- 无标题文档
查看论文信息

题名:

 煤矿封闭火区光-热-贫氧作用下煤体阴燃特性研究    

作者:

 张园勃    

学号:

 20120089023    

保密级别:

 内部    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

导师姓名:

 张玉涛    

导师单位:

 西安科技大学    

提交日期:

 2023-06-19    

答辩日期:

 2023-06-05    

外文题名:

 Study on the smoldering characteristics of coal under the circumstance of photo-thermal-depleted oxygen in closed fire zones    

关键词:

 封闭火区 ; 阴燃 ; 贫氧氧化 ; 光-热-贫氧作用 ; 临界条件    

外文关键词:

 Closed fire zones ; Smoldering ; Oxygen-depleted oxidation ; Effect of photo-thermal-depleted oxygen ; Critical condition.    

摘要:

火区封闭是现阶段矿井煤火灾害防治的最后一道防线,但封闭后火区内的火灾往往难以得到有效控制。造成这一问题的重要原因之一是次生煤火灾害的存在,即原有高温热源向外传递能量所引发的不直接相连的煤体阴燃火灾。由于封闭火区环境的特殊性,次生煤火灾害往往处于原有火源产生的光与热以及空间内贫氧环境的综合作用下。本文在明确矿井封闭火区次生煤火灾害内涵及其主要特征的基础上,采用理论分析与物理实验相结合的方法,针对性地研究了封闭火区内光-热作用下煤体反应性参数变化,探究了贫氧状态下煤的氧化进程和机制,明确了煤氧化放热过程中的关键基团及其演变特征,并最终阐释了不同供风流速和引燃温度下煤体阴燃发生及蔓延规律。本文的主要创新成果如下:

(1)基于自建的煤光-热氧化装置,研究了封闭火区内高温热源光-热作用下松散煤体反应性参数变化。结果表明:光与热作用后,煤中自由基种类增多,对称性下降,反应速率加快;煤中芳香烃与脂肪烃的氧化被促进,含氧官能团尤其是−COO−的含量显著升高。热作用后煤的比表面积、孔体积下降而平均和最可几孔径显著增大,光作用后则无显著变化。光与热作用均会导致煤孔隙的贯通和分形维数的减小。热作用对煤反应性参数的变化起决定性作用,而光会增强热的作用效果。

(2)采用热重分析研究了原煤与光-热氧化煤在不同氧气浓度下的热反应特征,利用多组分叠加模型法确定了煤贫氧氧化过程热解与氧化反应竞争机制。结果表明:煤热解反应机制依次为水分蒸发→挥发分析出→半焦热解→半焦缩聚,氧化反应机制依次为水分蒸发→吸氧增重→挥发分析出与燃烧→半焦燃烧→焦炭燃烧。贫氧状态下煤倾向于遵循氧化反应机制。煤热解与氧化竞争的本质是煤氧反应能否提高体系内能以维持进一步的反应。煤氧化独立反应活化能和反应速率均随氧气浓度的降低而降低。反应速率dα/dt较活化能更加充分全面的体现了煤氧化动力学特征。贫氧限制了煤氧化反应的进行,但促进了焦炭的生成与燃烧。光-热氧化则促进了煤贫氧氧化过程中半焦和焦炭的燃烧过程。

(3)利用差示扫描量热和原位红外技术研究了煤贫氧氧化热效应及关键基团反应特征,结果表明:贫氧并未改煤氧化放热进程与微观基团反应特征,但会减小反应放热,导致反应整体向高温区移动。利用灰色关联分析确定了煤氧化关键基团演变特征,结果表明YM关键基团的变化趋势为−OH-1→−COO−→Ar−CH→Ar−CH (21%氧气浓度下),而经历光-热作用的VR-150则为−OH-1→−CH3→−CH3→Ar−CH (21%氧气浓度下)。任意氧气浓度下YM氧化的关键基团着遵循羟基→碳氧基团→脂肪烃化合物→芳香烃化合物的演化历程,而VR-150煤的关键基团演变特征则为羟基→脂肪烃化合物→脂肪烃化合物→芳香烃化合物。光-热作用会增强煤中脂肪烃的活性,导致其在低温氧化阶段起到关键作用。

