- 无标题文档
查看论文信息

论文中文题名:

 基于螺旋管换热器的矿井水热能提取系统与性能分析    

姓名:

 段依然    

学号:

 21204228057    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 -土木水利    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 可再生能源利用    

第一导师姓名:

 张小艳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-06-07    

论文外文题名:

 Performance analysis of thermal energy extraction system for mine water based on helically coiled tube heat exchanger    

论文中文关键词:

 矿井水 ; 数值模拟 ; 热回收系统 ; 换热器    

论文外文关键词:

 Mine water ; Numerical simulation ; Heat recovery system ; Heat exchanger    

论文中文摘要:

随着煤矿生产机械化的日益进步,开采深度的不断增加,深部矿井涌水造成的高温热害现象频发,严重影响矿井生产和人员安全。同时,矿井水也是温度和流量常年稳定的绿色低品位热源。本文建立矿井水热能提取系统,利用热泵技术将矿井水蕴含的热能从低品位转化成高品位,代替传统的燃煤锅炉为矿区供热,从而减少煤炭消耗,降低经济费用,减轻井下热害。

从热泵技术和换热器原理出发,建立了矿井水热能提取系统。对于系统的关键部件——矿井水换热器,根据矿井水品位低、易结垢的特点对矿井水换热器进行选型和设计。使用UG NX 12.0软件建立了管壳耦合式的光滑螺旋管矿井水换热器的三维几何模型,通过ANSYS Fluent 2023R1软件进行数值模拟,分别从管侧和壳侧研究了入口水温、流量、螺距、管径、螺旋半径和结垢程度对换热器流动与换热性能的影响,对比分析了光滑螺旋管换热器和直管换热器的性能。为提高换热效率,在光滑螺旋管矿井水换热器的基础上,将中心对称式正弦波纹壁与螺旋管相结合,进一步建立了波纹螺旋管矿井水换热器的三维几何模型,对比并分析了波纹螺旋管换热器和光滑螺旋管换热器的流动与换热特征,分别从管侧和壳侧研究了波高、波距和结垢程度对换热器性能的影响规律,为矿井水换热器的优化设计提供了理论依据。最后以国内某矿井为例,通过对矿区用能情况和系统费用的计算,将采用螺旋管矿井水换热器的矿井水热能提取系统与传统的燃煤锅炉方案进行比较,从能耗、经济、环境三个方面分析了本系统的效益优势。

研究表明:当螺旋管矿井水换热器的管侧流量从0.5×103 kg/h增加到4×103 kg/h,管侧努赛尔数的增幅高达471.78%,但入口压力的增幅高达2235.31%。当管侧流量为0.5×103 kg/h,管内径为26 mm,螺距为100 mm,螺旋半径为175 mm时,光滑螺旋管换热器的换热性能是直管换热器的2.53倍。波纹螺旋管矿井水换热器的管侧换热性能是光滑螺旋管换热器的1.20~2.33倍。矿井水的矿化度和结垢时间对矿井水换热器性能的影响较大,在本研究条件下最高可使管侧努赛尔数降低23.66%,因此高矿化度矿井水在进入换热器前应进行抗垢预处理。相较传统的燃煤锅炉方案,本系统年运行费用更低,投资回收期仅为2.91年。随着运行时间增加,矿井水热能提取系统相较燃煤锅炉的经济优势愈发显著,此外每年还能够节约标煤量1703吨,减少全球二氧化碳排放量4462吨,减轻井下工作环境的热害风险,在能耗、经济、环境方面均具有良好的效益。

本文的研究结果为矿井水热能提取系统及矿井水换热器的优化设计奠定了理论基础,对矿井水热回收项目有一定的指导意义。

论文外文摘要:

As the mechanization of coal mine production advances and the depth of mining operations increases, the incidence of high-temperature damage caused by mine water in deep mines has become more frequent, significantly affecting mine production and worker safety. Concurrently, mine water represents a green, low-grade heat source with consistent temperature and flow throughout the year. This paper introduces a mine water thermal energy extraction system that utilizes heat pump technology to convert the low-grade thermal energy contained in mine water into high-grade energy, replacing traditional coal-fired boilers for heating in mining areas. This substitution aims to reduce coal consumption, lower economic costs, and mitigate heat hazards in mines.

