- 无标题文档
查看论文信息

论文中文题名:

 长江中游城市群经济发展与水环境风险耦合协调评价研究    

姓名:

 武佳    

学号:

 19210010004    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0705    

学科名称:

 理学 - 地理学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 地理学    

研究方向:

 生态环境评价    

第一导师姓名:

 崔晓临    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Study on the Coupling Coordination Evaluation of Economic Development and Water Environment Risk of Urban Agglomeration in the Middle Reaches of the Yangtze River    

论文中文关键词:

 长江中游城市群 ; 经济发展 ; 水环境风险 ; 熵权法 ; 耦合协调    

论文外文关键词:

 Urban agglomeration in the middle reaches of the Yangtze River ; Economic development ; Water environment risk ; Entropy weight method ; Coupling coordination    

论文中文摘要:

      随着工业化进程加快,水资源滥用、水污染严重、水环境风险加大等问题越来越突出,导致经济与水环境间无法协调。鉴于此,本文构建经济发展与水环境风险综合评价指标体系,选用2005-2019年长江中游城市群经济与水环境风险相关指标,基于熵权法和综合评价模型进行研究区经济发展与水环境风险水平评价,利用耦合协调度模型测算研究区经济发展与水环境风险耦合协调度并分析时空变化特征,引入障碍度模型分析经济发展与水环境风险耦合协调发展的主要影响因子,提出未来经济发展与水环境建设的对策及建议,得到的结论主要包括:

    (1)通过总结已有研究成果,分析长江中游城市群的发展现状,遵循科学性、客观性、综合性、代表性等原则,构建了长江中游城市群经济发展与水环境风险综合评价指标体系,其中经济发展子系统主要从经济规模、经济结构、经济质量、经济潜力四个方面选取指标,水环境风险子系统从风险源危害性、控制机制有效性、风险受体易损性三个角度选取指标。

    (2)2005-2019年,经济发展水平呈明显上升趋势,发展态势良好。空间分布整体由低水平向高水平演变,低水平城市明显减少,高水平城市明显增加,且经济发展处于高水平的城市主要为省会城市。水环境风险呈稳步下降态势,下降幅度明显。高风险城市明显减少,低风险城市明显增加,空间分布由中-高风险水平向低-较低风险水平演变,处于由高风险等级向中低风险等级过渡的关键阶段。

    (3)长江中游城市群经济发展和水环境风险的耦合度与协调度均呈上升趋势。耦合度类型以中、高度耦合为主,且中度耦合城市数减少,高度耦合城市数增加。而协调度类型由轻度失调上升为勉强协调,整体由低水平向高水平演变。至2019年,大部分城市的协调度处于0.5-0.9之间,濒临失调城市较少。其中武汉的协调度最高,为0.813,处于良好协调水平,长沙、南昌协调度分别为0.776、0.651,均处于初级协调及以上水平。协调度空间分布呈现以省会城市为中心的“多中心”小型集聚,并向周围低值地区辐射扩散的分布格局。城市群内协调度高值与低值地区间的差距在逐渐缩小,城市群内的协同发展特征明显。

    (4)运用障碍度模型分析耦合协调度的影响因素可知,经济发展制约长江中游城市群经济发展与水环境风险协调。立足于结果分析,提出长江中游城市群经济发展与水环境风险协调度提升的对策建议。

论文外文摘要:

      With the acceleration of the industrialization process, problems such as the abuse of water resources, serious water pollution, and increased water environment risks have become more and more prominent, resulting in the inability to coordinate between the economy and the water environment. In view of this, this paper constructs a comprehensive evaluation index system for economic development and water environment risk, selects the relevant indicators of economic and water environment risk in the urban agglomeration in the middle reaches of the Yangtze River from 2005 to 2019, and conducts economic development and water environment risk in the study area based on the entropy weight method and comprehensive evaluation model. Level evaluation, use the coupling coordination degree model to measure the coupling coordination degree of economic development and water environment risk in the study area and analyze the characteristics of temporal and spatial changes, introduce the obstacle degree model to analyze the main influencing factors of the coupling and coordinated development of economic development and water environment risk, and propose future economic development and water environment risk. The countermeasures and suggestions for water environment construction, the conclusions mainly include:

       (1) By summarizing the existing research results, analyzing the development status of urban agglomerations in the middle reaches of the Yangtze River, and following the principles of scientificity, objectivity, comprehensiveness, and representativeness, a comprehensive evaluation index system for economic development and water environment risks of urban agglomerations in the middle reaches of the Yangtze River is constructed. The development subsystem mainly selects indicators from four aspects: economic scale, economic structure, economic quality, and economic potential. The water environment risk subsystem selects indicators from three perspectives: risk source hazard, control mechanism effectiveness, and risk receptor vulnerability.