(4)利用自建的煤体阴燃蔓延特性测试装置研究了煤体正/逆向阴燃反应特征,明确了煤阴燃反应机制及临界参数。结果表明:封闭火区内煤体正/逆向阴燃过程均会受到辐射加热温度和供风流速的影响。煤体逆向阴燃有向正向阴燃转变的趋势。随着供风流速和加热温度的增加,煤样阴燃由熄灭过渡为稳定蔓延并最终增强为有焰燃烧。煤体正/逆向阴燃过程均可分为未引燃,阴燃熄灭,阴燃维持(转变)和阴燃增强四种传播模式。辐射加热温度决定了阴燃反应发生与否,供风流速决定了正向阴燃能否稳定维持,而逆向阴燃向正向阴燃乃至有焰燃烧的转变则由加热温度和供风流速共同决定。正向阴燃稳定维持及有焰转变的临界供风流速分别为0.146 m/min和0.541 m/min(300.0 ℃加热下),稳定维持的临界加热温度为188.0℃(0.4 m/min供氧下);逆向阴燃转变为正向阴燃及增强为有焰燃烧的临界供风流速分别为0.522 m/min和0.893 m/min(300.0 ℃加热下),转变为正向及有焰燃烧的临界加热温度分别186.1 ℃和212.0 ℃(1.0 m/min供氧下)。次生火灾的阴燃过程中产生的CO、CO2、C2H4和C2H2的变化趋势与煤层整体温度相关,并相较于自然发火表现出较高的C2H4浓度。阴燃过程中C2H4/CO2和CO/CO2的变化趋势可用于判断煤阴燃进程。

本文的研究结果对封闭火区内次生煤火灾害的发生和蔓延机制以及封闭火区启封有着积极的意义。

外文摘要:

Fire zone closure is the measure of last resort for coal fire disaster prevention and control in mines at this stage. However, fires in enclosed fire zones are often difficult to effectively control. One of the major causes of this problem is the existence of secondary coal fire disasters, i.e. the smoldering fire caused by the transfer of energy from the original high temperature heat source to non-directly connected coal seam. Due to the unique nature of the enclosed fire zone environment, secondary coal fire disasters are often under the combined effects of photo and heat generated by the original fire source and the oxygen-depleted environment in space.

On the basis of the definition of secondary coal fire disasters in the closed fire zone and their main characteristics, this paper uses a combination of theoretical analysis and physical experiments to investigate the variations of coal reactivity parameters under the action of photo and heat in the closed fire zone, to explore the combustion process and combustion mechanism of coal in the oxygen-depleted state, to clarify the key groups in the exothermic process of coal combustion and their evolution laws, and finally the occurrence and spread of coal smoldering under different oxygen supply rate and ignition temperature are investigated. The main innovations of this paper are as follows:

Based on a self-built coal photo-thermal oxidation apparatus, the variation of the reactivity parameters of loose coals under the photo-thermal action from high temperature heat sources in the enclosed fire zone was investigated. The results show that after the interaction of photo and heat, the types of free radicals in coal increase, the symmetry decreases, and the reaction rate accelerates. The oxidation process of aromatic and aliphatic hydrocarbons in coal is promoted, and the content of oxygen-containing functional groups, especially −COO−, is significantly increased. The specific surface area and pore volume of the coal decrease while the average and most probable aperture increase significantly after thermal effects, while photo effects have less impact. Both photo and heat effects lead to penetration of pores and the reduction in the fractal dimension of the coal. Thermal effects have a decisive influence on the changes in coal reactivity parameters, while photo enhances thermal effects.

Thermogravimetric analysis was used to study the thermal reaction characteristics of raw coal and photo-thermally oxidized coal at different oxygen concentrations, and the multi-component superposition model was used to determine the competing reaction mechanisms of coal pyrolysis and oxidation under oxygen-depleted environment. The results show that the reaction mechanisms of coal pyrolysis are, in order, water evaporation → volatile separate out → semi-coke pyrolysis → semi-coke condensation, and the reaction mechanisms of oxidation are, in order, water evaporation → oxygen-absorption and mass-gain → volatile separate out and combustion → semi-coke combustion → coke combustion. Coal in the oxygen-depleted state tends to follow an oxidation reaction mechanism. The essence of coal pyrolysis competing with oxidation is the ability of the coal-oxygen reaction to raise within the system to sustain further reactions. The independent reaction activation energy and the reaction rate of coal oxidation decreases with decreasing oxygen concentration. The reaction rate dα/dt more fully characterizes the kinetics of coal oxidation than the activation energy. Oxygen depletion limits coal oxidation reactions, but promotes coke production and combustion. Photo-thermal oxidation facilitates the combustion of semi-coke and coke during the oxygen-depleted combustion of coal.

