- 无标题文档
查看论文信息

题名:

 基于低电压穿越不确定性的分布式电源连锁脱网的配电网风险评估    

作者:

 张彦虎    

学号:

 22206007149    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085800    

学科:

 工学 - 能源动力    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 配电网风险评估    

导师姓名:

 马莉    

导师单位:

 西安科技大学    

提交日期:

 2025-06-17    

答辩日期:

 2025-06-05    

外文题名:

 Distribution network risk assessment based on low voltage ride-through uncertainty for distributioned generator cascaded tripping-off    

关键词:

 多级电压暂降 ; 分布式电源 ; 风险评估 ; 脱网概率评估 ; 低电压穿越不确定性    

外文关键词:

 Multi-stage voltage sag ; Distributed generation ; Risk assessment ; Off-grid probability assessment ; Low voltage ride-through uncertainty    

摘要:

在碳达峰、碳中和目标的推动下,能源结构优化与可再生能源开发成为关键任务。分布式发电系统因具备环保与经济优势而发展迅猛,光伏、风电等分布式电源在电网中的接入规模持续扩大。然而,分布式电源(Distributed Generation,DG)的广泛应用对电力系统的稳定性和可靠性提出了新的挑战。当线路发生短路故障时,DG并网点的电压容易越限,进而导致DG脱网引发多级电压暂降,造成更大的电网安全问题。在此背景下,需要对考虑DG连锁脱网的配电网进行风险评估,这可以帮助识别和量化DG脱网后可能带来的各种风险,为电网的稳定运行提供有力保障。

首先,对DG连锁脱网下的多级电压暂降波形进行了分析和总结。以暂降幅值和持续时间为电压暂降的特征量,分析了DG加速脱网和不加速脱网的多级电压暂降波形。同时考虑了电网结构、继电保护类型以及故障位置对多级电压暂降波形的影响,并以PSCAD仿真软件设置不同场景进行波形仿真,所得结果与理论分析结果基本一致,为DG脱网概率评估和配电网风险评估提供了基础。

其次,提出基于低电压穿越不确定性的DG脱网概率评估方法。结合低电压穿越曲线(Low Voltage Ride Through Curve, LVRTC),考虑低电压穿越的不确定性,基于正态函数的分布规律刻画不确定区域的虚拟上下限曲线,由此构成DG低电压穿越的不确定性区域。用正态分布密度函数表征其脱网的随机特性,基于低电压穿越不确定性区域提出了DG脱网概率评估方法。在此基础上,采用经过多级电压暂降电压幅值等效计算后的幅值进行DG脱网概率评估,避免了欠评估。

最后,提出DG连锁脱网下的配电网风险评估方法。基于低压配电网的安全运行条件,建立了配电网风险评估指标。通过BWM法和CRITIC法分别确定各风险指标的主客观权重,引入组合赋权通过拉格朗日乘子法得到各风险指标的组合权重。从事故发生可能性和后果严重度两个方面,构建了基于DG连锁脱网的配电网风险评估方法。通过改造后的IEEE-30系统进行多场景仿真验证,结果表明本文提出的风险评估方法合理有效,为施加有效的风险防控和治理措施提供依据。

外文摘要:

Driven by the goals of carbon peak and carbon neutrality, the optimization of energy structure and the development of renewable energy have become key tasks. Distributed generation systems have developed rapidly due to their environmental and economic advantages, and the scale of integration of distributed power sources such as photovoltaics and wind power into the power grid continues to expand. However, the widespread application of Distributed Generation (DG) poses new challenges to the stability and reliability of power systems. When a short circuit fault occurs in the power line, the voltage at the grid connection point of the distributed power source is prone to exceed the limit. It will cause DG off-grid and multi-stage voltage sag, resulting in greater power grid safety issues. In this context, it is necessary to conduct a risk assessment of the distribution network considering the cascading disconnection of distributed power sources. This can help identify and quantify various risks that may arise after DG off-grid, providing strong guarantees for the stable operation of the power grid.

Firstly, the multi-stage voltage sag waveform under the cascaded tripping-off of DG was analyzed and summarized. The multi-stage voltage sag waveforms of DG accelerated and non-accelerated disconnection were analyzed based on the characteristic quantities of voltage sag amplitude and duration. At the same time, the influence of power grid structure, relay protection type, and fault location on multi-level voltage sag waveform was considered, and different scenarios were set up using PSCAD simulation software for waveform simulation. The results obtained were basically consistent with theoretical analysis, providing a basis for DG off-grid probability assessment and distribution network risk assessment.