        (2) From 2005 to 2019, the level of economic development showed a clear upward trend, and the development trend was good. The overall spatial distribution has evolved from a low level to a high level, with a significant decrease in low-level cities and a significant increase in high-level cities, and cities with high-level economic development are mainly provincial capitals. The risk of water environment showed a steady decline, and the decline was obvious. The number of high-risk cities has decreased significantly, and the number of low-risk cities has increased significantly. The spatial distribution has evolved from a medium-high risk level to a low-low risk level, and is in a critical stage of transition from a high-risk level to a medium-low risk level.

        (3) The degree of coupling and coordination between economic development and water environmental risks in the urban agglomeration in the middle reaches of the Yangtze River is on the rise. The type of coupling degree is dominated by medium and high coupling, and the number of cities with moderate coupling decreases and the number of cities with high coupling increases. The type of coordination degree increased from mild dissonance to reluctance to coordinate, and the overall level evolved from low level to high level. By 2019, the coordination degree of most cities was between 0.5 and 0.9, and there were fewer cities on the verge of deregulation. Among them, Wuhan has the highest coordination degree of 0.813, which is at a good level of coordination. The coordination degrees of Changsha and Nanchang are 0.776 and 0.651, respectively, which are at the primary coordination level and above. The spatial distribution of coordination degree presents a distribution pattern of "multi-center" small agglomeration centered on the provincial capital city and radiating and spreading to surrounding low-value areas. The gap between high-value and low-value areas of coordination in urban agglomerations is gradually narrowing, and the characteristics of coordinated development within urban agglomerations are obvious.

      (4) Using the obstacle degree model to analyze the influencing factors of the coupling coordination degree, it can be seen that economic development restricts the coordination of economic development and water environment risks of urban agglomerations in the middle reaches of the Yangtze River. Based on the result analysis, the countermeasures and suggestions for improving the coordination degree between economic development and water environment risk of urban agglomeration in the middle reaches of the Yangtze River are put forward.

参考文献:

[1]谈飞, 史玉莹. 江苏省水资源环境与经济发展耦合协调度测评[J]. 水利经济, 2019, 37(03): 8-12+19+85.

[2]孙语泽. 陕西水环境与经济耦合协调发展研究[D]. 西安: 西安理工大学, 2019.

[3]Li L, Liu Y. Industrial green spatial pattern evolution of Yangtze River Economic Belt in China[J]. Chinese Geographical Science, 2017, 27(4): 660-672.

[4]Skinner D J C, Rocks S A, Pollard S J T, et al. Identifying Uncertainty in Environmental Risk Assessments: The Development of a Novel Typology and Its Implications for Risk Characterization[J]. Human & Ecological Risk Assessment An International Journal, 2014, 20(3): 607-640.

[5]Yin R Y, Yang X, Sun X, et al. Environmental risk rankings and prior management strategies on chemical industry parks in the coastal area of Jiangsu Province[J]. China Environmental Science, 2011, 31(7): 1225-1232.

[6]Gómez A G, Ondiviela B, Puente A, et al. Environmental risk assessment of water quality in harbor areas: A new methodology applied to European ports[J]. Journal of Environmental Management, 2015, 155: 77-88.

[7]Xiao J, Wang L, Deng L, et al. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau[J]. Science of the Total Environment, 2019, 650(Pt 2): 2004-2012.

[8]Peng J, Song Y, Yuan P, et al. An novel identification method of the environmental risk sources for surfacewater pollution accidents in chemical industrial parks[J]. Journal of Environmental Sciences, 25(7): 1441-1449.

[9]Hasily M A, Golabi M, Nasab S B. Study and evaluation of irrigation and drainage networks using analytic hierarchy process in Khuzestan Province: A virtual water approach[J]. Agricultural Water Management, 2020, 241.

[10]Wei J, Zhang N, Cheng Q, et al. Simulation and evaluation of the spatial heterogeneity of shallow-groundwater environmental risk in an urban–rural fringe of megacity: a case study of Shenyang city, northeast China[J]. Environmental Earth Sciences, 2020, 79(2): 132-142.

[11]Shi E, Shang Y, Li Y, et al. A cumulative-risk assessment method based on an artificial neural network model for the water environment[J]. Environmental Science and Pollution Research, 2021, 28(34): 1-10.

