论文中文题名: |
基于空谱信息联合的高光谱遥感图像异常检测方法研究
|
姓名: |
田苗
|
学号: |
15091824640
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
0816
|
学科名称: |
工学 - 测绘科学与技术
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘科学与技术
|
研究方向: |
高光谱图像处理
|
第一导师姓名: |
黄远程
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-17
|
论文答辩日期: |
2024-06-04
|
论文外文题名: |
Research on Hyperspectral Anomaly Detection Algorithm Based on Combination of Spectral and Spatial Information
|
论文中文关键词: |
高光谱图像 ; 异常检测 ; 低秩稀疏表示 ; 张量分解 ; 协同表示
|
论文外文关键词: |
Hyperspectral imagery ; Anomaly detection ; Low-rank and sparse representation ; Tensor decomposition ; Collaboration representation
|
论文中文摘要: |
︿
高光谱遥感技术是遥感领域的一次突破,高光谱遥感图像可以看作一个图像立方体,具有光谱分辨率高、图谱合一的特点,且含有丰富的空谱信息。高光谱异常检测作为目标探测的一个分支,不依赖任何先验知识,因此在环境监测、精准农林和国防军事等领域发挥着越来越重要的作用。异常检测是一个二分类问题,其目的是在没有先验知识的情况下检测出与大量背景像元存在光谱差异且在空间上分布稀疏的像元。高光谱图像可以提供地物丰富的空谱信息,研究表明利用空间信息有助于进一步提高异常检测的可靠性和稳定性。本文结合高光谱影像的特点,充分利用高光谱图像的空谱信息,提出基于空谱信息联合的高光谱图像异常检测算法,研究内容分为三部分:
(1)针对协同表示周围的像元存在异常污染、没有充分利用空间信息等问题,本文将空间-光谱相结合,提出了基于背景净化和局部空间相似性的高光谱异常检测方法。首先采用经典的最小二乘法对局部窗口内的背景像元进行纯化,选取较为纯净的背景像元进行协同表示;然后通过局部空间相似度计算出局部空间异常值;最后对光谱和空间异常值进行融合得到最终结果。在四个高光谱数据上进行实验验证,结果表明本文方法具有更高的检测精度与更低的虚警率。
(2)针对基于低秩稀疏表示的异常检测方法中背景字典易受污染、空间信息利用不足等问题,本文提出了一种基于聚类空谱背景字典的低秩稀疏表示高光谱异常检测方法。首先利用图像的空谱信息对低秩稀疏表示算法中的字典构造方式进行改进,构造的字典由背景像素组成,并且包含了所有背景类;然后使用低秩稀疏表示算法对高光谱图像进行重构,重构残差越大,属于异常的可能性越大。实验结果表明,四组数据集上的AUC(Area Under the ROC Curve)值均在0.98以上,证明该方法能够有效地提升检测精度。
(3)针对异常检测大多数方法未有效保留原始高光谱数据的三维结构、空间分辨率低以及噪声大等问题,本文将特征提取和背景净化相结合,提出了基于低秩平滑约束张量分解和特征提取的高光谱异常检测方法。首先将不同的先验加入到不同的张量维度中,对其不断优化迭代分解为背景张量和异常张量;其次对高光谱数据进行分数阶傅里叶变换从而增大异常和目标之间的差异,且此变换能有效去除噪声;最后将得到的背景张量和经过分数阶傅里叶变换得到的图像进行基于马氏距离的检测。实验结果表明本文所提方法的AUC值相比其它五种经典方法有所提高,能有效地将背景和目标分离,具有较高的检测精度。
﹀
|
论文外文摘要: |
︿
Hyperspectral remote sensing technology is a breakthrough in the field of remote sensing. Hyperspectral remote sensing images can be regarded as an image cube, characterized by high spectral resolution, unity of maps, and containing rich spatial information. Hyperspectral anomaly detection, as a branch of target detection, does not rely on any a priori knowledge, and therefore plays an increasingly important role in the fields of environmental monitoring, precision agriculture and forestry, and national defense and military. Anomaly detection is a binary classification problem, which aims to detect spectrally different and sparsely spatially distributed image elements from a large number of background image elements without a priori knowledge. Hyperspectral images can provide rich spatial-spectral information of features, and studies have shown that utilizing spatial information helps to further improve the reliability and stability of anomaly detection. Combined with the characteristics of hyperspectral images, this paper makes full use of the space spectrum information of hyperspectral images, and proposes an anomaly detection algorithm based on the combination of space spectrum information. The research content is divided into three parts:
(1) Aiming at the problems of anomalous contamination of the image elements around the cooperative representation and not fully utilizing the spatial information, this paper combines the spatial-spectral combination and proposes a hyperspectral anomaly detection method based on the background purification and local spatial similarity. Firstly, the classical least squares method is used to purify the background pixels in the local window, and the purer background pixels are selected for the cooperative representation; then the local spatial anomalies are calculated by the local spatial similarity; finally, the spectral and spatial anomalies are fused to obtain the final results. The experimental validation is carried out on four hyperspectral data, and the results show that the method in this paper has higher detection accuracy and lower false alarm rate.