Beginning with the principles of heat pump technology and heat exchangers, a thermal energy extraction system for mine water was developed. For the system’s critical component—the mine water heat exchanger—selection and design were undertaken considering the low-grade, scaling-prone characteristics of mine water. A three-dimensional geometric model of a tube-shell coupled helically coiled smooth tube heat exchanger was constructed using UG NX 12.0 software. Numerical simulations were performed with ANSYS Fluent 2023R1 software, investigating the impact of inlet water temperature, flow rate, pitch, tube diameter, spiral radius, and scaling degree on the heat exchanger’s flow and thermal performance from both the tube and shell sides. A comparative performance analysis between the helically coiled smooth tube heat exchanger and the straight tube heat exchanger was conducted. To enhance heat transfer efficiency, a helically coiled corrugated tube heat exchanger incorporating centrosymmetric sinusoidal corrugated wall with helical tube was developed on the foundation of the helically coiled smooth tube heat exchanger. This model enabled the comparison of the flow and thermal characteristics between helically coiled corrugated tube heat exchanger and helically coiled smooth tube heat exchanger, investigating the influence of wave height, wave pitch, and scaling degree on the heat exchanger performance from both tube and shell sides, thus providing a theoretical basis for the optimized design of mine water heat exchangers. Finally, taking a domestic mine as an example, by calculating the energy usage and system costs of the mine area, the paper compares the mine water thermal energy extraction system using helically coiled tube heat exchangers with traditional coal-fired boiler solutions. The benefits of this system were analyzed from energy consumption, economic, and environmental perspectives.

The research demonstrated that as the tube-side flow rate increases from 0.5×103 kg/h to 4×103 kg/h, the increase of the Nusselt number on the tube side reaches 471.78%, while the increase in inlet pressure surges to 2235.31%. Under conditions of a 0.5×10³ kg/h tube-side flow rate, an inner diameter of 26 mm, a pitch of 100 mm, and a helix radius of 175 mm, the heat transfer performance of the helically coiled smooth tube heat exchanger is 2.53 times that of a straight tube heat exchanger. The tube-side heat transfer performance of a helically coiled corrugated tube heat exchanger is 1.20 to 2.33 times that of a helically coiled smooth tube heat exchanger. The mineralization and scaling time of mine water significantly impact the performance of the heat exchanger, with the potential to reduce the Nusselt number on the tube side by up to 23.66% under the conditions of this study. Therefore, mine water with high mineralization should undergo anti-scaling pretreatment before entering the heat exchanger. Compared to traditional coal-fired boiler solutions, this system has lower annual operating costs, with a payback period of only 2.91 years. As operation time increases, the economic advantages of the mine water thermal energy extraction system over coal-fired boilers become increasingly significant. Additionally, the system can save 1703 tons of standard coal equivalent annually, reduce global carbon dioxide emissions by 4462 tons, and mitigate the risk of heat hazards in the underground working environment, demonstrating significant benefits in energy consumption, economy, and environment.

The findings of this study lay a theoretical foundation for the optimized design of mine water thermal energy extraction systems and mine water heat exchangers, providing valuable guidance for mine water thermal recovery projects.

参考文献:

[1] 张吉雄, 汪集暘, 周楠, 等.深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报, 2022, 44(10): 1682-93.

[2] 贾文明, 姬建虎, 张明雨, 等.深部矿井高温热害防治研究与工程应用[J]. 煤炭技术, 2020, 39(3): 88-91.

[3] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-305.

[4] 柳静献, 李国栋, 常德强, 等.矿井降温技术研究进展与展望[J]. 金属矿山, 2023(7): 18-27.

[5] 袁野, 李佳峰, 王冠男, 等.金属矿深部开采现状与发展战略[J]. 砖瓦世界, 2021(11): 340.

[6] WANG C, LU S, LI M, et al. Study on the dust removal and temperature reduction coupling performances of magnetized water spray[J]. Environ Sci Pollut Res Int, 2022, 29(4): 6151-65.

[7] CHEN W, LIANG S, LIU J. Proposed split-type vapor compression refrigerator for heat hazard control in deep mines[J]. Applied Thermal Engineering, 2016, 105: 425-35.

[8] 姚韦靖, 庞建勇. 我国深部矿井热环境研究现状与进展[J]. 矿业安全与环保, 2018, 45(1): 107-11.

[9] 左前明, 程卫民, 苗德俊, 等.基于热害对人影响的高温矿井热环境模糊综合评价[J].煤矿安全, 2009, 40(7): 86-9.