The thermal effects of oxygen-depleted coal oxidation and the reaction characteristics of key groups were investigated using differential scanning calorimetry and in situ infrared techniques. The results show oxygen depletion does not alter the exothermic process of coal combustion and the reaction characteristics of microscopic groups, but it does reduce the exotherm of the reaction and causes the overall reaction to move towards the high temperature region. The evolution of the key groups of coal oxidation was characterized using grey correlation analysis, which showed that the trend of the key groups of YM was −OH−1→−COO−→Ar−CH → Ar−CH (at 21% oxygen concentration), while VR-150 is −OH−1→−CH3→−CH3→Ar−CH (at 21% oxygen concentration). While YM combustion at arbitrary oxygen concentrations follows the microscopic reaction course of hydroxyl groups → carbon-oxygen group → aliphatic hydrocarbon compounds → aromatic hydrocarbon compounds, the evolution of key groups in the VR-150 coal sample is characterized by hydroxyl groups → aliphatic hydrocarbon compounds → aliphatic hydrocarbon compounds → aromatic hydrocarbon compounds. Photo-thermal oxidation enhances the activity of aliphatic hydrocarbons in coal, leading to their advancement in the low temperature oxidation phase.

A self-built test apparatus was used to investigate the characteristics of the forward/opposed smoldering of coal and to elucidate the mechanism of the smoldering reaction of coal and its critical combustion parameters. The results show that the forward/opposed smoldering of coal in the closed fire zone is influenced by the radiation heating temperature and oxygen supply rate, and there is a tendency for the opposed smoldering of coal to change to forward smoldering. As the oxygen supply rate and heating temperature increase, the opposed smoldering of the coal transitions from extinction to stable spreading and eventually increases to flaming combustion. The forward/opposed coal smoldering process can be divided into four modes of propagation: uninitiated, smoldering extinguished, smoldering maintained (transformed) and smoldering enhanced. The radiation heating temperature determines whether the smoldering reaction occurs or not, and the rate of oxygen supply determines whether the forward smoldering can be stably maintained. The transition from opposed to forward smoldering and even flamed combustion is determined by both the heating temperature and the oxygen supply rate. The critical oxygen supply rate for the stable maintenance of forward smoldering and flaming transformation is 0.146 m/min and 0.541 m/min (under 300.0 °C heating) respectively, and the critical heating temperature for smoldering maintained is 188.0 °C (under 0.4 m/min oxygen supply). The critical oxygen supply rate for the conversion of opposed smoldering to forward smoldering and enhancement to flamed combustion is 0.522 m/min and 0.893 m/min (at 300.0 °C heating), respectively, and the critical heating temperatures for conversion to forward smoldering and flamed combustion are 186.1 °C and 212.0 °C (at 1.0 m/min oxygen supply), respectively. The trends of CO, CO2, C2H4 and C2H2 produced during the smoldering of secondary coal fires are correlated with the overall temperature of the coal seam, and shows a higher concentration of C2H4 compared to spontaneous combustion. Where the trends of C2H4/CO2 and CO/CO2 can be used to determine the smoldering of coal.

The research results of this article have positive significance for the occurrence and spread mechanism of secondary coal fire disasters in closed fire areas, as well as for the unsealing of closed fire areas.

参考文献:

[1] Ren, Xiaofeng, Hu, Xiangming, Xue, Di, et al. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal[J]. Journal of hazardous materials,2019,371:643-654.

[2] Zhang Yuanbo, Zhang Yutao, Li Yaqing, et al. Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry[J]. Energy, 2022, 240: 122493.

[3] Zhang Yuanbo, Zhang Yutao, Shi Xueqiang, et al. Co-spontaneous combustion of coal and gangue: Thermal behavior, kinetic characteristics and interaction mechanism[J]. 2022,315(May 1):123275.1-123275.12.

[4] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[R]. 北京.2023.

[5] 中国煤炭工业协会. 2021煤炭行业发展年度报告[R]. 北京.2022.

[6] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,

44(7):1949-1960.

