论文中文题名: | 基于螺旋管换热器的矿井水热能提取系统与性能分析 |
姓名: | |
学号: | 21204228057 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085900 |
学科名称: | 工学 - 工程 -土木水利 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 可再生能源利用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-13 |
论文答辩日期: | 2024-06-07 |
论文外文题名: | Performance analysis of thermal energy extraction system for mine water based on helically coiled tube heat exchanger |
论文中文关键词: | |
论文外文关键词: | Mine water ; Numerical simulation ; Heat recovery system ; Heat exchanger |
论文中文摘要: |
随着煤矿生产机械化的日益进步,开采深度的不断增加,深部矿井涌水造成的高温热害现象频发,严重影响矿井生产和人员安全。同时,矿井水也是温度和流量常年稳定的绿色低品位热源。本文建立矿井水热能提取系统,利用热泵技术将矿井水蕴含的热能从低品位转化成高品位,代替传统的燃煤锅炉为矿区供热,从而减少煤炭消耗,降低经济费用,减轻井下热害。 从热泵技术和换热器原理出发,建立了矿井水热能提取系统。对于系统的关键部件——矿井水换热器,根据矿井水品位低、易结垢的特点对矿井水换热器进行选型和设计。使用UG NX 12.0软件建立了管壳耦合式的光滑螺旋管矿井水换热器的三维几何模型,通过ANSYS Fluent 2023R1软件进行数值模拟,分别从管侧和壳侧研究了入口水温、流量、螺距、管径、螺旋半径和结垢程度对换热器流动与换热性能的影响,对比分析了光滑螺旋管换热器和直管换热器的性能。为提高换热效率,在光滑螺旋管矿井水换热器的基础上,将中心对称式正弦波纹壁与螺旋管相结合,进一步建立了波纹螺旋管矿井水换热器的三维几何模型,对比并分析了波纹螺旋管换热器和光滑螺旋管换热器的流动与换热特征,分别从管侧和壳侧研究了波高、波距和结垢程度对换热器性能的影响规律,为矿井水换热器的优化设计提供了理论依据。最后以国内某矿井为例,通过对矿区用能情况和系统费用的计算,将采用螺旋管矿井水换热器的矿井水热能提取系统与传统的燃煤锅炉方案进行比较,从能耗、经济、环境三个方面分析了本系统的效益优势。 研究表明:当螺旋管矿井水换热器的管侧流量从0.5×103 kg/h增加到4×103 kg/h,管侧努赛尔数的增幅高达471.78%,但入口压力的增幅高达2235.31%。当管侧流量为0.5×103 kg/h,管内径为26 mm,螺距为100 mm,螺旋半径为175 mm时,光滑螺旋管换热器的换热性能是直管换热器的2.53倍。波纹螺旋管矿井水换热器的管侧换热性能是光滑螺旋管换热器的1.20~2.33倍。矿井水的矿化度和结垢时间对矿井水换热器性能的影响较大,在本研究条件下最高可使管侧努赛尔数降低23.66%,因此高矿化度矿井水在进入换热器前应进行抗垢预处理。相较传统的燃煤锅炉方案,本系统年运行费用更低,投资回收期仅为2.91年。随着运行时间增加,矿井水热能提取系统相较燃煤锅炉的经济优势愈发显著,此外每年还能够节约标煤量1703吨,减少全球二氧化碳排放量4462吨,减轻井下工作环境的热害风险,在能耗、经济、环境方面均具有良好的效益。 本文的研究结果为矿井水热能提取系统及矿井水换热器的优化设计奠定了理论基础,对矿井水热回收项目有一定的指导意义。 |
论文外文摘要: |
As the mechanization of coal mine production advances and the depth of mining operations increases, the incidence of high-temperature damage caused by mine water in deep mines has become more frequent, significantly affecting mine production and worker safety. Concurrently, mine water represents a green, low-grade heat source with consistent temperature and flow throughout the year. This paper introduces a mine water thermal energy extraction system that utilizes heat pump technology to convert the low-grade thermal energy contained in mine water into high-grade energy, replacing traditional coal-fired boilers for heating in mining areas. This substitution aims to reduce coal consumption, lower economic costs, and mitigate heat hazards in mines. Beginning with the principles of heat pump technology and heat exchangers, a thermal energy extraction system for mine water was developed. For the system’s critical component—the mine water heat exchanger—selection and design were undertaken considering the low-grade, scaling-prone characteristics of mine water. A three-dimensional geometric model of a tube-shell coupled helically coiled smooth tube heat exchanger was constructed using UG NX 12.0 software. Numerical simulations were performed with ANSYS Fluent 