[10] 国家矿山安全监察局. 煤矿安全规程2022[M]. 应急管理出版社, 2022.

[11] 谭海文. 金属矿山深井热害产生原因及其治理措施[J]. 黄金, 2007, 28(2): 20-3.

[12] 卢玲玲, 时文文, 潘春娟. 贵州小屯煤矿现代地温场特征及煤层温度分析[J]. 贵州地质, 2022, 39(4): 386-91.

[13] 徐坤, 魏京胜, 杜晓丽, 等.刘店煤矿余热资源热泵供热方案[J]. 煤矿安全, 2014, 45(6): 177-80,84.

[14] 许光泉, 王伟宁, 张海涛.淮南矿区深部热害分析及热水资源化研究[J]. 中国煤炭, 2009, 35(10): 114-6,32.

[15] 王锋, 郭魏虎, 付航航.彬长矿区热害矿井机械制冷系统选型探讨[J]. 陕西煤炭, 2021, 40(z1): 114-7, 27.

[16] 张心彬, 崔凯, 马明永. 山东省巨野煤田矿井热害调查评价及地热资源开发利用研究[C]//山东省煤炭学会煤田地质专业委员会新形势下煤田地质工作发展论坛论文集. 2014. 103-7.

[17] 王利宁, 彭天铎, 向征艰, 等.碳中和目标下中国能源转型路径分析[J]. 国际石油经济, 2021, 29(1): 2-8.

[18] YANG Q, ZHANG L, ZHANG J, et al. System simulation and policy optimization of China's coal production capacity deviation in terms of the economy, environment, and energy security[J]. Resources Policy, 2021, 74: 102314.

[19] WALLS D B, BANKS D, BOYCE A J, et al. A Review of the Performance of Minewater Heating and Cooling Systems[J]. Energies, 2021, 14(19): 6215.

[20] 孙鹏飞. 葛泉矿空压机余热回收系统的研究与应用[D]. 河北工程大学, 2020.

[21] 张习军, 王长元, 姬建虎. 矿井热害治理技术及其发展现状[J]. 煤矿安全, 2009, 40(3): 33-7.

[22] MENéNDEZ J, ORDóNEZ A, FERNáNDEZ-ORO J M, et al. Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings[J]. Renewable Energy, 2020, 146: 1166-76.

[23] STEPHENSON M H, RINGROSE P, GEIGER S, et al. Geoscience and decarbonization: current status and future directions[J]. Petroleum Geoscience, 2019, 25(4): 501-8.

[24] 冯小强. 矿井水换热器传热性能的研究[D]. 江苏: 中国矿业大学(江苏), 2021.

[25] BANKS D, STEVEN J K, BERRY J, et al. A combined pumping test and heat extraction/recirculation trial in an abandoned haematite ore mine shaft, Egremont, Cumbria, UK[J]. Sustainable Water Resources Management, 2017, 5(1): 51-69.

[26] FARR G, BUSBY J, WYATT L, et al. The temperature of Britain's coalfields[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2021, 54(3): qjegh2020-109.

[27] MONAGHAN A A, BATESON L, BOYCE A J, et al. Time Zero for Net Zero: A Coal Mine Baseline for Decarbonising Heat[J]. Earth Science, Systems and Society, 2022, 2: 10054.

[28] JESSOP A, MACDONALD J, SPENCE H. Clean Energy from Abandoned Mines at Springhill, Nova Scotia[J]. Energy Sources, 1995, 17: 463-8.

[29] VERHOEVEN R, WILLEMS E, HARCOUëT-MENOU V, et al. Minewater 2.0 Project in Heerlen the Netherlands: Transformation of a Geothermal Mine Water Pilot Project into a Full Scale Hybrid Sustainable Energy Infrastructure for Heating and Cooling[J]. Energy Procedia, 2014, 46: 58-67.

[30] WATZLAF G R, ACKMAN T E. Underground Mine Water for Heating and Cooling using Geothermal Heat Pump Systems[J]. Mine Water and the Environment, 2006, 25(1): 1-14.

[31] LOREDO C, ORDONEZ A, GARCIA-ORDIALES E, et al. Hydrochemical characterization of a mine water geothermal energy resource in NW Spain[J]. Sci Total Environ, 2017, 576: 59-69.

[32] BRABHAM P, MANJU M, THOMAS H, et al. The potential use of mine water for a district heating scheme at Caerau, Upper Llynfi valley, South Wales, UK[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2019, 53(1): 145-58.