[12]Xiao Z, Gao J, Su Y. China's water risk assessment and industrial source analysis based on the localization of WWF water risk assessment tools[J]. Environmental Impact Assessment Review, 2019, 78(C): 106285-106285.

[13]Souza A T D, Carneiro L A T X, Junior O P D S, et al. Assessment of water quality using principal component analysis: a case study of the Marrecas stream basin in Brazil[J]. Environmental technology, 2020, 42(27): 1-10.

[14]Deng C, Liu L, Li H, et al. A data-driven framework for spatiotemporal characteristics, complexity dynamics, and environmental risk evaluation of river water quality[J]. Science of the Total Environment, 2021, 785: 147134-147134.

[15]Wang D, Chen X, Zhang J, et al. Geographic information system–based health risk assessment of rural drinking water in Central China: a case study of You County, Hunan[J]. Environmental Monitoring and Assessment, 2021, 193(2): 1-13.

[16]Yang Y, Lei X, Long Y, et al. A novel comprehensive risk assessment method for sudden water accidents in the Middle Route of the South–North Water Transfer Project (China)[J]. Science of the Total Environment, 2020, 698(C): 134167.

[17]Yan R, Gao Y, Li L, et al. Estimation of water environmental capacity and pollution load reduction for urban lakeside of Lake Taihu, eastern China[J]. Ecological Engineering, 2019, 139(C): 105587.

[18]Cao G, Gao Y, Wang J, et al. Spatially resolved risk assessment of environmental incidents in China[J]. Journal of Cleaner Production, 2019, 219(53): 856-864.

[19]Yang T, Zhang Q, Wan X, et al. Comprehensive ecological risk assessment for semi-arid basin based on conceptual model of risk response and improved TOPSIS model-a case study of Wei River Basin, China[J]. Science of the Total Environment, 2020, 719(Jun.1): 137502.1-137502.16.

[20]Di H, Liu X, Zhang J, et al. The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China[J]. International Journal of Environmental Research and Public Health, 2018, 15(3): 521.

[21]Leng S, Zhai Y, Jiang S, et al. Water-environmental risk assessment of the Beijing–Tianjin–Hebei collaborative development region in China[J]. Human & Ecological Risk Assessment, 2016, 23(1-2): 141-171.

[22]Xu E, Leung K, Morton B, et al. An integrated environmental risk assessment and management framework for enhancing the sustainability of marine protected areas: The Cape d'Aguilar Marine Reserve case study in Hong Kong[J]. Science of the Total Environment, 2015, 505: 269-281.

[23]Zhao M, Liu X. Regional risk assessment for urban major hazards based on GIS geoprocessing to improve public safety[J]. Safety Science, 2016, 87: 18-24.

[24]Huang L, Chen J, Ban J, et al. A framework for fuzzy evaluation of emergency responses to chemical leakage accidents[J]. Environmental engineering and management journal, 2016, 15(5): 1109-1119.

[25]Chai N, Yi X , Xiao J, et al. Spatiotemporal variations, sources, water quality and health risk assessment of trace elements in the Fen River[J]. Science of the Total Environment, 2021, 757: 143882.

[26]冯刚. 经济发展与环境保护关系研究[J]. 北京林业大学学报:社会科学版, 2008, 7(4): 6.

[27]Carson R. Silent Spring[J]. Foreign affairs (Council on Foreign Relations), 1962, 76(5): 704.

[28]Stern D I, Common M S. Is There an Environmental Kuznets Curve for Sulfur?[J]. Journal of Environmental Economics and Management, 2001, 41(2): 162-178.

[29]Gill A R, Viswanathan K K, Hassan S. The Environmental Kuznets Curve (EKC) and the environmental problem of the day[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1636-1642.

[30]Dinda S. Environmental Kuznets Curve Hypothesis: A Survey[J]. Ecological Economics, 2004, 49(4): 431-455.

[31]Song J, Tang B, Zhang J, et al. System dynamics simulation for optimal stream flow regulations under consideration of coordinated development of ecology and socio-economy in the Weihe River Basin, China[J]. Ecological Engineering, 2018, 124: 51-68.

[32]Hove S, Tursoy T. An investigation of the environmental Kuznets curve in emerging economies[J]. Journal of Cleaner Production, 2019, 236(NOV.1): 117628.117621-117628.117629.

[33]刘艺, 张郑贤, 张锋贤, 等. 近15年山东省水环境污染与经济发展关系研究[J]. 中国水利水电科学研究院学报, 2019, 17(6): 9.