[7] 谢和平,王金华,鞠杨,等. 煤炭革命的战略与方向[M]. 北京:科学出版社, 2018: 1-31.

[8] 英国石油公司. BP能源年鉴 2022 [R]. 英国.2022.

[9] 中能传媒研究院. 中国能源大数据报告(2022) [R]. 北京.2022.

[10] 朱红青,袁杰,赵金龙,等. 地下煤火分布及探测技术现状研究[J]. 工业安全与环保,

2019,45(12):28-32.

[11] Su Hetao, Zhou Fubao, Shi Bobo, et al.Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review [J].International Journal of Minerals Metallurgy and Materials,2020,27(03):275-291.

[12] Varinder Saini, Ravi P. Gupta, Manoj K. Arora . Environmental impact studies in coalfields in India: A case study from Jharia coal-field[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1222-1239.

[13] Li Qingwei, Xiao Yang, Zhong Kaiqi, et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel, 2020, 275:117981.

[14] 梁运涛,侯贤军,罗海珠,等. 我国煤矿火灾防治现状及发展对策[J]. 煤炭科学技术,2016,44(6):1-6,13.

[15] 张玉涛,杨杰,李亚清,等.煤自燃特征温度与微观结构变化及关联性分析[J/OL].煤炭科学技术:1-8[2023-03-01].

[16] 肖旸,刘志超,周一峰,等.预氧化煤体的力学参数和导热特性关系研究[J].煤炭科学技术,2018,46(04):135-140+187.

[17] 邓军,李贝,王凯,等.我国煤火灾害防治技术研究现状及展望[J].煤炭科学技术,2016,44(10):1-7+101.

[18] 秦波涛,仲晓星,王德明,等.煤自燃过程特性及防治技术研究进展[J].煤炭科学技术,2021,49(01):66-99.

[19] 郭军,刘华,金彦,等.地下煤自燃隐蔽火源探测方法综述及新技术展望[J].中国安全科学学报,2022,32(08):111-119.

[20] 国家矿山安全监察局. 国家矿山安全监察局关于印发《煤矿防灭火细则》的通知. [2021-1012]. https://www.chinaminesafety.gov.cn/zfxxgk/fdzdgknr/

tzgg/202110/t20211028 401003shtml.

[21] 焦宇,段玉龙,周心权,等.煤矿火区密闭过程自燃诱发瓦斯爆炸的规律研究[J].煤炭学报,2012,37(05):850-856.

[22]汪腾蛟,周西华,白刚,等.煤矿火灾诱发瓦斯爆炸危险性预测[J].煤炭学报,2020,45(12):4104-4110.

[23] 张渝,胡社荣,彭纪超,等.中国北方煤层自燃产物分类及宏观模型[J].煤炭学报,2016,41(07):1798-1805.

[24] 王德明.煤矿热动力灾害及特性[J].煤炭学报,2018,43(01):137-142.

[25] 王德明,邵振鲁,朱云飞.煤矿热动力重大灾害中的几个科学问题[J].煤炭学报,2021,46(01):57-64.

[26] 邓军,赵婧昱,张嬿妮,等.不同变质程度煤二次氧化自燃的微观特性试验[J].煤炭学报,2016,41(05):1164-1172.

[27] Wang Deming, Zhong Xiaoxing, Gu Junjie, et al. Changes in active functional groups during low-temperature oxidation of coal [J]. Mining Science and Technology (China), 2010, 20(1): 35-40.

[28] Zhou Chunshan, Zhang Yulong, Wang Junfeng, et al. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal[J]. International Journal of Coal Geology, 2017, 171:212-222.

[29] 肖旸,叶星星,刘昆华,等.二次氧化煤自燃过程关键官能团的转变规律[J].煤炭学报,2021,46(S2):989-1000.

[30] Gao Dong, Guo Liwen, Wang Fusheng, et al. Investigation on thermal analysis and FTIR microscopic characteristics of artificially-oxidized coal and chronic naturally-oxidized coal during secondary oxidation[J]. Fuel, 2022, 327: 125151.

[31] Zhou Buzhuang, Yang Shengqiang, Jiang Xiaoyuan, et al. The reaction of free radicals and functional groups during coal oxidation at low temperature under different oxygen concentrations[J]. Process Safety and Environmental Protection, 2021, 150: 148-156.

