- 无标题文档
查看论文信息

论文中文题名:

 喷雾射流对火灾烟气蔓延规律的影响研究    

姓名:

 宋方智    

学号:

 20220226128    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与技术    

第一导师姓名:

 刘长春    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Study on the effect of spray jet on the smoke spread pattern of fire    

论文中文关键词:

 喷雾射流 ; 卷吸空气特性 ; 火灾烟气蔓延 ; 火场温度 ; FDS    

论文外文关键词:

 spray jet ; coiled air characteristics ; fire smoke spread ; fire scene temperature ; FDS    

论文中文摘要:

喷雾射流作为一种有效的灭火和控火技术是近些年消防领域研究的热点,但其排烟控烟属性研究相对不足。当雾滴移动会拖曳雾滴后面的空气一起运动,这种性质可用于控制火场烟气的流向,减少高温烟气的危害。本文结合理论分析、实验和数值仿真,开展喷雾射流对火灾烟气蔓延规律影响的研究。

通过小尺寸实验研究了射流距离、出口压力、出口孔径、喷嘴数量和喷嘴运动方式对空气卷吸特性的影响。结果表明,随着射流距离的增加,射流出口风速和卷吸空气量先增加后减小,喷嘴与射流入口之间的距离存在最优值,在该距离下能够达到喷嘴在自身喷雾射流强度下最大的空气卷吸量,并通过数值模拟计算了该距离下能够达到喷嘴在自身喷雾射流强度下最大的空气卷吸量。在其它变量相同的条件下,当出口压力、孔径或喷嘴数量较大时,风速和空气卷吸量达到最大,相较于其他运动方式,喷嘴O型运动可以有效提升喷雾射流卷吸空气量。

通过小尺寸实验研究了出口压力、孔径和喷嘴数量对火灾烟气蔓延特性的影响,包括蔓延形态、排烟时间和火场内部温度变化。结果表明,当燃烧时间增加至150s时,火灾烟气出现了明显的分层现象,第1层的火灾烟气浓度明显大于第2层,且两个烟气层的蔓延流动方向相反。在其他变量相同的条件下,当出口压力、孔径或喷嘴数量较大时,发现烟气排出时间有效缩短,由于喷雾射流对火场内部具有冷却作用,实验内部火场空间温度随着射流卷吸空气量的增加而降低,在喷射入口处、火源中心和出口温度下降趋势较为明显,火源中心的温度下降趋势最大,射流入口和射流出口的温度下降趋势较为平缓。通过FDS对实验工况进行数值模拟,发现烟气排出时间和喷雾射流卷吸空气量与实验结果基本相近。

通过大尺寸实验研究了射流出口压力、出口孔径和喷嘴运动方式对喷雾射流卷吸空气特性的影响,验证了小尺寸实验结果的准确性。使用喷雾射流水枪对全尺寸火灾实验进行灭火,发现喷雾射流对全尺寸火场内部的降温效果较为明显。最后,以全尺寸火灾实验为参考,建立了数值模拟模型,火灾实验现场温度和模拟温度变化基本吻合,通过FDS计算了射流距离、射流张角和雾滴粒径等因素对大尺寸喷雾射流卷吸空气的影响,得到了喷雾射流作用下的火场内部火灾烟气蔓延过程。结果表明,随着射流距离和射流张角的增加,卷吸空气量先增加后减小,射流距离存在最优值,改变雾滴粒径对喷雾射流空气卷吸量的影响不大。

研究结果可为喷雾射流技术的移动排烟控烟应用提供理论基础和数据支撑,有重要的学术研究和工程应用价值。

论文外文摘要:

Spray jet as an effective fire extinguishing and controlling technology has been a hot topic in the field of firefighting research in recent years, but research into its smoke exhaust and smoke control properties is relatively insufficient. When spray droplets move, they will drag the air behind them in motion, and this property can be used to control the flow direction of fire smoke and reduce the harm of high-temperature smoke. This paper combines theoretical analysis, experiments, and numerical simulation to study the influence of spray jet on the spread of fire smoke.

