论文中文题名: | 两六自由度机械臂与四自动钻机协同钻锚装置研究 |
姓名: | |
学号: | 19205201068 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085500 |
学科名称: | 工学 - 机械 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 机器人技术 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-06-16 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Research on Cooperative Anchor Drilling Device with Two 6-DOF Manipulator and Four Automatic Arilling Rig |
论文中文关键词: | |
论文外文关键词: | Automatic drilling anchor ; Manipulator ; Kinematic analysis ; Kinetics analysis ; Collaborative work. |
论文中文摘要: |
针对煤矿巷道永久支护工艺装备落后,作业人员偏多,操作环境恶劣,安全风险严竣等问题,以本团队研发的智能掘进机器人系统为基础,提出一种可实现自动“抓-运-装-卸”钻杆和锚杆,自动完成支护作业的钻锚装置。旨在提升煤矿巷道支护自动化水平,降低井下工人劳动强度,加快实现煤矿巷道永久支护智能化。 通过对井下实际钻锚需求的分析,针对煤矿巷道支护过程中工人劳动强度大,安全性低等问题,提出两六自由度机械臂与四自动钻机协同钻锚装置总体方案,建立了三维模型,制定了协同作业工艺。 依据协同钻锚装置的工作原理和功能要求,设计了协同钻锚装置总体结构,并完成了钻锚操作平台、自动钻机机构、钻锚材料输送机构等关键零部件的设计。分析了钻锚平台各工况下的受力特点,针对平台结构,进行了静力学分析,并应用ANSYS Workbench 软件对其进行仿真验证,表明结构设计的合理性。 分析了机械臂及钻机的作业特点,给出了D-H参数表,求解得出机械臂及钻机的正运动学数学方程。同时假设目标位姿已知的情况下,利用代数法和MATLAB robotic工具箱完成了机械臂的逆运动学解算,得出与之相关的各个关节运动参数的表达式,验证了机械臂正逆解的正确性。采用蒙特卡洛随机数法对整个机械臂及钻机末端工作空间进行了分析,证明机械臂及钻机在可运动的空间下,能够完成钻锚材料的运输任务及打钻支护任务,验证了机械臂与钻机空间布局的合理性。 针对机械臂在工作中的平稳性及准确性问题,建立了运动系统的动力学方程。通过ADSMS软件建立了机械臂的虚拟样机模型,并对其进行了动力学仿真,得出了机械臂大臂回转关节的驱动力矩曲线。使用Matlab软件对机械臂动力学方程进行计算,并给出了机械臂大臂回转关节的力矩曲线。通过两个曲线的对比,得出理论曲线与仿真曲线无明显偏差,且变化趋势相同,验证了动力学分析的正确性。 针对机械臂在有限空间、复杂环境下高效完成物料“抓-运-装-卸”任务问题,根据安装钻杆工艺需求,设计了机械臂与钻机协同作业策略。通过MATLAB仿真得到机械臂运动过程各关节变量,并在ADAMS建立自动钻锚装置的虚拟样机模型,使用MATLAB得出的关节变量作为驱动函数对机械臂装卸钻杆的过程进行了仿真分析,结果表明在装卸钻杆过程中机械臂各关节的角度变化在设计的范围之内,钻杆质心移动平稳。由此可见,本文设计的钻锚装置能够高效完成对钻杆和锚杆的稳定准确“抓-运-装-卸”。 |
论文外文摘要: |
In response to issues such as outdated permanent support technology and equipment for coal mine tunnels, excessive number of workers, harsh operating environment, and severe safety risks,Based on the intelligent excavation robot system proposed by our team, proposed a drilling and anchoring device that can automatically "grasping-transporting-loading-un- loading" drill pipes and anchor rods, and complete support operations,The aim is to improve the automation level of coal mine tunnel support, reduce the labor intensity of underground workers, and accelerate the realization of permanent support intelligence in coal mine tunnels. By analyzing the actual demand for drilling and anchoring underground, and addressing the issues of high labor intensity and low safety of workers in the support process of coal mine tunnels,The overall scheme of the cooperative drilling and anchoring device of the two six degree of freedom manipulator and the four