[32] Zhang Yuanbo, Zhang Yutao, Li Yaqing, et al. Determination and dynamic variations on correlation mechanism between key groups and thermal effect of coal spontaneous combustion. 2021.

[33] Cai Yidong, Liu Dameng, Liu Zhihua, et al. Evolution of pore structure, submaceral composition and produced gases of two Chinese coals during thermal treatment[J]. Fuel Processing Technology, 2017, 156: 298-309.

[34] 席晗,陆伟,亓冠圣.低温对褐煤孔隙结构的影响[J].中国科技论文,2021,16

(05):518-523.

[35] Zhao San, Chen Xiangjun, Li Xinjian, et al. Experimental analysis of the effect of temperature on coal pore structure transformation[J]. Fuel, 2021, 305: 121613.

[36] Yu Yanmei, Liang Weiguo, Hu Yaoqing, et al. Study of micro-pores development in lean coal with temperature[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 51: 91-96.

[37] 马玉林,王常瑞,马凯.红外加热储层煤岩热损伤特征扫描电镜及增透试验研究[J].煤炭科学技术,2022,50(07):177-183.

[38] Sun Lulu, Zhang Chen, Wang Gang, et al. Research on the evolution of pore and fracture structures during spontaneous combustion of coal based on CT 3D reconstruction[J]. Energy, 2022, 260: 125033.

[39] Li Jinhu, Li Zenghua, Yang Yongliang , et al. Insight into the chemical reaction process of coal self-heating after N2 drying[J]. Fuel, 2019, 255(NOV.1):115780.1-115780.11.

[40] Zhao Hongyu, Li Yuhuan, Song Qiang, et al. Drying, re-adsorption characteristics, and combustion kinetics of Xilingol lignite in different atmospheres[J]. Fuel, 2017, 210(dec.15):592-604.

[41] Liu Xiaohong, Yu Haiyang, Wei Lubin. Experimental study on the dehydration characteristics and evolution of the physicochemical structure of XilinGol lignite during the dehydration process[J]. Fuel, 2021, 291(8):120241.

[42] 王振华,陈赟,陈林,等.岩浆底侵的热-流变学效应及对峨眉山大火成岩省的启示[J].岩石学报,2018,34(01):91-102.

[43] 王亮,杨良伟,王瑞雪,等.岩浆岩床下伏煤层采空区煤自燃致灾机制与防治[J].煤炭科学技术,2019,47(01):125-131.

[44] 宋播艺,宋党育,李春辉,等.基于压汞法探究岩浆侵入对煤孔隙的影响[J].煤田地质与勘探,2017,45(03):7-12.

[45] 王飞,程远平,蒋静宇,等.大兴煤矿岩浆侵入对煤体性质的影响研究[J].煤炭科学技术,2015,43(12):61-65+71.

[46] 张帅,肖睿.煤的结构对化学链燃烧系统反应性能的影响[J].中国电机工程学报,2019,39(18):5449-5456+5593.

[47] 辛海会,王德明,许涛,等.低阶煤低温热反应特性的原位红外研究[J].煤炭学报,2011,36(09):1528-1532.

[48] 杨锴. 热损伤作用对煤结构及其自燃氧化特性影响的研究[D].中国矿业大学,2021.

[49] 陶文铨.传热学(第五版) [M].北京:高等教育出版社,2019:7-10.

[50] Alavandi S K, Agrawal A K. Lean premixed combustion of carbon-monoxide-hydrogen-methane fuel mixtures using porous inert media[C]//Turbo Expo: Power for Land, Sea, and Air. 2005, 4725: 427-434.

[51] 叶奋,孙大权,黄彭,等.沥青强紫外线光老化性能分析[J].中国公路学报,2006(06):35-38+44.

[52] 袁兴龙. 酸及紫外线环境下玄武岩纤维布加固损伤钢筋混凝土梁耐久性试验研究[D].天津城建大学,2014.

[53] 位爱竹. 煤炭自燃自由基反应机理的实验研究[D].中国矿业大学,2008.

[54] 马钱钱,马凯.红外热效作用对煤体孔隙结构影响试验研究[J].煤炭技术,2020,39(06):113-116.

[55] Shao Xiaodong, Wu Wenting, Wang Ruiqin, et al. Engineering surface structure of petroleum-coke-derived carbon dots to enhance electron transfer for photooxidation[J]. Journal of Catalysis, 2016, 344: 236-241.

