论文中文题名: | 光轨道角动量逻辑运算的衍射网络实现 |
姓名: | |
学号: | 20207223072 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0854 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 光计算 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-15 |
论文答辩日期: | 2023-06-02 |
论文外文题名: | Diffraction network implementation of optical orbital angular momentum logic operation |
论文中文关键词: | |
论文外文关键词: | Orbital angular momentum ; Fourier space ; Diffraction deep neural network ; Optical logic gate |
论文中文摘要: |
光逻辑门作为电计算向光计算跨越的桥梁,可以进行通用计算,具有处理速度快、串扰低和吞吐量高等特点。利用轨道角动量模式无穷大和正交性的特性,将其作为光逻辑门的逻辑状态,不仅提高了逻辑门的并行处理能力,而且增强了其逻辑区分度和鲁棒性。论文提出了一种傅里叶空间与衍射深度神经网络相结合的方法实现增强型光逻辑门架构,有效降低了对逻辑门入射光束的质量和配准度的要求。主要研究内容包括: (1)采用具有轨道角动量的涡旋光作为逻辑门输入信号,生成了完备状态的输入光波前数据集。基于光学衍射深度神经网络构建光学器件的多层衍射神经网络模型,以衍射深度神经网络输出平面上的特定光强度分布表征逻辑运算结果,训练并建立了衍射深度神经网络模型,实现“与”、“或”和“非”等基本逻辑运算。 (2)为优化衍射深度神经网络实现逻辑运算系统的性能,使之在非理想入射波前状态下依然能保证较低的误码率。论文利用频域对信号的空间域变化不敏感的特点,在衍射深度神经网络模型的基础上,提出将傅里叶空间与衍射深度神经网络相结合,构成傅里叶-衍射深度神经网络。在频域空间中采用仅振幅型调制的衍射深度神经网络,训练并建立了傅里叶透镜后端的衍射深度神经网络模型。仿真实现了“与”、“或”和“非”逻辑门运算,能够有效地降低逻辑门对入射光束的质量和配准度的要求,同时减少了模型物理制作的难度。 (3)为设计和开发具有标准功能的光学模块器件,通过级联基本逻辑门的方法构建“异或”门和“同或”门,实现衍射深度神经网络逻辑运算系统。仿真实验结果表明,基于傅里叶-衍射深度神经网络调制轨道角动量模式实现逻辑门的方法能够降低光逻辑计算的误码率,提高光逻辑门的鲁棒性,为逻辑门实际应用提供了一种潜在的解决方案,在光计算中具有潜在的应用前景。 |
论文外文摘要: |
Optical logic operations demonstrate the key role of optical digital computing, which can perform general-purpose calculations with high processing speed, low crosstalk and high throughput. Using the properties of orbital angular momentum mode infinity and orthogonality as the logic states of the optical logic gates, this not only improves parallel processing but also enhances the logic differentiation and robustness of the logic gates. The paper proposes a method based on a combination of Fourier and diffraction deep neural network to implement an enhanced optical logic gate architecture, which can effectively reduce the quality and alignment requirements of the incident beam. The main research elements include: (1) The vortex beam with orbital angular momentum is used as the input signal of logic gate, the input votex wavefront data set with complete states is generated. The multilayer diffraction neural network model of optical device is constructed, the logic operation results are characterized by the specific light intensity distribution on the output plane of diffraction deep neural network, and the diffraction deep neural network model is trained and established to realize the basic logic operations such as ‘AND’, ‘OR’ and ‘NOT’. (2) In order to optimize the performance of diffraction deep neural network for logic operations, a low Bit Error Bite can be guaranteed even in non-ideal incident wavefront states. Taking advantage of the insensitivity of the frequency domain to changes in the spatial domain of the signal, the thesis proposes to combine Fourier space with diffraction deep neural network on the basis of the diffraction deep neural network model to make up a Fourier-diffraction deep neural network. The amplitude-only modulated diffraction deep neural network in the frequency domain space are used to train and build the diffraction deep neural network model at the back end of the Fourier lens. The simulation implements ‘AND’, ‘OR’ and ‘NOT’ logic gates, which effectively reduces the quality and alignment requirements of the incident beam for the logic gates, while reducing the physical difficulty of the model. (3) In order to design and develop an optical module device with standard functions, a diffraction deep neural network logic operation system is implemented by cascading basic logic gates to build ‘NOR’ and ‘XNOR’ gates. The simulation results show that the implementation of logic gates based on Fourier-diffraction deep neural network modulated orbital angular momentum patterns can reduce the Bit Error Rate of optical logic operations and improve the robustness of optical logic gates. It provides a potential solution for the practical application of logic gates and has potential application prospects in optical computing. |
参考文献: |
[20]王俊,杨晓飞.光子芯片研究进展及展望[J].世界科学,2020,12. [40]Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310. [44]马婷,李万杰,冯佳楠,等.光脉冲神经网络研究进展[J].光学与光电技术,2022,20(4):96-111. [45]蒋昂波,王维维,等.ReLU激活函数优化研究[J].传感器与微系统,2018,37(2):50-53. [50]王静,陈波,王帅,等.无波前传感自适应光学神经网络控制方法[J].激光杂志,2021,42(2):102-105. [51]卢艺帆,张松海.基于卷积神经网络的光学遥感图像目标检测[J].中国科技论文,2017,12(14):1583-1589. [52]孙一宸,董明利,于明鑫,等.基于10.6微米波长的小型化非线性全光衍射深度神经网络建模方法[J].激光与光电子学进展,2021,58(8):395-406. [55]牛海莎,于明鑫,祝博飞,等.基于10.6微米全光深度神经网络衍射光栅的设计与实现[J].红外与毫米波学报,2020,39(1):1-13. [58]Huggins E, Introduction to fourier optics [J]. The Physics Teacher, 2007, 45(6): 364– 368. |
中图分类号: | TN929.1 |
开放日期: | 2023-06-16 |