Secondly, a DG off-grid probability assessment method based on low voltage ride through uncertainty is proposed. Combined with the low voltage ride through curve ( LVRTC ), considering the uncertainty of low voltage ride through, distribution law of the normal function is used to describe the virtual upper and lower limits of the uncertain region, thus forming the uncertainty region of DG low voltage ride through. The normal distribution density function is used to characterize the random characteristics of the off-grid, and the DG off-grid probability assessment method is proposed based on the low voltage crossing uncertainty region. On this basis, the amplitude after the equivalent calculation of the multi-stage voltage sag voltage amplitude is used to evaluate the DG off-grid probability, which avoids the under-evaluation.

Finally, a risk assessment method for distribution networks considering the cascaded tripping-off of DG was proposed. Based on the safe operating conditions of low-voltage distribution networks, risk assessment indicators for distribution networks have been established. Determine the subjective and objective weights of each risk indicator using the BWM method and CRITIC method, and introduce combined weighting to obtain the combined weights of each risk indicator using the Lagrange multiplier method. A risk assessment method for distribution networks based on DG cascaded tripping-off was constructed from two aspects: the possibility of accident occurrence and the severity of consequences. Through multi scenario simulation verification using the IEEE-30 system, the results show that the risk assessment method proposed in this paper is reasonable and effective, providing a basis for implementing effective risk prevention and control measures.

参考文献:

[1]李立新, 周宇昊, 郑文广. 能源转型背景下分布式能源技术发展前景[J]. 发电技术, 2020, 41(06):571-577.

[2]张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(08):2806-2819.

[3]初芯言. 分布式电源并网对配电网电能质量的影响研究[D]. 大连:大连交通大学, 2024.

[4]李创军. 推动新能源和可再生能源发展再上新台阶[N].中国电力报, 2025-03-06(001).

[5]Shuai Zhikang, Shen Chao, Yin Xin, et al. Fault Analysis of Inverter Interfaced Distributed Generators with Different Control Schemes[J]. IEEE Transactions on Power Delivery, 2018, 33(3):1223-1235.

[6]张长久, 邬小波, 谢小英. 基于GB/T33593标准的DG低电压穿越输出特性研究[J]. 电力系统保护与控制, 2019, 47(24):76-83.

[7]刘昊霖, 贾科, 毕天姝, 等. 接入新能源大基地汇集系统的柔直换流站低电压穿越方法[J]. 电工技术学报, 2025, 40(03):759-770.

[8]张兴旺. 含高渗透率分布式电源的配电网低电压穿越控制策略研究[D]. 郑州:华北水利水电大学, 2020.

[9]Kai Shi, Tong Li, Mingwei Ren,et al. Low voltage ride-through control strategy for virtual synchronous generators based on virtual self-inductive flux linkage [J]. Journal of Power Electronics, 2021, 21(3):815-828.

[10]王若琪, 胡炎, 杨增力, 等. 大量分布式电源接入的配电网自适应重合闸及故障恢复策略[J]. 上海交通大学学报, 2025,1-15.

[11]Wen Fankai, Acuna Pablo, Yang Jin, et al. Low-Voltage Ride-Through Scheme for Distributed Generation Inverters Using a Modified Current Reference Strategy[J]. IEEE International Conference on Industrial Technology, 2024, 1-7.

[12]仇晨光, 张振华, 李蓝青, 等. 计及DSSC的含新能源电网静态电压稳定性分析[J]. 电力建设, 2023, 44(10):33-40.

[13]毕平平, 许晓艳, 梅文明, 等. 风电基地连锁脱网风险评估方法及送出能力研究[J]. 电网技术, 2019, 43(03):903-910.

[14]梁志峰, 康重庆, 隋凌峰, 等. 含高比例分布式光伏的主配网运行风险评估与防控策略研究[J]. 清华大学学报(自然科学版), 2024, 64(11):1964-1978.

[15]张书通, 刘东. 间歇性分布式电源接入配电网风险评估与调控策略[J]. 上海电力大学学报, 2024, 40(06):500-509.

[16]赵舒心. 分布式电源接入配电网的故障分析及最优电压支撑策略[D]. 北京:华北电力大学, 2024.

[17]张兴旺. 含高渗透率分布式电源的配电网低电压穿越控制策略研究[D]. 北京:华北水利水电大学, 2020.

[18]贺益康, 周鹏. 变速恒频双馈异步风力发电系统低电压穿越技术综述[J]. 电工技术学报, 2009, 24(09):140-146.

[19]Pouya Salyani, Kazem Zare, Mehdi Abapour, et al. A General Mathematical Model for LVRT Capability Assessment of DER-Penetrated Distribution Networks[J]. IEEE Access, 2020, 8: 125521-125533.

[20]李立雄, 阳同光, 袁越阳, 等. 基于改进有限集模型预测控制策略的光伏发电系统最大功率点追踪算法[J]. 电力系统保护与控制, 2021, 49(17):28-37.

[21]葛路明, 曲立楠, 陈宁, 等. 光伏逆变器的低电压穿越特性分析与参数测试方法[J]. 电力系统自动化, 2018, 42(18):149-156.