(2) Aiming at the problems of easy contamination of the background dictionary and insufficient utilization of spatial information in the anomaly detection method based on low-rank sparse representation, this paper proposes a low-rank sparse representation hyperspectral anomaly detection method based on clustered null-spectrum background dictionary. The dictionary construction method in the low-rank sparse representation algorithm is improved by utilizing the null spectral information of the image, and the constructed dictionary consists of background pixels and contains all the background classes; then the hyperspectral image is reconstructed using the LRASR algorithm, and the larger the reconstruction residual is, the higher the probability of belonging to the anomaly is. The experimental results show that the AUC values on the four datasets are above 0.98, proving that the method can effectively improve the detection accuracy.
(3) Aiming at the problems that most of the anomaly detection methods do not effectively retain the three-dimensional structure of the original hyperspectral data, have low spatial resolution, and are noisy, this paper proposes a hyperspectral anomaly detection method based on low-rank smoothing constrained tensor decomposition and feature extraction by combining the feature extraction and background purification. Firstly, different a priori are added to different tensor dimensions, which are continuously optimized and iteratively decomposed into background tensor and anomaly tensor, secondly, the hyperspectral data are subjected to fractional-order Fourier transform so as to increase the difference between the anomaly and the target, and this transform can effectively remove the noise, and finally, the background tensor and the image obtained by fractional-order Fourier transform are subjected to the detection based on the Mahalanobis distance. The experimental results show that the AUC value of the proposed method is improved compared with the other five classical methods, which can effectively separate the background and the target with high detection accuracy.
﹀
|
参考文献: |
︿
[1] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展 [J]. 遥感学报, 2016, 20(5): 689-707. [2] 赵春晖, 李晓慧, 王玉磊. 高光谱图像异常目标检测研究进展 [J]. 电子测量与仪器学报, 2014, 28(8): 803-811. [3] 张兵. 高光谱图像处理与信息提取前沿 [J]. 遥感学报, 2016, 20(5): 1062-1090. [4] 屈博, 郑向涛, 钱学明, 等. 高光谱遥感影像异常目标检测研究进展 [J]. 遥感学报, 2024, 28(1): 42-54. [5] Gao L, Sun X, Sun X, et al. Hyperspectral anomaly detection based on chessboard topology [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-16. [6] 赵小虎. 基于光谱及图像信息的多场景茶树病虫害智能识别研究 [D]. 杭州: 杭州电子科技大学, 2022. [7] Xie W, Fan S, Qu J, et al. Spectral distribution-aware estimation network for hyperspectral anomaly detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-12. [8] Xie W, Li Y, Lei J, et al. Hyperspectral band selection for spectral–spatial anomaly detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(5): 3426-3436. [9] 张丽丽. 基于空谱联合特性的高光谱图像异常目标检测算法研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019. [10] Huang Z, Kang X, Li S, et al. Game theory-based hyperspectral anomaly detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(4): 2965-2976. [11] 闫红梅, 何明一, 梅寒雪. 一种自适应多层结构和空谱联合的高光谱图像异常检测方法 [J]. 西北工业大学学报, 2021, 39(3): 484-491. [12] 贾森, 刘宽, 徐萌, 等. 基于空谱多路自编码器的高光谱图像异常检测 [J]. 遥感学报, 2024, 28(1): 55-68. [13] Li Z, Zhang Y, Zhang J. Hyperspectral anomaly detection for spectral anomaly targets via spatial and spectral constraints [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-15. [14] Tu B, Wang Z, Ouyang H, et al. Hyperspectral anomaly detection using the spectral–spatial graph [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. [15] 张钰婧. 基于空谱信息联合的高光谱图像异常检测算法研究 [D]. 