automatic drill is proposed, the three-dimensional model is established, and the cooperative operation process is formulated. Based on the working principle and functional requirements of the automatic drilling anchor device, the overall structure of the automatic drilling anchor device was designed, and key components such as the drilling anchor operation platform, automatic drilling rig mechanism, and drilling anchor material conveying mechanism were designed.The force characteristics of the drilling anchor platform under various working conditions are analyzed. For the platform structure, a statics analysis is carried out, and the ANSYS Workbench software is used to simulate and verify it, indicating the rationality of the structural design. This thesis analyzes the operation characteristics of the manipulator and the drill, gives the D-H parameter table, and solves the forward kinematics mathematical equations of the manipulator and the drill.At the same time, assuming that the position and pose of the target are known, the inverse kinematics of the manipulator is solved by using the algebraic method and the MATLAB robot toolbox, and the expressions of the relevant joint motion parameters are obtained, which verifies the correctness of the forward and inverse solutions of the manipulator.The Monte Carlo random number method was used to analyze the entire working space of the robotic arm and the end of the drilling rig, proving that the robotic arm and the drilling rig can complete the transportation and drilling support tasks of drilling anchor materials in a movable space, and verifying the rationality of the spatial layout of the robotic arm and the drilling rig. A dynamic equation of the motion system has been established to address the stability and accuracy issues of the robotic arm during operation.A virtual prototype model of the robotic arm was established using ADSMS software, and dynamic simulation was conducted to obtain the driving torque curve of the rotating joint of the robotic arm.Use Matlab software to calculate the dynamic equations of the robotic arm and provide the torque curve of the rotating joint of the robotic arm.By comparing the two curves, it was found that there was no significant deviation between the theoretical curve and the simulation curve, and the trend of change was the same, verifying the correctness of the dynamic analysis. A collaborative operation strategy between the robotic arm and the drilling rig was designed based on the process requirements