[22]王德顺, 魏海坤, 杨波, 等. 超高海拔光伏电站低电压穿越测试系统设计关键技术[J]. 电力系统自动化, 2019, 43(06):171-176.

[23]李宇泽, 周念成, 侯健生, 等.计及光伏发电低电压穿越不确定性的主动配电网短路电流概率评估[J]. 电工技术学报, 2020, 35(03):564-576.

[24]欧阳森, 马文杰.兼顾功率协调控制的两级式光伏逆变器低电压穿越控制策略[J]. 华南理工大学学报(自然科学版), 2018, 46(05):93-99.

[25]黄伟, 刘斯亮, 羿应棋, 等.基于光伏并网点电压优化的配电网多时间尺度趋优控制[J]. 电力系统自动化, 2019, 43(03):92-100.

[26]勾奕昀, 郑竞宏, 刘壮, 等.基于锁相环相位补偿的光伏逆变器低电压穿越快速无功控制[J]. 电力系统保护与控制, 2024, 52(24):85-96.

[27]廖一丁, 夏向阳, 刘俊翔, 等.电网不对称故障下光伏并网逆变器的无功支撑控制策略[J]. 太阳能学报, 2024, 45(09):326-333.

[28]谭会征, 李永丽, 陈晓龙, 等.带低电压穿越特性的逆变型分布式电源对配电网短路电流的影响[J]. 电力自动化设备, 2015, 35(08):31-37+52.

[29]陈璐, 张溪, 党晓圆, 等. 采用新型模型预测的光伏虚拟同步机低电压穿越控制[J]. 电源学报, 2024, 22(04):163-172.

[30]徐迪, 王洪涛. 基于随机潮流和风险价值的含大规模风电系统高风险连锁故障评估[J]. 电网技术, 2019, 43(02):400-409.

[31]Fu Yu, Li Wei, Xiong Nan, et al. Influence of off-grid/grid-connected operation on stability of large-scale photovoltaic system[J]. Energy Reports, 2023, 9:904-910.

[32]谢欢, 吴涛, 赵亚清, 等. 计及动态无功控制影响的风电汇集地区高电压脱网原因分析[J]. 电力系统自动化, 2015, 39(04):19-25.

[33]杜剑行, 朱冬雪. 张北地区风电汇集区域风机脱网问题探讨[J]. 华北电力技术, 2017, (09):49-54.

[34]Zhang Guopei, Wang Xiaohui, Gao Feng. Sequential Dynamics in Photovoltaic Power Station Under Low Voltage Ride Through. In IEEE Transactions on Energy Conversion, 2024, 39(02) 1024-1033.

[35]黄海洋. 大规模风电机组连锁脱网故障防御策略研究[D]. 宜昌:三峡大学, 2018.

[36]王华佳, 张岩, 尹书林, 等. 分布式光伏并网系统电压越限风险及谐波影响[J]. 电网与清洁能源, 2024, 40(03):128-138+146.

[37]蒋子维, 吴峰.主动配电网低压分布式光伏连锁故障分析[J]. 供用电, 2021, 38(04):77-84.

[38]Ying Wang, Hao Luo, Xianyong Xiao. Joint Optimal Planning of Distributed Generations and Sensitive Users Considering Voltage Sag[J]. IEEE Transactions on Power Delivery, 2021, PP(99):1-1.

[39]董逸超, 王守相, 闫秉科. 配电网分布式电源接纳能力评估方法与提升技术研究综述[J]. 电网技术, 2019, 43(07):2258-2266.

[40]康亚雄. 基于复杂网络理论的电网关键节点识别与级联故障研究[D]. 北京:中国石油大学, 2023.

[41]周湶, 廖婧舒, 廖瑞金, 等. 含分布式电源的配电网停电风险快速评估[J]. 电网技术, 2014, 38(04):882-887.

[42]莫熙, 王宜立, 高道春, 等. 基于改进蒙特卡洛法的智能电网实时运行风险评估[J]. 能源与环保, 2022, 44(11):233-237.

[43]Li Shuo, Wang Shouxiang, Qianyu Zhao, et al. A Risk Assessment Framework for Large-Scale Synthetic Power Distribution Networks Considering Historical Hurricane Disasters [J]. IEEE Transactions on Power Systems, 2025, 93, 1-13.

[44]Zhao L, Mao T, Xu W, et al. A Review of Risk Assessment Methods for Power System[J]. MATEC Web of Conferences, 2017, 13900175.

[45]张逸, 吴逸帆, 陈晶腾. 新型电力系统背景下电压暂降风险评估技术挑战与展望[J]. 电力建设, 2023, 44(02):15-24.

[46]Zhang Y, Karve M P, Mahadevan S. Graph neural networks for power grid operational risk assessment under evolving unit commitment[J]. Applied Energy, 2025, 380124793-124793.