西安: 西安理工大学, 2023. [16] Chang C I, Lin C Y, Chung P C, et al. Iterative spectral–spatial hyperspectral anomaly detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-30. [17] Zhu D, Du B, Zhang L. Target dictionary construction-based sparse representation hyperspectral target detection methods [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(4): 1254-1264. [18] Wang J, Sun J, Xia Y, et al. Hyperspectral anomaly detection via weighted-sparsity-regularized tensor linear representation [J]. IET Image Processing, 2023, 17(4): 1029-1043. [19] Wu Z, Su H, Tao X, et al. Hyperspectral anomaly detection with relaxed collaborative representation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17. [20] Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Transactions on Signal Processing, 1990, 38(10): 1760-1770. [21] Matteoli S, Veracini T, Diani M, et al. A locally adaptive background density estimator: an evolution for rx-based anomaly detectors [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 323-327. [22] Guo Q, Zhang B, Ran Q, et al. Weighted-RXD and linear filter-based RXD: Improving background statistics estimation for anomaly detection in hyperspectral imagery [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2351-2366. [23] Kwon H, Nasrabadi N M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery [J]. IEEE transactions on Geoscience and Remote Sensing, 2005, 43(2): 388-397. [24] Zhou J, Kwan C, Ayhan B, et al. A novel cluster kernel RX algorithm for anomaly and change detection using hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6497-6504. [25] 赵春晖, 胡春梅. 基于目标正交子空间投影加权的高光谱图像异常检测算法 [J].吉林大学学报(工学版), 2011, 41(5): 1468-1474. [26] Chen Y, Nasrabadi N M, Tran T D. Sparse representation for target detection in hyperspectral imagery [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 629-640. [27] Li J, Zhang H, Zhang L, et al. Hyperspectral anomaly detection by the use of background joint sparse representation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2523-2533. [28] Zhang L, Zhao C. Hyperspectral anomaly detection based on spectral–spatial background joint sparse representation [J]. European Journal of Remote Sensing, 2017, 50(1): 362-376. [29] Li W, Du Q. Collaborative representation for hyperspectral anomaly detection [J]. IEEE Transactions on geoscience and remote sensing, 2014, 53(3): 1463-1474. [30] Vafadar M, Ghassemian H. Anomaly detection of hyperspectral imagery using modified collaborative representation [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 577-581. [31] Imani M. Anomaly detection using morphology-based collaborative representation in hyperspectral imagery [J]. European Journal of Remote Sensing, 2018, 51(1): 457-471. [32] Su H, Wu Z, Du Q, et al. Hyperspectral anomaly detection using collaborative representation with outlier removal [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 5029-5038. [33] Zhang G, Li N, Tu B, et al. Hyperspectral anomaly detection via dual collaborative representation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4881-4894. [34] Liu G, Lin Z, Yan S, et al. Robust recovery of subspace structures by low-rank representation [J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 35(1): 171-184. [35] Xu Y, Wu Z, Li J, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(4): 1990-2000. [36] Qu Y, Wang W, Guo R, et al. Hyperspectral anomaly detection through spectral unmixing and dictionary-based low-rank decomposition [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4391-4405. [37] Cheng T, Wang B. Graph and total variation regularized low-rank representation for hyperspectral anomaly detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(1): 391-406. [38] Candès E J, Li X D, Ma Y, et al. Robust principal com‐ ponent analysis? [J]. Journal of the ACM, 2011, 58(3): 11. [39] Zhu L, Wen G, Qiu S, et al. A hybrid statistics and representation-based anomaly detector for hyperspectral images [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3650-3664. [40] Feng S, Tang S, Zhao C, et al. A hyperspectral anomaly detection method based on low-rank and sparse decomposition with density peak guided collaborative representation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-13. [41] Zhou T Y, Tao D C. Godec: Randomized low-rank and sparse matrix decomposition in noisy case[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue: Omnipress, 2011:33-40. [42] Zhang X, Wen G, Dai W. A tensor decomposition-based anomaly detection algorithm for hyperspectral image [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5801-5820. [43] Xie W, Jiang T, Li Y, et al. Structure tensor and guided filtering-based algorithm for hyperspectral anomaly detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4218-4230. [44] Wang J, Xia Y, Zhang Y. Anomaly detection of hyperspectral image via tensor completion [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(6): 1099-1103. [45] Tao R, Zhao X, Li W, et al. Hyperspectral anomaly detection by fractional Fourier entropy [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 4920-4929. [46] Zhang L, Ma J, Cheng B, et al. Fractional fourier transform-based tensor RX for hyperspectral anomaly detection [J]. Remote Sensing, 2022, 14(3): 797. [47] Li W, Wu G, Du Q. Transferred deep learning for anomaly detection in hyperspectral imagery [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 597-601. [48] Jiang T, Xie W, Li Y, et al. Discriminative semi-supervised generative adversarial network for hyperspectral anomaly detection[C]//2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 2420-2423. [49] 赵春晖, 姚淅峰. 基于局部核RX算法的高光谱实时检测 [J]. 红外与毫米波学报, 2016, 35(6): 708-714. [50] 刘春桐, 马世欣, 王浩, 等. 基于空间密度聚类的改进KRX高光谱异常检测 [J]. 光谱学与光谱分析, 2019, 39(6): 1878-1884. [51] 刘森皓. 基于空谱联合的高光谱异常检测算法研究 [D]. 北京:中国科学院大学(中国科学院空天信息创新研究院), 2022. [52] Gurram P, Kwon H. Support-vector-based hyperspectral anomaly detection using optimized kernel parameters [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1060-1064. [53] Gurram P, Kwon H, Han T. Sparse kernel-based hyperspectral anomaly detection [J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 943-947. [54] Carlotto M J. A cluster-based approach for detecting man-made objects and changes in imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 374-387. [55] 杜慧婷. 联合空间与光谱信息的高光谱异常目标探测算法研究[D]. 青岛: 中国石油大学(华东), 2023. [56] Li J Y, Zhang H Y, Zhang L P, et al. Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation [J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2015, 8(6): 2523-2533. [57] Chang C I. Band sampling for hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-24. [58] Yan L, Zhao M, Wang X, et al. Object detection in hyperspectral images [J]. IEEE Signal Processing Letters, 2021, 28: 508-512. [59] Fu X, Jia S, Xu M, et al. Sparsity constrained fusion of hyperspectral and multispectral images [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [60] Siddiqa A, Islam R, Afjal M I. Spectral segmentation based dimension reduction for hyperspectral image classification [J]. Journal of Spatial Science, 2023, 68(4): 543-562. [61] Yuan Y, Ma D D, Wang Q. Hyperspectral anomaly detection by graph pixel selection [J]. IEEE Transactions on Cybernetics, 2016, 46(12): 3123-3134. [62] Sun L, Jeon B, Zheng Y, et al. Hyperspectral image restoration using low-rank representation on spectral difference image [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1151-1155. [63] Zhan Y, Hu D, Yu X, et al. Hyperspectral Image Classification Based on Mutually Guided Image Filtering [J]. Remote Sensing, 2024, 16(5): 870. [64] Chen Y, Nasrabadi N M, Tran T D. Sparse Representation for Target Detection in Hyperspectral Imagery [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 629-640. [65] Li X, Yuan Y, Wang Q. Hyperspectral and multispectral image fusion based on band simulation [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(3): 479-483. [66] Yuan Y, Ma D D, Wang Q. Hyperspectral Anomaly Detection via Sparse Dictionary Learning Method of Capped Norm [J]. IEEE Access, 2019, 7: 16132-16144. [67] Lian X, Zhao E W, Zheng W, et al. Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery [J]. Sensors, 2023, 23(4): 2055. [68] 张国建, 刘胜震, 孙英君, 等. 基于弱监督鲁棒性自编码的高光谱异常检测 [J]. 自然资源遥感, 2023, 35(2): 167-175. [69] Yang Y X, Zhang J Q, Song S Z, et al. Hyperspectral Anomaly Detection via Dictionary Construction-Based Low-Rank Representation and Adaptive Weighting [J]. Remote Sensing, 2019, 11(2): 192. [70] 成宝芝, 张丽丽, 赵春晖. 联合低秩张量分解与稀疏表示的高光谱异常目标检测算法 [J]. 电光与控制, 2023, 30(1): 57-62. [71] Li W, Du Q. Collaborative Representation for Hyperspectral Anomaly Detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1463-1474. [72] Tu B, Li N Y, Liao Z L, et al. Hyperspectral Anomaly Detection via Spatial Density Background Purification [J]. Remote Sensing, 2019, 11(22): 2618. [73] Hou Z, Li W, Zhou J, et al. Spatial–spectral weighted and regularized tensor sparse correlation filter for object tracking in hyperspectral videos [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12. [74] 吴琪, 樊彦国, 樊博文, 等. 