[33] TOWNSEND D H, NAISMITH J D A, TOWNSEND P J. On the Rocks–Exploring Business Models for Geothermal Heat in the Land of Scotch[C]//Proceedings World Geothermal Congress 2020, Reykjavik, Iceland. 2020.

[34] BANKS D, STEVEN J, BLACK A, et al. Conceptual Modelling of Two Large-Scale Mine Water Geothermal Energy Schemes: Felling, Gateshead, UK[J]. International Journal of Environmental Research and Public Health, 2022, 19(3): 1643.

[35] DU H P, DOU Y M, QI C Y. Application of Mine Water for Water-Source Heat Pump System[J]. Applied Mechanics and Materials, 2013, 291-294: 1701-7.

[36] 杨如辉, 邹声华, 张帝. 矿井次生热能资源的利用方式研究[J]. 矿业工程研究, 2010, 25(4): 59-61.

[37] 李萌, 刘传聚, 陈劲晖. 利用煤矿矿井水的水源热泵系统的经济性分析[J]. 建筑热能通风空调, 2004, 23(3): 48-50,85.

[38] 王景刚, 高晓霞, 杜梅霞. 邢台煤矿矿井水余热回收系统可行性分析[C]//全国暖通空调制冷2010年学术年会论文集. 2010. 2807-12.

[39] CHUDY K. Mine Water as Geothermal Resource in Nowa Ruda Region (SW Poland) [J]. Water, 2022, 14(2): 136.

[40] 李延河, 万志军, 于振子, 等.煤-热共采模式下矿井地热水开采及智能调度技术研究[J]. 中国矿业, 2023, 32(9): 110-8.

[41] BANKS D, ATHRESH A, AL-HABAIBEH A, et al. Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom [J]. Sustainable Water Resources Management, 2017, 5(1): 29-50.

[42] 田伟, 郑音, 单绍磊, 等.高温高盐矿井水除盐工艺及热能资源的综合利用[J]. 山东煤炭科技, 2011(4): 38-9.

[43] 冯旭辉. 太阳能矿井水源热泵复合系统分析研究[D]. 西安科技大学, 2012.

[44] 刘小明, 张杰文, 刘怀江, 等.基于热泵技术的煤矿清洁采暖及井下冷源配送技术在梅花井煤矿的应用[J]. 工矿自动化, 2021, 47(S1): 131-4.

[45] 徐丽霞, 刘波. 矿井余热综合利用的研究应用[J]. 山东煤炭科技, 2011, (6): 33-4.

[46] AL-HABAIBEH A, ATHRESH A P, PARKER K. Performance analysis of using mine water from an abandoned coal mine for heating of buildings using an open loop based single shaft GSHP system[J]. Applied Energy, 2018, 211: 393-402.

[47] 顾大钊, 李庭, 李井峰, 等.我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术, 2021, 49(1): 11-8.

[48] ARESTI L, CHRISTODOULIDES P, FLORIDES G. A review of the design aspects of ground heat exchangers[J]. Renewable & Sustainable Energy Reviews, 2018, 92: 757-73.

[49] JANSON E, BOYCE A J, BURNSIDE N, et al. Preliminary investigation on temperature, chemistry and isotopes of mine water pumped in Bytom geological basin (USCB Poland) as a potential geothermal energy source[J]. International Journal of Coal Geology, 2016, 164: 104-14.

[50] 王伟宁. 矿井水处理工艺设计及资源化研究——以淮南矿区为例[D]. 安徽理工大学, 2010.

[51] WALLS D B, BANKS D, PESHKUR T, et al. Heat Recovery Potential and Hydrochemistry of Mine Water Discharges From Scotland’s Coalfields[J]. Earth Science, Systems and Society, 2022, 2: 10056.

[52] 向艳蕾, 杨允.煤矿低温水资源余热利用技术研究进展[J]. 煤质技术, 2023, 38(1): 27-32.

[53] WEI J. Helical-coil Heat Exchanger Application in Falling Film Evaporator for Energy Saving[D]. America: Minnesota State University, 2017.

[54] GOU J, MA H, YANG Z, et al. An assessment of heat transfer models of water flow in helically coiled tubes based on selected experimental datasets[J]. Annals of Nuclear Energy, 2017, 110: 648-67.

[55] SINGH H, SUZUKI T, WASHIASHI J, et al. Influence of Secondary Flow Generation on Heat Transfer inside the Fin Type Spiral Sub-Cooled Condenser by Experimental and CFD Analysis[J]. 2018, 32: 0054.