[47]胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述:特征、指标及评估方法[J]. 电力系统自动化, 2023, 47(05):1-15.

[48]杨金海, 武家辉, 萨妮耶·麦合木提, 等.含新能源的电力系统安全性评估[J]. 现代电力, 2023, 40(05):651-659.

[49]张稳, 盛万兴, 刘科研, 等. 高渗透率分布式电源按节点关键性接入配电网的运行风险评估[J]. 高电压技术, 2021, 47(03):937-947.

[50]范培潇, 刘学成, 杨军, 等. 考虑配电网与电化学储能交互耦合关系的异常运行状态预警方法[J]. 全球能源互联网, 2024, 7(04):383-392.

[51]Oliver S, Pranav K, Sankaran M.Reliability and risk metrics to assess operational adequacy and flexibility of power grids[J]. Reliability Engineering and System Safety, 2023,231.

[52]梁振锋, 闫俊杰, 李江锋, 等. 极端暴雨灾害下城市配电网风险评估方法[J]. 电网技术, 2023, 47(10):4180-4190.

[53]刘金, 李更丰, 孙思源, 等. 暴雨灾害下配电网预警与风险评估技术研究综述[J]. 东北电力大学学报, 2022, 42(06):1-7+111-112.

[54]董逸超, 王守相, 闫秉科. 配电网分布式电源接纳能力评估方法与提升技术研究综述[J]. 电网技术, 2019, 43(07):2258-2266.

[55]李蒸蒸. 配电网电压暂降类型辨识及其影响评估[D]. 江苏: 江苏大学, 2022.

[56]Xu Yonghai, Fan Xingguan, Deng Siying, et al. A voltage sag severity evaluation method for the system side which considers the influence of the voltage tolerance curve and sag type[J]. Energies, 2021, 14, 5065.

[57]马莉, 田钉荣, 张伟, 等. 基于敏感负荷的电压暂升影响度评估方法[J]. 科学技术与工程, 2022, 22 (29): 12875-12882.

[58]范文杰. 逆变型分布式电源对电压暂降的影响及其优化配置研究[D]. 北京:华北电力大学, 2019.

[59]Li Ma, Yu Li, Tian Dingrong, et al. Assessment of voltage sag/swell in the distribution network based on energy index and influence degree function[J]. Electric Power Systems Research, 2023, 216.

[60]肖先勇, 陈武, 杨洪耕.敏感设备电压暂降故障水平的多不确定性评估[J]. 中国电机工程学报, 2010, 30(10): 36-42.

[61]马莉, 陈应雨, 田钉荣, 等. 基于改进层次分析法的多级电压暂降严重程度评估[J]. 电力系统保护与控制, 2023, 51(17):49-57.

[62]于雨彤, 王灿, 李勇, 等. 高比例光伏接入的配电网多层级反向重过载风险评估[J].高电压技术, 2024, 50(10):4540-4549.

[63]Guo Xiaohan, Li Yong, Wang Shaoyang, et al. A comprehensive weight-based severity evaluation method of voltage sag in distribution networks[J]. Energies, 2021, 14(19):6434-6443.

[64]Dong Yunxia. Evaluation method of voltage sag severity in distribution networks[J]. International Journal of Energy and Power Engineering, Vol. 10, No. 6, 2021, pp. 135-140.

[65]刘颖英, 冯丹丹, 林才华, 等. 电能质量综合评估研究现状及发展趋势[J]. 电力系统保护与控制, 2020, 48(4): 167-176.

[66]杨家莉, 刘书铭, 徐永海, 等.基于熵权法的电压暂降严重程度综合评估方法[J]. 现代电力, 2017, 34(4): 40-49.

[67]罗珊珊, 陈兵, 汪颖, 等. 基于过程免疫力和优化K近邻估计的配网电压暂降频次估计[J]. 电工电能新技术, 2022, 41(07): 25-37.

[68]Ma Li, Zhang Yanhu, Chen Yingyu, et al. Multi-stage voltage sag frequency evaluation based on process immunity in the distribution network[J]. International Journal of Emerging Electric Power Systems, 2024.

[69]Debnath Kalyani, Debnath Piyali, et al. Choudhury S ,et al. An integrated decision-making approach using Best-Worst method and VIKOR in uncertain environment[J]. Journal of Ambient Intelligence and Humanized Computing, 2025, 16(1):33-49.

[70]李响, 武海潮, 王文雪, 等. 考虑大规模新能源接入的电网性能评价指标体系[J]. 电力系统保护与控制, 2024, 52(15):178-187.

[71]肖白, 郭蓓, 季帅, 等. 考虑区域配电网风险承受能力差异的网架规划方法[J]. 电力自动化设备, 2020, 40(03):68-75.

中图分类号:

 TM715    

开放日期:

 2026-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式