of installing drill pipes to efficiently complete the task of "grasping-transporting-loading-unloading" of materials in limited space and complex environments.Obtain joint variables during the motion process of the robotic arm through MATLAB simulation, and establish a virtual prototype model of the automatic drilling anchor device in ADAMS,The joint variables obtained from MATLAB were used as driving functions to simulate and analyze the process of loading and unloading drill pipes by the robotic arm. The results showed that the angle changes of each joint of the robotic arm were within the designed range during the loading and unloading process, and the center of mass of the drill pipe moved smoothly.From this, it can be seen that the drilling and anchoring device designed in this article can efficiently and accurately complete the stable and accurate "grasping, transporting, loading, and unloading" of the drill pipe and anchor rod. |
参考文献: |
[1]马宏伟,王世斌,毛清华,等.煤矿巷道智能掘进关键共性技术[J].煤炭学报, 2021, 46(01): 310-320. [3]张飞,张豪.煤矿智能化掘进工作面装备技术研究与应用[J].煤矿机械, 2021, 42(11): 155-158. [4]葛世荣,胡而已,裴文良.煤矿机器人体系及关键技术[J].煤炭学报,2020,45(01): 455 -463. [5]马宏伟.煤矿机电装备智能化[J].西安科技大学学报,2020,40(05):748. [6]葛世荣,胡而已,李允旺.煤矿机器人技术新进展及新方向[J].煤炭学报,2023,48(01): 54-73. [7]虎晓龙,殷华.煤矿智能化开采技术创新与发展研究[J].工矿自动化,2021,47(S2):10-12. [8]王步康.煤矿巷道掘进技术与装备的现状及趋势分析[J].煤炭科学技术,2020,48(11): 1-11. [9]惠兴田,田国宾,康高鹏,等.煤巷掘进装备技术现状及关键技术探讨[J].煤炭科学技术, 2019,47(06):11-16. [10]李飞,张林,尚宇琦,等.煤矿智能化掘进关键技术研究[J].工矿自动化,2023,49(0 4):33-41. [13]闫志勇,姜纳穆.浅谈掘锚机在煤炭快速掘进技术中技术应用[J].矿山机械,2017 (020):93-94. [14]康红普,姜鹏飞,刘畅,等.煤巷锚杆支护施工装备现状及发展趋势[J].工矿自动化, 2023,49(01):1-18. [17]马宏伟,王鹏,张旭辉,等.煤矿巷道智能掘进机器人系统关键技术研究[J].西安科技大学学报,2020,40(05):751-759. [18]于存江.煤矿综合机械化开采技术[J].中国石油和化工标准与质量,2019, 39(01): 243-244. [19]张庆国,赵红星,袁爽,等.基于巷道围岩预应力分布特征的锚杆支护参数研究[J].煤炭工程,2022,54(08):30-36. [21]李二欠,张豪阳,吕德锦.锚杆钻机的应用与发展[J].煤矿机械,2016,37(05):157-159. [22]贺立军.新型全液压多功能锚杆钻机关键技术的研究[D].武汉.中国地质大学,2010. [23]潘跃芸,张卫国,夏云,等.液压锚杆钻机的设计与分析[J].煤矿机电,2014,(06):23-25. [24]郝建生.煤矿巷道掘进装备关键技术现状和展望[J].煤炭科学技术,2014(08):69-75. [25]张锐,姚克,方鹏,等.煤矿井下自动化钻机研发关键技术[J].煤炭科学技术,2019, 47(05):59-63. [26]张幼振.我国煤矿锚杆钻车的应用现状与发展趋势[J].煤炭工程,2010,(06):101-103 [28]SANDVIK. introduce the DI550 down-the-hole drill rig[J]. Quarry Management, 2011. [29]颜纯文.勘探钻机和钻具的升级[J].地质装备,2011,12(06):35-39. [30]楚红岩,叶森森.AUTHOR. ATLAS COPCO引入Bench Remote操作平台[J]. 工程机械, 2015,46(05): 66. [32]董建荣.SimbaH252全液压采矿台车液压系统分析[D].石家庄:河北科技大学, 2013. [33]高学径,侯志恩.阿特拉斯各型钻车性能参数介绍[J].凿岩机械气动工具,2007(02): 33-39. [34]史万舟,孙毅刚,王树国.机器人化煤矿自动钻机[J].矿山机械,1997(11):4-5. [35]王清峰,陈航,周涛.煤矿井下自动化钻进技术及装备的发展历程与展望[J].