- 无标题文档
查看论文信息

论文中文题名:

 张家峁煤矿5-2煤顺槽围岩变形破坏规律及控制技术研究    

姓名:

 李海鳌    

学号:

 20204228075    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 巷道围岩稳定性及支护设计    

第一导师姓名:

 谷拴成    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-12    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Research on deformation and failure law and control technology of surrounding rock of 5-2 coal trough in Zhangjiaya coal mine    

论文中文关键词:

 矩形顺槽 ; 变形破坏规律 ; 控制技术 ; 弹塑性分析 ; 数值模拟    

论文外文关键词:

 Rectangular groove ; Deformation and failure laws ; Control technology ; Elastoplastic analysis ; Numerical simulation    

论文中文摘要:

陕北矿区作为煤炭产出的主战场之一,为了尽可能多的产出煤炭,煤炭企业需要大量的掘进顺槽,顺槽围岩的安全性和稳定性直接影响着采煤工作的进行,研究顺槽围岩的变形破坏规律并对其进行支护控制具有重要意义。为了施工和采煤的方便,陕北矿区的煤矿企业大多数采用的是矩形顺槽,现有顺槽围岩支护控制方法一般都将矩形顺槽等效为圆形顺槽进行支护控制参数的设计并且没有考虑采动对顺槽围岩的影响,这样的设计存在一定的不合理性,在煤层开采的时候容易造成顺槽的变形破坏严重,需要花大量的时间对顺槽进行补强支护甚至返修,严重影响了井下人员的安全和采煤效率。本文以陕北矿区张家峁煤矿5-2煤15211顺槽为工程背景,通过室内试验、理论分析、计算机数值模拟、现场监测的方法进行研究。研究成果如下:

(1)基于室内试验测定相关参数为理论分析及数值模拟提供参数;分析围岩物理性质、水文地质条件、地应力、工程因素、开采活动等因素对顺槽围岩的变形破坏的影响;用弹塑性理论对开挖后的顺槽围岩的应力分布进行分析,得到围岩分为三个不同的状态;总结了顺槽围岩的变形破坏类型;通过实地观测张家峁煤矿5-2煤顺槽围岩变形破坏情况得到了顺槽围岩的两种变形破坏形式。

(2)基于张家峁煤矿5-2煤顺槽围岩变形破坏的规律建立了矩形顺槽结构模型,通过分析该结构模型的受力,利用弹塑性力学计算出围岩的变形及破坏的表达式,将室内试验参数带入公式得到了塑性区的最大高度并采用控制变量法分析了各个参数对塑性区大小的影响。

(3)根据顺槽围岩塑性区的大小进行顺槽围岩支护控制参数的设计,利用FLAC3D7.0数值模拟软件对比分析顺槽围岩在有无支护的塑性区大小和变形量,验证理论的正确性和支护参数的合理性。

(4)在张家峁煤矿5-2煤15211顺槽进行现场工业性试验,通过监测顺槽围岩的帮部位移和松动圈大小、顶板的下沉位移和离层值、锚杆的受力,验证顺槽围岩的稳定性。结果表明:该支护设计方案合理,能够有效的控制顺槽围岩的变形破坏。研究成果能够为类似顺槽和张家峁煤矿5-2煤其他顺槽作为参考。

论文外文摘要:

As one of the main battlefields for coal production, the Shaanbei mining area requires coal enterprises to excavate a large number of tunnels in order to produce as much coal as possible. The safety and stability of the tunnel surrounding rock directly affect the progress of coal mining work. It is of great significance to study the deformation and failure laws of the tunnel surrounding rock and provide support control for it. For the convenience of construction and coal mining, most coal mining enterprises in the northern Shaanxi mining area use rectangular grooves. The existing methods for supporting and controlling the surrounding rock of the grooves generally equate rectangular grooves with circular grooves for the design of support control parameters, and do not consider the impact of mining on the surrounding rock of the grooves. This design has certain irrationality, which can easily cause serious deformation and damage to the grooves during coal seam mining, It takes a lot of time to reinforce, support, or even repair the chute, which seriously affects the safety of underground personnel and coal mining efficiency. This article is based on the engineering background of the 15211 coal seam in Zhangjiamao Coal Mine, Shaanbei Mining Area. The research is conducted through indoor experiments, theoretical analysis, computer numerical simulation, and on-site industrial tests. The research results are as follows:

(1) Provide parameters for theoretical analysis and numerical simulation based on indoor test to determine relevant parameters; The influence of physical properties, hydrogeological conditions, in-situ stress, engineering factors, mining activities and other factors on the deformation and failure of the surrounding rock along the trough was analyzed. The stress distribution of the excavated grooved surrounding rock was analyzed by elastoplastic theory, and it was obtained that the surrounding rock was divided into three different states. The types of deformation and failure of the surrounding rock along the trough were summarized. Through the field observation of the deformation and failure of the surrounding rock of 5-2 coal flute in Zhangjiaya Coal Mine, two deformation and failure forms of the trough surrounding rock were obtained.

(2) Based on the law of deformation and failure of the surrounding rock of 5-2 coal trough in Zhangjiaya Coal Mine, a rectangular trough structure model was established, and by analyzing the force of the structural model, the expression of deformation and failure of the surrounding rock was calculated by elastoplastic mechanics, the indoor test parameters were brought into the formula to obtain the maximum height of the plastic zone, and the influence of each parameter on the size of the plastic zone was analyzed by the control variable method.

(3) According to the size of the plastic zone of the trough surrounding rock, the control parameters of the trough surrounding rock were designed, and the size and deformation of the trough surrounding rock in the plastic zone with or without support were compared and analyzed by using FLAC3D7.0 numerical simulation software, which verified the correctness of the theory and the rationality of the supporting parameters.

(4) The on-site industrial test was carried out in the 5-2 coal 15211 trough of Zhangjiaya Coal Mine, and the stability of the trough surrounding rock was verified by monitoring the movement and loosening circle size of the surrounding rock along the trough, the subsidence displacement and separation value of the roof plate, and the force of the bolt. The results show that the support design scheme is reasonable, which can effectively control the deformation and failure of the surrounding rock along the trough. The research results can be used as a reference for other troughs similar to the trough and 5-2 coal in Zhangjiaya Coal Mine.

参考文献:

[1] 贾县民,王喜莲.不确定因素影响下我国煤炭开采产量预测[J].统计与决,2017(01):90-92.

[2] 中国工程院“能源中长期发展战略研究”项目组.中国能源中长期(2030,2050)发展战略研究:节能·煤炭卷[M].科学出版社,2011.

[3] 能源十三五规划.国家能源局网站.2016,12.

[4] 董超.中国煤炭资源绿色开采技术的发展探讨[J].石化技术,2019, 26(12):157-158.

[5] 秦容军.我国煤炭开采现状及政策研究[J].煤炭经济研究, 2019,39(01):57-61.

[6] 赵一超,高明仕,刘昂.复合顶板煤巷帮顶同治强化围岩支护原理及应用[J].煤炭术,2014,09: 118-120.

[7] 张磊,豆浩.厚煤层高煤帮回采巷道围岩破坏分析与控制研究[J].煤炭工程.2018,50(07):42-45.

[8] 于宪阳. 沿空留巷滞后段煤帮采动破坏机理及注浆重构技术[D].中国矿业大学,2014.

[9] 张恩强,吴蒸,高丁丁,等.采动影响下工作面巷道变形破坏机理研究[J].煤炭技术.2017,36(01):24-26.

[10] 赵萌烨.含软弱夹层高帮煤巷破坏机理及支护对策研究[D].西安科技大学,2015.

[11] 马念杰,贾安立,马利,等.深井煤巷煤帮支护技术研究[J].建井技术.2006(01):15-18.

[12] 谷拴成,史向东,王恩波.层状岩体中矩形巷道顶板破坏高度[J].煤矿安全,2014,12:61-67 .

[13] 刘开云,乔春生,滕文彦.上覆岩层组合运动的力学解析特征研究[J].工程地质学报,2003.11(04): 372-377.

[14] 彭著,高博彦,寒特译. 煤矿地层控制[M].北京: 煤炭工业出版社, 1984.

[15] 孙久政,万清生,刘钦德. 回采巷道薄层复合顶板控制技术及工程实践[M].北京:煤炭工业出版社, 2008.

[16] 樊克恭,翟德元,刘锋珍. 岩性弱结构巷道顶底板弱结构体破坏失稳分析[J].山东科技大学学报, 2004, 23(2): 11-14.

[17] 刘生龙. 煤巷层状软岩顶板破坏规律及支护研究[D].西安: 西安科技大学,2005.

