoni对流的引发[J]. 厦门大学学报, 2019, 58(4):499-504. [172] 白璐, 谢静超, 陈默,等. 建筑外表面对流传质系数的测量方法[J]. 化工学报, 2018, 69(10):4239-4245. [173] 李孔清, 邹声华, 张坻. 巷道内传质对通风阻力的影响[J]. 应用力学学报, 2016, 33(2):358-364. [174] 冯雨, 王洪亮, 马屹松, 等. 非能动安全壳空气冷却系统换热能力分析[J]. 哈尔滨工程大学学报, 2023, 44(7):1162-1168. [175] 贺瑞军, 冯润华, 韩啸, 等. 基于Fluent的真空固溶热处理炉内温度场流体场分析[J]. 金属热处理, 2022, 47(12):252-257. [176] 高维浩, 绳春晨, 谢洪涛, 等. 基于Fluent的列管式换热器性能校核方法研究[J]. 低温与超导, 2020, 48(3):70-74. [177] 封蔚健, 石秀东, 姚晨明, 等. 基于正交试验和Fluent的管翅式换热器结构优化[J]. 北京化工大学学报, 2020, 47(1):93-99. [178] 赵嵩颖, 陈晨, 张柏林. 不同倾斜埋管方式下地热换热器温度场模拟分析[J]. 工业安全与环保, 2014, 40(9):40-41. [179] 陈宜华, 孙浩. 深井高温矿床井下热源与热量分析[J]. 金属矿山, 2011(3):132-135. [180] 李琪琪, 周寿明, 段俊. 一类经典的Boussinesq系统解的若干问题研究[J]. 重庆师范大学学报, 2021, 38(3):68-77. [181] 任晓静, 葛楠楠. (3+1)维KP-Boussinesq和BKP-Boussinesq方程的孤子解[J]. 西北大学学报, 2020, 50(6):950-954. [182] 郑友志, 辜涛, 舒刚, 等. 高温定向井井筒瞬态温度计算模型及其应用[J]. 天然气工业, 2021, 41(3):119-126. [183] 林渠成, 廖祖维. 基于分解算法的功热交换网络多目标优化[J]. 化工学报, 2022, 73(11):5047-5055. [184] 赵泽波, 石献金, 于志强, 等. 翅片管空气冷却器传热系数模型[J]. 制冷学报, 2017, 38(5):71-75. [185] Xu P, Ma X, Zhao X, et al. Experimental investigation of a super performance dew point air cooler[J]. Applied Energy, 2017, 203:761-777. [186] Shoeibi S, Rahbar N, Esfahlani A A, et al. Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation[J]. Renewable Energy, 2021, 171:227-244. [187] Pandelidis D, Anisimov S, Worek W M, et al. Comparison of desiccant air conditioning systems with different indirect evaporative air coolers[J]. Energy conversion and management, 2016, 117:375-392. [188] Duvenhage K, Kröger D G. The influence of wind on the performance of forced draught air-cooled heat exchangers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 62(2-3):259-277. [189] 王文龙, 岳丰田, 高涛, 等. 热害矿井采区大焓差降温系统实验研究[J]. 煤炭工程, 2023, 55(4):156-161. [190] 董德胜, 曹勇, 刘海静, 等. 一种高均匀度均温板系统设计及测试[J]. 环境技术, 2023, 41(2):123-127. [191] 温俊霞. 基于PLC的热交换站监控系统设计[J]. 科学技术创新, 2020(35):94-95. [192] 梅英杰, 王龙, 宁媛. 动态模拟循环水热交换系统中循环水进口温度的控制研究[J]. 计算机应用与软件, 2019, 36(8):106-110. [193] 沈金山, 王春信, 李美晨, 等. 低温矿井涌水用于煤矿井下集中降温的应用研究[J]. 煤炭技术, 2022, 41(8):123-125. [194] 魏峥, 钱程, 宋业辉, 等. 基于动态负荷特性分析的办公建筑空调系统内外分区设置方法研究[J]. 暖通空调, 2023, 53(5):35-38. [195] 曹静怡, 胡浩威, 杨帆, 等. 基于围护结构动态冷负荷计算模型的构造与分析[J]. 工程热物理学报, 2022, 43(12):3137-3144. [196] 王敏, 凡宗胤, 陈媛, 等. 基于温控负荷变化特性的冷负荷启动参数量化及应用研究[J]. 电力系统保护与控制, 2022, 50(21):54-64.
﹀
|
中图分类号: |
TD727
|
开放日期: |
2026-06-19
|