2023R1 software, investigating the impact of inlet water temperature, flow rate, pitch, tube diameter, spiral radius, and scaling degree on the heat exchanger’s flow and thermal performance from both the tube and shell sides. A comparative performance analysis between the helically coiled smooth tube heat exchanger and the straight tube heat exchanger was conducted. To enhance heat transfer efficiency, a helically coiled corrugated tube heat exchanger incorporating centrosymmetric sinusoidal corrugated wall with helical tube was developed on the foundation of the helically coiled smooth tube heat exchanger. This model enabled the comparison of the flow and thermal characteristics between helically coiled corrugated tube heat exchanger and helically coiled smooth tube heat exchanger, investigating the influence of wave height, wave pitch, and scaling degree on the heat exchanger performance from both tube and shell sides, thus providing a theoretical basis for the optimized design of mine water heat exchangers. Finally, taking a domestic mine as an example, by calculating the energy usage and system costs of the mine area, the paper compares the mine water thermal energy extraction system using helically coiled tube heat exchangers with traditional coal-fired boiler solutions. The benefits of this system were analyzed from energy consumption, economic, and environmental perspectives. The research demonstrated that as the tube-side flow rate increases from 0.5×103 kg/h to 4×103 kg/h, the increase of the Nusselt number on the tube side reaches 471.78%, while the increase in inlet pressure surges to 2235.31%. Under conditions of a 0.5×10³ kg/h tube-side flow rate, an inner diameter of 26 mm, a pitch of 100 mm, and a helix radius of 175 mm, the heat transfer performance of the helically coiled smooth tube heat exchanger is 2.53 times that of a straight tube heat exchanger. The tube-side heat transfer performance of a helically coiled corrugated tube heat exchanger is 1.20 to 2.33 times that of a helically coiled smooth tube heat exchanger. The mineralization and scaling time of mine water significantly impact the performance of the heat exchanger, with the potential to reduce the Nusselt number on the tube side by up to 23.66% under the conditions of this study. Therefore, mine water with high mineralization should undergo anti-scaling pretreatment before entering the heat exchanger. Compared to traditional coal-fired boiler solutions, this system has lower annual operating costs, with a payback period of only 2.91 years. As operation time increases, the economic advantages of the mine water thermal energy extraction system over coal-fired boilers become increasingly significant. Additionally, the system can save 1703 tons of standard coal equivalent annually, reduce global carbon dioxide emissions by 4462 tons, and mitigate the risk of heat hazards in the underground working environment, demonstrating significant benefits in energy consumption, economy, and environment. The findings of this study lay a theoretical foundation for the optimized design of mine water thermal energy extraction systems and mine water heat exchangers, providing valuable guidance for mine water thermal recovery projects. |