[56] DEAN W R. XVI.Note on the motion of fluid in a curved pipe[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927, 4(20): 208-23.

[57] DEAN W R. LXXII.The stream-line motion of fluid in a curved pipe(Second paper)[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1928, 5(30): 673-95.

[58] BERTELSEN A F. An experimental investigation of low Reynolds number secondary streaming effects associated with an oscillating viscous flow in a curved pipe[J]. Journal of Fluid Mechanics, 1975, 70(3): 519-27.

[59] ITŌ H. Friction Factors for Turbulent Flow in Curved Pipes[J]. Journal of Basic Engineering, 1959, 81(2): 123-32.

[60] PRABHANJAN D G, RAGHAVAN G S V, RENNIE T J. Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger[J]. International Communications in Heat and Mass Transfer, 2002, 29(2): 185-91.

[61] WU S-Y, CHEN S-J, LI Y-R, et al. Numerical investigation of turbulent flow, heat transfer and entropy generation in a helical coiled tube with larger curvature ratio[J]. Heat and Mass Transfer, 2008, 45(5): 569-78.

[62] SHOKOUHMAND H, SALIMPOUR M R, AKHAVAN-BEHABADI M A. Experimental investigation of shell and coiled tube heat exchangers using wilson plots [J]. International Communications in Heat and Mass Transfer, 2008, 35(1): 84-92.

[63] JANSSEN L A M, HOOGENDOORN C J. Laminar convective heat transfer in helical coiled tubes[J]. International Journal of Heat and Mass Transfer, 1978, 21(9): 1197-206.

[64] HARDIK B K, BABURAJAN P K, PRABHU S V. Local heat transfer coefficient in helical coils with single phase flow[J]. International Journal of Heat and Mass Transfer, 2015, 89: 522-38.

[65] RAVI KULKARNI H, DHANASEKARAN C, RATHNAKUMAR P, et al. Experimental study on thermal analysis of helical coil heat exchanger using Green synthesis silver nanofluid[J]. Materials Today: Proceedings, 2021, 42: 1037-42.

[66] SALIMPOUR M R, GOLMOHAMMADI K, SEDAGHAT A, et al. Experimental study of the turbulent convective heat transfer of titanium oxide nanofluid flowing inside helically corrugated tubes[J]. Journal of Mechanical Science and Technology, 2015, 29(9): 4011-6.

[67] PIMENTA T A, CAMPOS J B L M. Heat transfer coefficients from Newtonian and non-Newtonian fluids flowing in laminar regime in a helical coil[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 676-90.

[68] SALEM M R, ELSHAZLY K M, SAKR R Y, et al. Experimental Investigation of Coil Curvature Effect on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger[J]. Journal of Thermal Science and Engineering Applications, 2015, 7(1): 011005.

[69] CORONEL P, SANDEEP K P. Heat Transfer Coefficient in Helical Heat Exchangers under Turbulent Flow Conditions[J]. International Journal of Food Engineering, 2008, 4(1): 012205.

[70] SINGH P. Heat Transfer Characteristics of Propylene Glycol/Water Based Magnesium Oxide Nanofluid Flowing Through Straight Tubes and Helical Coils[J]. Journal of Thermal Engineering, 2017: 1737-55.

[71] NASHİNE P, SİNGH T S. Effect of Dean Number on the Heat Transfer Characteristics of a Helical Coil Tube with Variable Velocity & Pressure Inlet[J]. Journal of Thermal Engineering, 2020, 6(2): 128-39.

[72] JAYAKUMAR J S, MAHAJANI S M, MANDAL J C, et al. Experimental and CFD estimation of heat transfer in helically coiled heat exchangers[J]. Chemical Engineering Research and Design, 2008, 86(3): 221-32.

[73] MAJID ETGHANI M, AMIR HOSSEINI BABOLI S. Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger[J]. Applied Thermal Engineering, 2017, 121: 294-301.

[74] PAVAN KUMAR E, KUMAR SOLANKI A, MOHAN JAGADEESH KUMAR M. Numerical investigation of heat transfer and pressure drop characteristics in the micro-fin helically coiled tubes[J]. Applied Thermal Engineering, 2021, 182: 116093.

[75] MIRGOLBABAEI H. Numerical investigation of vertical helically coiled tube heat exchangers thermal performance[J]. Applied Thermal Engineering, 2018, 136: 252-9.