[18] 勾攀峰,侯朝炯. 回采巷道锚杆支护顶板稳定性分析.煤炭学报,1999,24(5):466~470

[19] 林崇德. 层状岩石顶板破坏机理数值模拟过程分析.岩石力学与工程学报,1999,18(4):392~396

[20] 陆庭侃. 采区准备巷道层状复合顶板的离层和机理[A]. 中国岩石力学与工程学会岩石动力学专业委员会: 2005:7.

[21] 李东印,邢奇生,张瑞林. 深部复合顶板巷道变形破坏机理研究[J]. 河南理工大学学报(自然科学版), 2006, (06): 457-460.

[22] 吴德义,高航,王爱兰.巷道复合顶板离层的影响因素敏感性分析[J].采矿与安全工程学报, 2012, 29(02): 255-260.

[23] 吴德义,申法建.巷道复合顶板层间离层稳定性量化判据选择[J].岩石力学与工程学报, 2014,33(10): 2040-2046.

[24] 王启耀, 蒋臻蔚, 杨林德. 层状岩体巷道弯曲变形的有限元模拟[J].岩土力学, 2006(07): 1101-l104.

[25] 冯锐敏. 充填开采覆岩移动变形及矿压显现规律研究[D].中国矿业大学, 2013.

[26] 邹友峰, 柴华彬. 建筑荷载作用下采空区顶板岩梁稳定性分析[J].煤炭学报, 2014, 39

(08): 1473-1477.

[27] Shabanimashcool M, Li C C. Analytical approaches for studying the stability of laminated roof strata[J]. International Journal of Rock Mechanics & Mining Sciences, 2015,79(10): 99-108.

[28] 冯帆,李夕兵,李地元等.正交各向异性板裂屈曲岩爆机制与控制对策研究[J].岩土工程学报, 2017, 39(07): 1302-1311.

[29] 陆士良,付国彬,汤雷.采动巷道岩体变形与锚杆锚固力变化规律[J].中国矿业大学学报,1999,28(3) 201-203.

[30] 孙光中,王国际,郭军杰等.采动影响下巷道群稳定性数值分析研究[J].地下空间与工程学报,2009,5(增1):1412-1417.

[31] 张百胜,杨双锁,康立勋,等.极近距离煤层回采巷道合理位置确定方法探讨[J].岩石力学与工程学报,2008,27(1):97-101.

[32] 杨双锁.煤矿回采巷道围岩控制理论探讨[J].煤炭学报,2010,35(11):1842-1853.

[33] 张钦祥.保德矿采动巷道围岩分次控制方法及关键支护技术[D].中国矿业大学(北京),2013.

[34] 张绪言.大采高回采巷道围岩控制技术研究[D].太原理工大学,2010.

[35] 董方庭.巷道围岩松动圈支护理论及应用技术[M],北京:煤炭工业出版社,2001.

[36] 董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,(1):21-23.

[37] 王卫军,李树清,欧阳广斌.深井煤层巷道围岩控制技术及试验研究[J].岩石力学与工程学报,2006,25(10):2012-2017.

[38] 李树清.深部煤巷围岩控制内外承载结构耦合稳定原理的研究[D].长沙:中南大学,2008.

[39] 于学馥,乔瑞.轴变论和围岩稳定轴比三规律[J].有色金属,1981,(4):9-14.

[40] 于学馥.轴变论与围岩变形破坏的基本规律[J].铀矿冶,1982,1(1):8-17.

[41] 何满潮.中国煤矿锚杆支护理论与实践[M].科学出版社.2004.

[42] 康红普.深部煤矿应力分布特征及巷道围岩控制技术[C].2013煤炭科学技术40年创新发展高峰论坛.2013.

[43] 杨振茂,马念杰,孔恒,等.以地应力为基础的锚杆支护设计方法[J].岩石力学与工程学报,2003, 22(2):270-275.

[44] 周保生,朱维申,李术才.神经网络在综放回采巷道锚杆支护设计中的应用研究[J].岩石力学与工程学报, 2001, 20(4):497-501.

[45] Yang Zhenmao, Ma Nianjie, Kong Heng,等DESIGN METHOD 0F BOLT SUPPORT FOR COAL SEAM ROADWAY BASED ON GEOSTRESS以地应力为基础的锚杆支护设计方法[J].岩石力学与工程学报, 2003, 22(2):270-275.