参考文献: |
[1] 张吉雄, 汪集暘, 周楠, 等.深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报, 2022, 44(10): 1682-93. [2] 贾文明, 姬建虎, 张明雨, 等.深部矿井高温热害防治研究与工程应用[J]. 煤炭技术, 2020, 39(3): 88-91. [3] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-305. [4] 柳静献, 李国栋, 常德强, 等.矿井降温技术研究进展与展望[J]. 金属矿山, 2023(7): 18-27. [5] 袁野, 李佳峰, 王冠男, 等.金属矿深部开采现状与发展战略[J]. 砖瓦世界, 2021(11): 340. [8] 姚韦靖, 庞建勇. 我国深部矿井热环境研究现状与进展[J]. 矿业安全与环保, 2018, 45(1): 107-11. [9] 左前明, 程卫民, 苗德俊, 等.基于热害对人影响的高温矿井热环境模糊综合评价[J].煤矿安全, 2009, 40(7): 86-9. [10] 国家矿山安全监察局. 煤矿安全规程2022[M]. 应急管理出版社, 2022. [11] 谭海文. 金属矿山深井热害产生原因及其治理措施[J]. 黄金, 2007, 28(2): 20-3. [12] 卢玲玲, 时文文, 潘春娟. 贵州小屯煤矿现代地温场特征及煤层温度分析[J]. 贵州地质, 2022, 39(4): 386-91. [13] 徐坤, 魏京胜, 杜晓丽, 等.刘店煤矿余热资源热泵供热方案[J]. 煤矿安全, 2014, 45(6): 177-80,84. [14] 许光泉, 王伟宁, 张海涛.淮南矿区深部热害分析及热水资源化研究[J]. 中国煤炭, 2009, 35(10): 114-6,32. [15] 王锋, 郭魏虎, 付航航.彬长矿区热害矿井机械制冷系统选型探讨[J]. 陕西煤炭, 2021, 40(z1): 114-7, 27. [16] 张心彬, 崔凯, 马明永. 山东省巨野煤田矿井热害调查评价及地热资源开发利用研究[C]//山东省煤炭学会煤田地质专业委员会新形势下煤田地质工作发展论坛论文集. 2014. 103-7. [17] 王利宁, 彭天铎, 向征艰, 等.碳中和目标下中国能源转型路径分析[J]. 国际石油经济, 2021, 29(1): 2-8. [20] 孙鹏飞. 葛泉矿空压机余热回收系统的研究与应用[D]. 河北工程大学, 2020. [21] 张习军, 王长元, 姬建虎. 矿井热害治理技术及其发展现状[J]. 煤矿安全, 2009, 40(3): 33-7. [24] 冯小强. 矿井水换热器传热性能的研究[D]. 江苏: 中国矿业大学(江苏), 2021. [36] 杨如辉, 邹声华, 张帝. 矿井次生热能资源的利用方式研究[J]. 矿业工程研究, 2010, 25(4): 59-61. [37] 李萌, 刘传聚, 陈劲晖. 利用煤矿矿井水的水源热泵系统的经济性分析[J]. 建筑热能通风空调, 2004, 23(3): 48-50,85. [38] 王景刚, 高晓霞, 杜梅霞. 邢台煤矿矿井水余热回收系统可行性分析[C]//全国暖通空调制冷2010年学术年会论文集. 2010. 2807-12. [40] 李延河, 万志军, 于振子, 等.煤-热共采模式下矿井地热水开采及智能调度技术研究[J]. 中国矿业, 2023, 32(9): 110-8. [42] 田伟, 郑音, 单绍磊, 等.高温高盐矿井水除盐工艺及热能资源的综合利用[J]. 山东煤炭科技, 2011(4): 38-9. [43] 冯旭辉. 太阳能矿井水源热泵复合系统分析研究[D]. 西安科技大学, 2012. [44] 刘小明, 张杰文, 刘怀江, 等.基于热泵技术的煤矿清洁采暖及井下冷源配送技术在梅花井煤矿的应用[J]. 工矿自动化, 2021, 47(S1): 131-4. [45] 徐丽霞, 刘波. 矿井余热综合利用的研究应用[J]. 山东煤炭科技, 2011, (6): 33-4. [47] 顾大钊, 李庭, 李井峰, 等.我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术, 2021, 49(1): 11-8. [50] 王伟宁. 矿井水处理工艺设计及资源化研究——以淮南矿区为例[D]. 安徽理工大学, 2010. [52] 向艳蕾, 杨允.煤矿低温水资源余热利用技术研究进展[J]. 煤质技术, 2023, 38(1): 27-32. [97] 孙亚军, 陈歌, 徐智敏, 等.我国煤矿区水环境现状及矿井水处理利用研究进展[J].煤炭学报, 2020, 45(1): 304-16. [98] 全贞花. 碳酸钙于换热表面结垢与物理抗垢的实验及机理研究[D]. 北京工业大学, 2007. [99] 方惠明, 戚凯, 李向东, 等.高矿化度矿井水结垢趋势及影响因素研究[J]. 中国煤炭地质, 2021, 33(2): 60-3. [104] 崔海亭. 强化传热新技术及其应用[M]. 化学工业出版社, 2006. [116] GB 50015-2019. 建筑给水排水设计标准[S]. 中华人民共和国住房和城乡建设部, 2019. 294. [117] GB 50736-2012. 民用建筑供暖通风与空气调节设计规范[S]. 中华人民共和国住房和城乡建设部, 2012. [118] 李仁永. 矿井清污水分离排放及高温清水综合利用研究[J]. 山东煤炭科技, 2019, (7): 190-2. [119] 江兆强, 龚爱民, 张新启, 等.长距离热水输送管道保温结构热损失研究[J]. 节能技术, 2020, 38(02): 113-7. [120] 高婧. 绿色低碳转型期煤炭价格对PPI的影响研究[J]. 华北金融, 2022, (9): 26-33,41. |
中图分类号: | TK529 |
开放日期: | 2024-06-13 |