[76] SALIMPOUR M R. Heat transfer coefficients of shell and coiled tube heat exchangers [J]. Experimental Thermal and Fluid Science, 2009, 33(2): 203-7.

[77] BEIGZADEH R, RAHIMI M. Prediction of thermal and fluid flow characteristics in helically coiled tubes using ANFIS and GA based correlations[J]. International Communications in Heat and Mass Transfer, 2012, 39(10): 1647-53.

[78] JAMSHIDI N, FARHADI M, GANJI D D, et al. Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers[J]. Applied Thermal Engineering, 2013, 51(1-2): 644-52.

[79] PAWAR S S, SUNNAPWAR V K. Experimental and CFD investigation of convective heat transfer in helically coiled tube heat exchanger[J]. Chemical Engineering Research and Design, 2014, 92(11): 2294-312.

[80] XIN R C, EBADIAN M A. The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristics in Helical Pipes[J]. Journal of Heat Transfer, 1997, 119(3): 467-73.

[81] ALIMORADI A, VEYSI F. Optimal and critical values of geometrical parameters of shell and helically coiled tube heat exchangers[J]. Case Studies in Thermal Engineering, 2017, 10: 73-8.

[82] ZHENG Z, HUANG X, JIANG Z. Thermal performance and heat transfer reliability analysis in helically corrugated helical tube[J]. International Journal of Thermal Sciences, 2023, 183: 107849.

[83] XU P, ZHOU T, XING J, et al. Numerical investigation of heat-transfer enhancement in helically coiled spiral grooved tube heat exchanger[J]. Progress in Nuclear Energy, 2022, 145: 104132.

[84] CHEN H, MORIA H, AHMED S Y, et al. Thermal/ exergy and economic efficiency analysis of circumferentially corrugated helical tube with constant wall temperature[J]. Case Studies in Thermal Engineering, 2021, 23: 100803.

[85] ZACHáR A. Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 3928-39.

[86] RAINIERI S, BOZZOLI F, CATTANI L, et al. Compound convective heat transfer enhancement in helically coiled wall corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2013, 59: 353-62.

[87] BOZZOLI F, CATTANI L, RAINIERI S. Effect of wall corrugation on local convective heat transfer in coiled tubes[J]. International Journal of Heat and Mass Transfer, 2016, 101: 76-90.

[88] KIRKAR S M, GöNüL A, DALKILIC A S. A sensitivity analysis of the effect of curvature ratio on the thermal-hydraulic performance in helically coiled tubes with corrugated walls[J]. International Journal of Thermal Sciences, 2023, 190: 108300.

[89] RABIENATAJ DARZI A A, ABUZADEH M, OMIDI M. Numerical investigation on thermal performance of coiled tube with helical corrugated wall[J]. International Journal of Thermal Sciences, 2021, 161: 106759.

[90] AL-GBURI H, MOHAMMED A A, AL-ABBAS A H. Experimental Study of the Thermal Performance of Corrugated Helically Coiled Tube-in-Tube Heat Exchanger[J]. Front Heat Mass Transf, 2023, 20: 1-7.

[91] LI Y-X, WU J-H, WANG H, et al. Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating with Spiral Corrugation[J]. Energy Procedia, 2012, 17: 791-800.

[92] WEI H, MORIA H, NISAR K S, et al. Effect of volume fraction and size of Al2O3 nanoparticles in thermal, frictional and economic performance of circumferential corrugated helical tube[J]. Case Studies in Thermal Engineering, 2021, 25: 100948.

[93] ZHANG C, WANG D, XIANG S, et al. Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation[J]. International Journal of Heat and Mass Transfer, 2017, 113: 332-41.

[94] LI Y, YU Q, YU S, et al. Numerical investigation of pulsating flow structures and heat transfer enhancement performance in spherical corrugated helical tube[J]. Applied Thermal Engineering, 2022, 213: 118647.

[95] SHARQAWY M H, SAAD S M I, AHMED K K. Effect of flow configuration on the performance of spiral-wound heat exchanger[J]. Applied Thermal Engineering, 2019, 161: 114157.

[96] AKGUL D, KIRKAR S M, ONAL B S, et al. Single-phase flow heat transfer characteristics in helically coiled tube heat exchangers[J]. Kerntechnik, 2022, 87(1): 1-25.