[46] 康红普,姜铁明,高富强.预应力锚杆支护参数的设计[J].煤炭学报,2008,33(7):721-726.

[47] 成永刚.顺层滑坡数值模拟与监测分析[J].岩石力学与工程学,2008,27(s2):3 746-3752.

[48] 姬会民.煤巷锚杆支护信息设计及应用[C].陕西省煤炭工业科技成果评估探讨论文集,2004:38-39.

[49] 康红普.煤巷锚杆支护成套技术研究与实践[J].岩石力学与工程学报,2005,24(21):3959-3964.

[50] 曾祥勇,邓安福.锚索与锚杆联合锚固支护岩坡的有限元分析[J].岩土力学, 2007,28(4):790-794.

[51] 哈依斯.岩层控制技术的发展现状[C].国外锚杆支护技术究总院北京开采所,1997.6.

[52] 吴学震,蒋宇静,王刚,等.大变形锚杆支护效应分析[J].岩土工程学报,2016,38(2):245-252.

[53] 成永刚.顺层滑坡数值模拟与监测分析[J].岩石力学与工程学报,2008,27(s2):3746-3752.

[54] 李超.复杂围岩大断面受损动压巷道修复技术研究[D].西安科技大学硕士论文,2010.

[55] Syd S.Peng.Coal Mine Ground Control(Sec ond Edition)[M].1986.

[56] 王金华.全煤巷道锚杆锚索联合支护机理与效果分析[J].煤炭学报,2012,37(1):1-7..

[57] 于凤海,赵同彬,胡善超,等.大松动圈围岩锚网索联合支护参数确定方法探讨[J].岩土力学,2016,37(7):2021-2027.

[58] 赵兴东.井巷工程[M].冶金工业出版社2010.

[59] 梁炯盜.关于锚喷支护理论研究的若干问题[J].煤炭科学技术,1980(5):15-20.

[60] Latifi M, Kharazi M, Ovesy H R. Nonlinear dynamic response of symmetic laminated composite beams under c ombined in-plane and lateral loadings using full layerwise theory[J]. Thin-Walled Structures, 2016, 104:62-70.

[61] Liu M. Practice on the B olt C able Support for the Compound Soft Rock Chambers with High stress Joint[J]. Joural of Jiaozuo Institute of Technology, 1999.

[62] 王松周.基于卸荷减跨理论大断面水下隧道开挖的工序优化技术研究[D].中南大学,2012.

[63] Gale W J, Cambardella C A. Carbon dynamics of surface residue- and ro ot-derived organic matter under simulated no-till.[J]. Soil Science Society of Americ a Journal,2000, 64(1):190.

[64] 董方庭.最大水平应力支护的理论和应用问题[J]. 锚杆支护,2000(3):1-5.

[65] 王梦恕.全长锚固锚杆机理的探讨[J].煤炭学报,1983(1):40~47.

[66] 钟新谷,徐虎.全长锚固锚杆的横向作用研究[J]. 岩土工程学报, 1997, 19(1);:94-98.

[67] 何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.

[68] 勾攀峰,侯朝炯,等回采巷道锚杆支护顶板稳定性分析[J].煤炭学,1999(24):466-470.

[69] 周恒.软岩巷道锚杆和锚注支护共同作用机理研究及应用[D].西南交通大学硕士论文2004.

[70] C. Chunlin Li. Rock support design based on the concept of pressure arch[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7) : 1083-1090.

[71] Xiaojie Yang , et al. A Case Study on the Control of Large Deformations in a Roadway Located in the Du’erping Coal Mine in China[J]. Advances in Materials Science and Engineering, 2019, 2019 : 1-13.

[72] Lang TA.Theory and practice of rock bolting[J].Trans AIME 1961,220:333-48.

[73] Hoek E,Brown ET. Underground excavations in rock[J].London:Institution of Mining and Metallurgy,1980,527.

[74] Krauland N.Rock bolting and economy. In:Stephansson O,editor. Rock bolting theory and applications in mining and underground construction[J].Rotterdam:Balkema,1983.499-507.

[75] 黄庆享,冉隆明,李培树.构造破碎带大巷复修的支护理论与实践[J].煤炭科学技术,2008(06):15-18+27.

中图分类号:

 TD353    

开放日期:

 2023-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式