The impact of jet distance, outlet pressure, outlet aperture, nozzle quantity, and nozzle motion on the air entrainment characteristics were studied through small-scale experiments. The results showed that as the jet distance increased, the jet outlet velocity and air entrainment first increased and then decreased. There was an optimal distance between the nozzle and the jet inlet, at which the nozzle could achieve the maximum air entrainment at its own spray jet intensity. The distance was also calculated numerically. Under the same conditions of other variables, when the outlet pressure, aperture, or nozzle quantity was larger, the wind speed and air entrainment reached the maximum. Compared with other motion modes, the O-type motion of the nozzle can effectively enhance the air entrainment of the spray jet. The influence of various factors on the air entrainment characteristics was investigated in a small-scale experiment. The results indicated that there is an optimal distance between the nozzle and the jet inlet, at which maximum air entrainment can be achieved at the nozzle's own spray jet intensity. Furthermore, larger outlet pressure, aperture, or nozzle quantity resulted in higher wind speed and air entrainment. Finally, the O-type nozzle motion was found to be the most efficient method to enhance the air entrainment of the spray jet.

The study investigated the impact of outlet pressure, aperture size, and nozzle quantity on the spread characteristics of fire smoke through small-scale experiments. The observations included spread pattern, smoke exhaust time, and temperature changes inside the fire scene. The findings revealed that smoke stratification occurred when the combustion time increased to 150s, with a significant concentration difference in the first and second smoke layers. Additionally, it was observed that increasing the outlet pressure, aperture size or nozzle quantity reduced the smoke exhaust time. Moreover, the experimental results showed that the spray jet had a cooling effect on the fire scene, resulting in a decrease in internal temperature as the jet suction air volume increased. The temperature decrease trend was more pronounced at the jet injection inlet, the center of the fire source, and the outlet. This finding implies that increasing the outlet pressure, aperture size, or nozzle quantity is a viable method of reducing smoke exhaust time and temperature during fire outbreaks. Furthermore, the numerical simulations conducted using FDS showed similar results of smoke exhaust time and air suction volume by the spray jet as the experimental findings.

The impact of several factors, including jet outlet pressure, outlet aperture, and nozzle movement on the characteristics of air entrainment for spray jets were studied through large-scale experiments. The accuracy of the small-scale experiment results was also verified. The extinguishing effect of spray jets on large-scale fire experiments was observed, and it was found that the cooling effect on the entire full-scale fire scene was noticeable. Finally, a numerical simulation model was established based on the large-scale fire experiment results. The effects of jet distance, spray angle, and droplet size on air entrainment for large-scale spray jets were calculated through FDS. The study concludes that the amount of air entrainment first increases and then decreases with increasing jet distance and spray angle. Additionally, the impact of changing droplet size on air entrainment for spray jets is not significant.

The results of the study could provide important support for the theoretical foundations and data support for the mobile hood technology in smoke control and smoke exhaust application. Thus, these findings possess vital importance for academic research and engineering application.

参考文献:

[1]吴德兴. 特长公路隧道火灾独立排烟道点式排烟系统研究[D]. 成都: 西南交通大学, 2011.

[2]姜童辉. 纵向通风对隧道火灾烟气层结构及竖井排烟的影响机制研究[D]. 合肥: 中国科学技术大学, 2017.

[3]梁强. 狭长空间火灾中细水雾型水幕阻烟性能实验及应用研究[D]. 北京: 北京工业大学, 2017

[4]郭阿敏. 多层建筑火灾中烟气蔓延规律及对人员疏散影响研究[D]. 太原: 太原理工大学, 2017.

[5]Grant G, Brenton J, Drysdale D. Fire suppression by water sprays[J]. Progress in Energy and Combustion Science, 2000, 26(2): 79-130.

[6]Wang X, Shi L, et al. Preliminary study on the interaction of water mist with pool fires[J]. Journal of Fire Sciences, 2016,19(1): 45-61.

[7]Prasad K, Patnaik G, Kailasanath K. A numerical study of water-mist suppression of large scale compartment fires[J]. Fire Safety Journal, 2002, 37(6): 569-589.

[8]Lasheras J C, Villermaux E, Hopfinger E J. Break-up and atomization of a round water jet by a high-speed annular air jet[J]. Journal of Fluid Mechanics, 1998, 357: 351-379.

[9]Kuan B T. CFD modelling of liquid jet and cascade breakup in crossflows[J]. Aerospace Science and Technology, 2009, 6(7): 495-506.