[97] 孙亚军, 陈歌, 徐智敏, 等.我国煤矿区水环境现状及矿井水处理利用研究进展[J].煤炭学报, 2020, 45(1): 304-16.

[98] 全贞花. 碳酸钙于换热表面结垢与物理抗垢的实验及机理研究[D]. 北京工业大学, 2007.

[99] 方惠明, 戚凯, 李向东, 等.高矿化度矿井水结垢趋势及影响因素研究[J]. 中国煤炭地质, 2021, 33(2): 60-3.

[100] WATKINSON A P, MARTINEZ O. Scaling of Heat Exchanger Tubes by Calcium Carbonate[J]. Journal of Heat Transfer, 1975, 97(4): 504-8.

[101] ZABOLI M, NOURBAKHSH M, AJAROSTAGHI S S M. Numerical evaluation of the heat transfer and fluid flow in a corrugated coil tube with lobe-shaped cross-section and two types of spiral twisted tape as swirl generator[J]. Journal of Thermal Analysis and Calorimetry, 2020, 147(1): 999-1015.

[102] HEYDARI O, MIANSARI M, ARASTEH H, et al. Optimizing the hydrothermal performance of helically corrugated coiled tube heat exchangers using Taguchi’s empirical method: energy and exergy analysis[J]. Journal of Thermal Analysis and Calorimetry, 2020, 145(5): 2741-52.

[103] WEBB R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design[J]. International Journal of Heat and Mass Transfer, 1981, 24(4): 715-26.

[104] 崔海亭. 强化传热新技术及其应用[M]. 化学工业出版社, 2006.

[105] HEISS J F, COULL J. Nomograph of Dittus-Boelter Equation for Heating and Cooling Liquids[J]. Industrial & Engineering Chemistry, 2002, 43(5): 1226-9.

[106] HAALAND S E. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow[J]. Journal of Fluids Engineering, 1983, 105(1): 89-90.

[107] MORI Y, NAKAYAMA W. Study of forced convective heat transfer in curved pipes (2nd report, turbulent region)[J]. International Journal of Heat and Mass Transfer, 1967, 10(1): 37-59.

[108] YILDIZ C, BIçER Y, PEHLIVAN D. Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs[J]. Energy Conversion and Management, 1997, 38(6): 619-24.

[109] SCHMIDT E F. Wärmeübergang und Druckverlust in Rohrschlangen[J]. Chemie Ingenieur Technik, 1967, 39(13): 781-9.

[110] KUBAIR V. V C B S. Pressure drop for liquid flow in helical coils[J]. Trans Indian Inst Chem Eng, 1962, 14: 93-7.

[111] ZHAO H, LI X, WU Y, et al. Friction factor and Nusselt number correlations for forced convection in helical tubes[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119759.

[112] SEBAN R A, MCLAUGHLIN E F. Heat transfer in tube coils with laminar and turbulent flow[J]. International Journal of Heat and Mass Transfer, 1963, 6(5): 387-95.

[113] RAINIERI S, PAGLIARINI G. Convective heat transfer to temperature dependent property fluids in the entry region of corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(22): 4525-36.

[114] KUMAR P, TOPIN F, MISCEVIC M, et al. Heat Transfer Enhancement in Short Corrugated Mini-Tubes[M]. Numerical Heat and Mass Transfer in Porous Media. 2012: 182-208.

[115] HEIDARY H, KERMANI M J. Effect of nano-particles on forced convection in sinusoidal-wall channel[J]. International Communications in Heat and Mass Transfer, 2010, 37(10): 1520-7.

[116] GB 50015-2019. 建筑给水排水设计标准[S]. 中华人民共和国住房和城乡建设部, 2019. 294.

[117] GB 50736-2012. 民用建筑供暖通风与空气调节设计规范[S]. 中华人民共和国住房和城乡建设部, 2012.

[118] 李仁永. 矿井清污水分离排放及高温清水综合利用研究[J]. 山东煤炭科技, 2019, (7): 190-2.

[119] 江兆强, 龚爱民, 张新启, 等.长距离热水输送管道保温结构热损失研究[J]. 节能技术, 2020, 38(02): 113-7.

[120] 高婧. 绿色低碳转型期煤炭价格对PPI的影响研究[J]. 华北金融, 2022, (9): 26-33,41.

[121] GB/T 2589-2020. 综合能耗计算通则[S]. 国家市场监督管理总局, 2020.

中图分类号:

 TK529    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式