基于图正则化低秩协同表示的高光谱异常检测 [J]. 激光与光电子学进展, 2022, 59(12): 467-475. [75] 覃凤婷, 杨有龙, 仇海全. 基于稀疏子空间的局部异常值检测算法 [J]. 计算机工程与应用, 2020, 56(19): 152-159. [76] 黄远程, 薛园园, 李朋飞. 高光谱影像子空间分析孤立森林异常目标探测方法 [J]. 测绘学报, 2021, 50(3): 416-425. [77] 王志威, 谭琨, 王雪,等. 基于光谱空间重构的非监督最邻近规则子空间的高光谱异常检测 [J]. 光子学报, 2020, 49(6): 80-91. [78] Chang S, Du B, Zhang L. A subspace selection-based discriminative forest method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4033-4046. [79] Kang X D, Zhang X P, Li S T, et al. Hyperspectral Anomaly Detection With Attribute and Edge-Preserving Filters [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5600-5611. [80] Wang Y, Peng J, Zhao Q, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 11(4): 1227-1243. [81] Lei J, Xie W Y, Yang J, et al. Spectral-Spatial Feature Extraction for Hyperspectral Anomaly Detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 8131-8143. [82] Huang Z H, Li S T. From Difference to Similarity: A Manifold Ranking-Based Hyperspectral Anomaly Detection Framework [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 8118-8130. [83] Huang Z H, Kang X D, Li S T, et al. Game Theory-based Hyperspectral Anomaly Detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2965-2976. [84] Ruff L, Vandermeulen R A, Görnitz N, et al. Deep One-Class Classification[C]//Machine Learning, Proceedings of the Thirty-Fifth International Conference. Stockholm: ACM, 2018: 4390-4399. [85] Hou Z, Li W, Tao R, et al. Collaborative representation with background purification and saliency weight for hyperspectral anomaly detection [J]. Science China Information Sciences, 2022, 65: 1-12. [86] Li W, Du Q. Collaborative representation for hyperspectral anomaly detection [J]. IEEE Transactions on geoscience and remote sensing, 2014, 53(3): 1463-1474. [87] Feng S, Tang S L, Zhao C H, et al. A hyperspectral anomaly detection method based on low-rank and sparse decomposition with density peak guided collaborative representation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-13. [88] Hou Z, Li W, Tao R, et al. Three-order tucker decomposition and reconstruction detector for unsupervised hyperspectral change detection [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6194-6205. [89] Tan K, Hou Z, Ma D, et al. Anomaly detection in hyperspectral imagery based on low-rank representation incorporating a spatial constraint [J]. Remote Sensing, 2019, 11(13): 1578. [90] Kolda T G, Bader B W. Tensor decompositions and applications [J]. SIAM review, 2009, 51(3): 455-500. [91] 薛园园, 黄远程, 苏远超. 空间加权的孤立森林高光谱影像异常目标检测 [J]. 测绘科学, 2021, 46(7): 92-98. [92] 宋尚真. 基于低秩表示理论的高光谱图像异常检测技术研究 [D]. 西安: 西安电子科技大学, 2022. [93] Xiang P, Li H, Song J, et al. Spectral–spatial complementary decision fusion for hyperspectral anomaly detection [J]. Remote Sensing, 2022, 14(4): 943. [94] Yang M S, Hussain I. Unsupervised multi-view K-means clustering algorithm [J]. IEEE Access, 2023, 11: 13574-13593. [95] 孙菲. 基于低秩稀疏表示的高光谱图像异常检测方法研究 [D]. 杭州: 浙江大学, 2023. [96] 张炎, 华文深, 黄富瑜, 等. 联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测 [J]. 半导体光电, 2020, 41(1): 141-145. [97] Mei S, Yang H, Yin Z P. An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces [J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1266-1277. [98] Mu X, He J, Zhang J. Enhance tensor RPCA-LRX anomaly detection algorithm for hyperspectral image [J]. Geocarto International, 2022, 37(26): 11976-11997. [99] 李茗欣, 黄远程, 竞霞, 等. 融合视觉注意机制的高光谱RX异常检测算法 [J]. 红外技术, 2023, 45(4): 402-409. [100] Zhao M J, Li W, Li L, et al. Three-order tensor creation and tucker decomposition for infrared small-target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16. [101] 王向博. 基于张量分解和稀疏低秩表示的高光谱图像异常检测 [D]. 南京: 南京理工大学, 2023. [102] Li L, Li W, Qu Y, et al. Prior-based tensor approximation for anomaly detection in hyperspectral imagery [J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 33(3): 1037-1050. [103] Zhang L L, Ma J C, Cheng B Z, et al. Fractional fourier transform-based tensor RX for hyperspectral anomaly detection [J]. Remote Sensing, 2022, 14(3): 797.
﹀
|
中图分类号: |
TP751
|
开放日期: |
2025-06-17
|