[10]Pan L W, Lo S M, Liao G X, et al. Experimental study of smoke control in subway station for tunnel area fire by water mist system[J]. Procedia Engineering, 2011, 11: 335-342.

[11]Habib I S. Interaction of a hot gas flow and a cold liquid spray in chaannels[J]. J Heat Transfer, 1976, 98(3): 421-423.

[12]Nam S. Numerical simulation of the penetration capability of sprinkler sprays[J]. Fire Safety Journal, 1999, 32(4): 307-329.

[13]Nam S. Development of a computational model simulating the interaction between a fire plume and a sprinkler spray[J]. Fire Safety Journal, 1996, 26(1): 1-33.

[14]刘晶, 张云霞. 细水雾灭火对烟雾特性影响分析[J]. 能源与环境, 2015, 3: 73-75.

[15]Wang A, Xi L U, Liao G. Large eddy simulation on the control of smoke movement by water sprays[J]. Fire Safety Science,121: 1-13.

[16]房玉东. 细水雾与火灾烟气相互作用的模拟研究[D]. 合肥: 中国科学技术大学, 2006.

[17]王军. 高层建筑前室正压送风对火灾烟气控制效果研究[D]. 淮南: 安徽理工大学, 2013.

[18]NFPA1964, Standard for spray Nozzles[S]. Quincy: National Fire Protection Association, 1964.

[19]闻建龙, 王军锋, 沙毅, 等. 一种新型消防水枪的设计及试验研究[J]. 排灌机械工程学报, 2002, 04: 21-26.

[20]“QLD8B流量可调多功能水枪、 PSKD50固定式隔爆远控消防炮、 PSKDY50移动式远控消防炮”通过国家型式检验[J]. 消防技术与产品信息, 2004, 03: 66.

[21]沙月华, 黄灯林. 多功能消防水枪[P].中国专利: CN2502730Y. 2002-07-31.

[22]朱畅. 稳压型多功能消防水枪的研制和细水雾灭火实验[D]. 杭州: 浙江大学, 2005.

[23]荀迪涛, 李思成, 王万通. 灭火战斗中火场排烟方法探讨[J]. 消防科学与技术, 2014, 33(1): 99-102.

[24]Kim J Y, Yoon S W, Yoo J O, et al. A study on the smoke control characteristic of the longitudinally ventilated tunnel fire using PIV[J]. Tunnelling and Underground Space Technology, 2006, 21(3): 302.

[25]周天念. 弧形截面隧道内受限火行为特征及移动式风机排烟方法研究[D]. 合肥: 中国科学技术大学, 2018.

[26]席慧敏. 移动排烟设备配备使用中存在问题及对策[J]. 消防技术与产品信息, 2018, 31(10): 88-91.

[27]Se C, Lee E, Lai A. Impact of location of jet fan on airflow structure in tunnel fire - ScienceDirect[J]. Tunnelling and Underground Space Technology, 2012, 27(1): 30-40.

[28]Musto M, Rotondo G. Numerical comparison of performance between traditional and alternative jet fans in tiled tunnel in emergency ventilation[J]. Tunnelling and Underground Space Technology, 2014, 42: 52-58.

[29]Betta V, Cascetta F, Musto M, et al. Numerical study of the optimization of the pitch angle of an alternative jet fan in a longitudinal tunnel ventilation system[J]. Tunnelling and Underground Space Technology, 2009, 24: 164-172.

[30]Klote J H. Computer program for analysis of pressurized stairwells and pressurized elevator shafts. [EB/OL]. National Institute of Standards and Technology, 1981.

[31]刘朝贤. 对高层建筑加压送风防烟章节几个主要问题的分析与修改意见[J]. 制冷与空调(四川), 2011, 25(6): 10.

[32]方伟, 杨国荣, 任兵. 楼梯间及其前室正压送风系统送风量的计算[J]. 暖通空调, 2004, 34(6): 4.

[33]李思成, 荀迪涛, 王万通. 正压送风排烟在火场中的应用[J]. 消防科学与技术, 2013, 32(9): 1023-1026.

[34]Craig W, Keith S. Robin Z. Impact of faire attack utilizing interior and exterior streams on firefighter safety and occupant survival:air entrainment[J]. UL Firefigher Safety Research Institute, 2017.