矿业安全与环保,2022,49(04):45-50. [36]何凤有,史万周,许世范.机器人化自动钻机的智能控制[J].煤炭科学技术,1997(05): 31-33. [37]何凤有,许世范,郝继飞.我国首台采掘机器人──机器人化自动钻机[J].中国煤炭, 1997(09): 21-24. [38]朱备备.具有自动续杆功能的煤矿液压钻机设计与分析[D].淮南:安徽理工大学, 2018. [39]宋建锋,王树盘.一种煤矿用遥控控制自动钻孔钻车[J].中国新技术新产品,2018(03): 6-7. [40]陈航.ZYW-3200钻机旋转式钻杆输送装置的设计[J].煤炭技术,2017,36(04):260-262. [41]谢杰.ZYWL-400高位履带式全液压联动钻机设计[J].煤矿机械,2021,42(10):115-118. [42]吕晋军.煤矿用全自动钻机滑落式钻杆箱的研究[J].煤矿机械,2021,42(07):110-112. [43]邹海炎,谢永青.铁建重工首台锚杆台车[EB/OL] . http://www.crcc.cn/art/ [2017.10.17]. [44]贺安民,武利民,杜善周,等.煤矿全自动两臂顶锚杆钻车研制[J].煤炭科学技术,2019,47(S2):165-169. [45]郝雪弟,景新平,张中平,等.机器人化钻锚车钻臂工作空间分析及轨迹规划[J].中南大学学报(自然科学版),2019,50(09):2128-2137. [46]马宏伟,孙思雅,王川伟,等.多机械臂多钻机协作的煤矿巷道钻锚机器人关键技术[J].煤炭学报,2023,48(01):497-509. [47]臧继元,刁燕,陈勇.七自由度微创手术机器人运动学及其工作空间分析[J].机械设计与制造,2010(2):181-183. [48]张志强,减冀原,负超.混联机械手运动学分析及仿真[J].机械设计,2010, 11:47-51. [49]孟正大,戴先中,安藤英由树,等.基于扩散原理的冗余机器人逆运动学的学习方法[J].机器人,2001(06):550-553+574. [50]林明,王冠,林永才.改进的遗传算法在机器人逆解中的应用[J].江苏科技大学学报, 2012, 26(04):370-375. [52]祖迪,吴镇炜,谈大龙.一种冗余机器人逆运动学求解的有效方法[J].机械工程学报, 2005,41(6):71-75. [54]Jia Q,Hong L,Sun H. An improved algorithm for inverse kinematics solution of redundant [55]阳方平,李洪谊,王越超,等.一种求解冗余机械臂逆运动学的优化方法[J].机器人,2012, 34(1):17-21. [56]熊有伦.机器人学[M]//北京:机械工业出版社,1993. [57]Craig,J.J.机器人学导论[M]//北京:机械工业出版社,2006. [58]李德虎.基于拉格朗日方程建立的码垛机器人大转角动力学模型[J].太原理工大学学报,2014, 45(03):347-351. [59]李爱成. 4-DOF关节式机械手本体设计与运动学分析[D].合肥:合肥工业大学,2013. [60]宁学涛,潘玉田,杨亚威.基于运动学和动力学的关节空间轨迹规划[J].计算机仿真, 2015,2:05-08. [61]王琪,曹飞,张任.基于ADAMS的机械手参数化分析[J].组合机床与自动化加工技术, 2014, 7:45-48. [62]白丽平.基于ADAMS的机械手动力学仿真分析[J].机电工程,2007, 7: 74-78. [63]马如奇,郝双晖,郑伟峰,等.基于MATLB与ADAMS的机械臂联合仿真研究[J].机械设计与制造,2010(4):93-95. [64]陈成.六自由度工业机器人虚拟设计及仿真分析[D].南京:南京信息工程大学,2013. [65]崔冬.M6iB型FANUC机器人的三维运动仿真及有限元分析[D].西安:西安理工大学,2007. [70]马宏伟,姚阳,薛旭升,等.基于多传感器组合的钻锚机器人机身定位方法研究[J].煤炭科学技术,2021,49(01):278-285. [71]王川伟,马宏伟,薛旭升,等.煤矿履带巡检机器人多体动力学建模及越障仿真[J]. 西安科技大学学报,2020,40(05):790-796. [72]王虹,王步康,张小峰,等.煤矿智能快掘关键技术与工程实践[J].煤炭学报,2021,46 (07):2068-2083. [73]王守城,段俊勇.液压元件及选用[M]//北京:化学工业出版社,2007.5 [74]陈宝存,吴巍,郭毓,等.基于ROS的机器人自动手眼标定系统设计[J]. 计算机仿真, 2020,37(02):343-348. [75]赖啸,刘勇,罗文果,等.笛卡尔和关节空间联合轨迹规划研究[J].机械传动, 2017, 41(01):142-145. [76]张英,黄起能,廖启征,等.空间6R串联机械手逆运动学分析的新方法研究[J].机械工程学报,2022,58(19):1-11. [77]李雪梅,崔菲菲,骆海涛,等.六自由度工业机器人运动学分析与仿真[J].制造业自动化,2022,44(07):7-10. [78]云洋,宋华,徐炳吉.六自由度工业机械臂运动学仿真研究[J].机械科学与技术,2018, 37(08):1167-1176. [79]辛德忠.全方位钻机钻孔姿态调节装置研究[J].煤炭技术,2015,34(12):207-209. [80]潘磊,钱炜,张志艳,等.四自由度机械臂运动学分析Matlab仿真[J].机械科学与技术, 2013,32(03):421-425. [81]马如奇,郝双晖,郑伟峰,等.基于MATLAB与ADAMS的机械臂联合仿真研究[J].机械设计与制造,2010,230(04):93-95. |
中图分类号: | TP242 |
开放日期: | 2023-06-16 |