[34]Lin B, Wang M. Possibilities of decoupling for China's energy consumption from economic growth: A temporal-spatial analysis[J]. Energy, 2019, 185(Oct.15): 951-960.

[35]Jiang J, Ye B, Zhou N, et al. Decoupling analysis and environmental Kuznets curve modelling of provincial-level CO 2 emissions and economic growth in China: A case study[J]. Journal of Cleaner Production, 2018, 212(MAR.1): 1242-1255.

[36]刘博文, 张贤, 杨琳. 基于LMDI的区域产业碳排放脱钩努力研究[J]. 中国人口·资源与环境, 2018, 28(04): 78-86.

[37]Liu N, Liu C, Xia Y, et al. Examining the coordination between urbanization and eco-environment using coupling and spatial analyses: A case study in China[J]. Ecological indicators, 2018, 93(OCT.): 1163-1175.

[38]Fan Y, Fang C, Zhang Q, et al. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications[J]. Journal of Cleaner Production, 2019, 229: 289-298.

[39]崔学刚, 方创琳, 刘海猛, 等. 城镇化与生态环境耦合动态模拟理论及方法的研究进展[J]. 地理学报, 2019, 74(06): 1079-1096.

[40]Xing L, Xue M, Hu M. Dynamic simulation and assessment of the coupling coordination degree of the economy–resource–environment system: Case of Wuhan City in China[J]. Journal of Environmental Management, 2019, 230(JAN.15): 474-487.

[41]Cui D, Chen X, Xue Y, et al. An integrated approach to investigate the relationship of coupling coordination between social economy and water environment on urban scale - A case study of Kunming[J]. Journal of Environmental Management, 2019, 234(MAR.15): 189-199.

[42]黄永春, 朱帅, 雷砺颖. 中国资源、经济和环境发展水平与协调度的研究[J]. 经济与管理评论, 2018, 34(01): 45-54.

[43]吕胜利, 宋秉芳, 王建武, 等. 石羊河流域武威平原区水资源与工农业协调发展的动力学模拟[J]. 开发研究, 1994, 02: 53-55.

[44]王春泽, 崔振才, 田文苓. 区域水资源与社会经济协调程度评价研究[J]. 水文, 2004, 03: 25-29.

[45]孙建光, 朱赛君. 新疆绿洲经济协调发展的系统动力学仿真[J]. 生态经济, 2016, 32(08): 57-62+68.

[46]吴孝天, 管华. 郑州市经济发展与水资源环境耦合关系研究[J]. 江苏师范大学学报:自然科学版, 2016, 34(1): 4.

[47]喻笑勇, 张利平, 陈心池, 等. 湖北省水资源与社会经济耦合协调发展分析[J]. 长江流域资源与环境, 2018, 27(04): 809-817.

[48]Deng X, Chong X, Bao Z, et al. Fuzzy Comprehensive Assessment Method Based on the Entropy Weight Method and Its Application in the Water Environmental Safety Evaluation of the Heshangshan Drinking Water Source Area, Three Gorges Reservoir Area, China[J]. Water, 2017, 9(5): 329.

[49]Lesne A. Shannon entropy: a rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics[J]. Mathematical Structures in Computer Science, 2014, 24(3): e240311.240311-e240311.240363.

[50]郭静静. 中国省域生态环境与经济发展耦合关系研究[D]. 北京: 北京林业大学, 2016.

[51]杨玉珍. 区域EEES耦合系统演化机理与协同发展研究[D]. 天津: 天津大学, 2011.

[52]刘定惠, 杨永春. 区域经济-旅游-生态环境耦合协调度研究——以安徽省为例[J]. 长江流域资源与环境, 2011, 20(7): 5.

[53]黄金川, 方创琳. 城市化与生态环境交互耦合机制与规律性分析[J]. 地理研究, 2003, 02: 211-220.

[54]马丽, 金凤君, 刘毅. 中国经济与环境污染耦合度格局及工业结构解析[J]. 地理学报, 2012, 67(10): 1299-1307.

[55]董亚娟. 供需视角下入境旅游流驱动与城市目的地响应耦合关系研究[D]. 西安: 陕西师范大学, 2012.

[56]宋立娟. 基于耦合模型的河北省经济与环境协调发展研究[D]. 天津: 河北工业大学, 2016.

[57]李敏. 晋中市经济发展与水环境耦合协调研究[D]. 太原: 山西财经大学, 2021.

[58]廖重斌. 环境与经济协调发展的定量评判及其分类体系——以珠江三角洲城市群为例[J]. 热带地理, 1999, 02: 76-82.