[35]Sikanen T, Vaari J, Hostikka S, et al. Modeling and simulation of high pressure water mist systems[J]. Fire Technology, 2013, 50(3): 483-504.

[36]Christian H, Manuel H. Experimental investigation on the entrainment in two-phase free jets[J]. Fuel, 2023, 335, 126912.

[37]Tang F, Zhao Z, Zhao K. Experimental investigation on carriage fires hazards in the longitudinal ventilated tunnels: assessment of the smoke stratification features[J]. Safety Science, 2020, 130: 104901.

[38]Ma X, Luo H, Fang T, et al. Maximum smoke temperature in the longitudinally ventilated tunnel fire: influence of the separating distance between two sources[J]. Tunnelling and Underground Space Technology, 2021, 107: 103674.

[39]Hang Y, Xing S, Chen R, et al. Experimental study on maximum temperature beneath tunnel ceiling under the condition of double fire sources[J]. Tunnelling and Underground Space Technology, 2020, 106:103624.

[40]Lei P, Chen C, Zhang Y, et al. Experimental study on temperature profile in a branched tunnel fire under natural ventilation considering different fire locations[J]. International Journal of Thermal Sciences, 2021, 159: 106631.

[41]Hu L, Huo R, Peng W, et al. On the maximum smoke temperature under the ceiling in tunnel fires[J]. Tunnelling and Underground Space Technology, 2005, 21(6): 650-655.

[42]Li Q, Tang Z, Fang Z, et al. Experimental study of the effectiveness of a water mist segment system in blocking fire-induced smoke and heat in mid-scale tunnel tests[J]. Tunnelling and Underground Space Technology, 2019, 88: 237-249.

[43]Chen C, Nie Y, Zhang Y, et al. Experimental investigation on the influence of ramp slope on fire behaviors in a bifurcated tunnel[J]. Tunnelling and Underground Space Technology, 2020, 104: 103522.

[44]Ferrero F, Munoz M, Kozanoglu B, et al. Experimental study of thin-layer boilover in large-scale pool fires[J]. Journal of Hazardous Materials, 2006, 137(3): 1293-1302.

[45]易亮, 霍然, 张靖岩, 等. 柴油油池火功率特性[J]. 燃烧科学与技术, 2006, 02: 164-168.

[46]Luo N, Li A, Gao R, et al. An experiment and simulation of smoke confinement utilizing an air curtain[J]. Safety Science, 2013, 59: 10-18.

[47]Harish R, Venkatasubbaiah K. Numerical study of water spray interaction with fire plume in dual chambers connected to tall shaft[J]. Fire Safety Journal, 2015, 74: 1-10.

[48]Gao R, Li A, Lei W, et al. Study of a proposed tunnel evacuation passageway formed by opposite-double air curtain ventilation[J]. Safety Science, 2012, 50(7): 1549-1557.

[49]Yang P, Shi C, Gong Z, et al. Numerical study on water curtain system for fire evacuation in a long and narrow tunnel under construction[J]. Tunnelling and Underground Space Technology, 2019, 83: 195-219.

[50]Liang Q, Li Y, Li J, et al. Numerical studies on the smoke control by water mist screens with transverse ventilation in tunnel fires[J]. Tunnelling and Underground Space Technology, 2017, 64: 177-183.

[51]Wang J, Nie Q, Fang Z, et al. CFD Simulations of the interaction of the water mist zone and tunnel fire smoke in reduced-scale experiments[J]. Procedia Engineering, 2018, 211: 726-735.

[52]龚伟, 游伟. 地铁车站火灾烟气蔓延数值模拟分析[J]. 消防科学与技术, 2010, 29(4): 294-296.

[53]展望, 蒋军成, 孙智灏, 等. 细水雾对地铁火灾烟气抑制的数值模拟[J]. 建筑科学, 2014, 30(7): 103-106.

[54]Mcgrattan K, Hostikka S, Mcdermott R, et al. Fire dynamics simulator user’s guide[J]. NIST Special Publication, 2013, 1019(6).

[55]Zhang W, Hamer A, Klassen M, et al. Turbulence statistics in a fire room model by large eddy simulation[J]. Fire Safety Journal, 2002, 37(8): 721-752.

中图分类号:

 X932    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式