[59]王倩. 陕西汉江流域生态环境与经济耦合发展研究[D]. 西安: 西安理工大学, 2018.

[60]袁汝华, 臧艳秋. 长江经济带经济发展与水资源环境耦合协调性实证分析[J]. 水利经济, 2021, 39(02): 1-8+95.

[61]张荣天, 焦华富. 泛长江三角洲地区经济发展与生态环境耦合协调关系分析[J]. 长江流域资源与环境, 2015, 24(05): 719-727.

[62]王莹, 林孝松. 重庆市经济与环境耦合协调时空演变及影响因素[J]. 重庆师范大学学报(自然科学版), 2021, 38(05): 55-65.

[63]赵文雅, 唐承丽. 长江中游城市群科技创新与经济发展耦合协调度分析[J]. 科学与管理, 2021, 41(02): 16-24.

[64]邵慧琳. 江西省城市化、经济发展与生态环境耦合协调发展研究[D]. 南昌: 江西财经大学, 2020.

[65]姜磊, 周海峰, 柏玲. 长江中游城市群经济-城市-社会-环境耦合度空间差异分析[J]. 长江流域资源与环境, 2017, 26(05): 649-656.

[66]李苒, 曹明明, 胡胜, 等. 基于耦合模型的生态环境与经济协调发展研究——以榆林市为例[J]. 西北大学学报(自然科学版), 2014, 44(02): 285-291.

[67]张祚, 邓亚兰, 陈昆仑, 等. 基于AHP和灰色评价法的武汉市水环境风险评价及管理战略思考[J]. 湖北大学学报(自然科学版), 2014, 36(06): 481-486+504.

[68] 邸惠, 刘兴朋, 张继权, 等. 饮马河流域水环境综合风险时空分布[J]. 环境科学研究, 2018, 31(03): 496-506.

[69] 任晓强, 李娜, 管孝艳, 等. 白洋淀上游河流水环境风险评价[J]. 中国农村水利水电, 2022, 02: 27-33.

[70] 施恩, 尚彦辰, 李亚峰. 辽河流域辽宁段累积性水环境风险评估研究[J]. 环境污染与防治, 2021, 43(03): 348-352.

[71] 谢蓉蓉, 逄勇, 蒋彩萍, 等. 基于风险源体—受体—响应系统的控制单元水环境综合风险评价[J]. 地理研究, 2016, 35(12): 2363-2372.

[72]黄月恒. 武汉城市圈水环境风险评价及城乡建设的适应性策略研究[D]. 武汉: 华中科技大学, 2017.

[73]徐士博. 复州河水环境安全评价研究[D]. 大连: 大连理工大学, 2020.

[74] 董文平, 马涛, 刘强, 等. 流域水环境风险评估进展及其调控研究[J]. 环境工程, 2015, 33(12): 111-115+194.

[75]冷苏娅, 蒋世杰, 潘杰, 等. 京津冀协同发展背景下的区域综合环境风险评估研究[J]. 北京师范大学学报:自然科学版, 2017, 53(1): 10.

[76] 马明. 长江中游城市群经济发展与生态成本时空演化关联模式分析[D]. 武汉: 武汉大学, 2017.

[77]Zhang K, Shen J, He R, et al. Dynamic Analysis of the Coupling Coordination Relationship between Urbanization and Water Resource Security and Its Obstacle Factor[J]. International Journal of Environmental Research and Public Health, 2019, 16(23): 4765.

[78] Wang D, Shen Y, Zhao Y, et al. Integrated assessment and obstacle factor diagnosis of China's scientific coal production capacity based on the PSR sustainability framework[J]. Resources Policy, 2020, 68.

[79] 万李红. 安徽省新型城镇化与产业协调发展研究[D]. 淮南: 安徽理工大学, 2020.

[80] 郭华明. 西北地区工业经济发展水平与资源环境耦合协调性研究[D]. 兰州: 兰州交通大学, 2018.

[81]姚星宇. 陕西省经济发展、土地集约利用与生态环境耦合协调发展研究[D]. 西安: 陕西师范大学, 2019.

[82] 曾慧. 长江中游城市群人口结构与经济发展耦合关联研究[D]. 南昌: 江西师范大学, 2018.

[83]韩丽红. 云南省人口-经济-生态环境耦合协调与空间演变分析[D]. 昆明: 云南师范大学, 2021.

[84] 李娜. 山东省淮河流域经济发展与水环境耦合关系研究[D]. 南京: 南京大学, 2012.

中图分类号:

 X82    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式