[56] 张玉贵,唐修义,何萍.煤的分子结构与煤的自燃倾向性[J].煤矿安全,1992(05):1-4+15-49.

[57] 位爱竹,李增华,杨永良.破碎、氧化和光照对煤中自由基的影响分析[J].湖南科技大学学报(自然科学版),2006(04):19-22.

[58] 王启.紫外线对煤表面亲疏水性作用的研究[D].太原理工大学,2015.

[59] 姜玉凤,李侃社,周安宁,等.神府煤光催化氧化产生腐植酸的特性研究[J].煤炭转化,2004(04):83-86.

[60] 孙鸣,周安宁,么秋香.煤的液相光催化氧化研究[J].煤炭学报,2010, 35(09):1553-1558.

[61] 孙鸣,周安宁,张亚婷,等.煤的光-热耦合氧化研究[J].煤炭学报,2009,34(09):1244-1248.

[62] 解恒参,宗志敏,刘彤,等.神府煤和锡林浩特煤的非均相光催化氧化[J].煤炭学报,2011,36(05):849-854.

[63] 杨志远,周安宁.神府煤光催化氧化降解过程的FTIR研究[J].煤炭学报,2005(06):759-763.

[64] 张亚婷,周安宁.神府煤不同煤岩组分光氧化产物分析[J].西安科技大学学报,2008(02):344-348.

[65] 张永利,马凯,马玉林.红外作用下煤对CO2吸附/解吸能量变化规律[J].非金属矿,2018,41(5):83-85.

[66] Wang Lianyun, Wen Xinglin, Liu Zhen, et al. Coal desulfurization by photocatalytic oxidation in the presence of [HO2MMim][HSO4] and H2O2[J]. Fuel, 2021, 306: 121754.

[67] 王伟,冯永辉,申峻,等.微波和紫外改性煤沥青脱除毒性多环芳烃研究[J].煤炭科学技术,2021,49(04):237-243.

[68] 葛立超,张彦威,王智化,等.微波处理对我国典型褐煤气化特性的影响[J].浙江大学学报(工学版),2014, 48(4):653-659.

[69] Rong Lingkun, Song Bing, Yin Wanzhong, et al. Drying behaviors of low-rank coal under negative pressure: Kinetics and model[J]. Drying Technology, 2016, 35(2): 173-181.

[70] Zhu JieFeng, Liu JianZhong, Wu JunHong, et al. Thin-layer drying characteristics and modeling of Ximeng lignite under microwave irradiation[J]. Fuel Processing Technology, 2015, 130:62-70.

[71] 侯浩然. 微波辐射下煤体的热效应及热力学响应特征[D].徐州:中国矿业大学,2020.

[72] 李贺. 微波辐射下煤体热力响应及其流-固耦合机制研究[D].徐州:中国矿业大学,2018.

[73] 李贺,林柏泉,洪溢都,等.微波辐射下煤体孔裂隙结构演化特性[J].中国矿业大学学报,2017(06):1194-1201.

[74] 辛海会. 煤火贫氧燃烧阶段特性演变的分子反应动力学机理[D].徐州:中国矿业大学,2016.

[75] 亓冠圣. 煤矿封闭火区中阴燃煤体的动力学反应机理及其熄灭条件[D]. 徐州:中国矿业大学,2017.

[76] 宋泽阳,朱红青,徐纪元,等.地下煤火高温阶段贫氧不完全燃烧耗氧速率的计算[J].煤炭学报,2014,39(12):2439-2445.

[77] Zhou Buzhuang, Yang Shengqiang, Chaojie Wang, et al. The characterization of free radical reaction in coal low-temperature oxidation with different oxygen concentration[J]. Fuel, 2019, 262:116524.

[78] Zhang Yutao , Zhang Yuanbo , Li Yaqing , et al. Heat Effects and Kinetics of Coal Spontaneous Combustion at Various Oxygen Contents[J]. Energy, 2021, 234: 121299.

[79] 邓军,杨俊义,张玉涛,等.贫氧条件下煤自燃特性的热重-红外实验研究[J].煤矿安全,2017,48(04):24-28.

[80] 李青蔚. 煤贫氧氧化热动力过程基础研究[D]. 西安:西安科技大学,2018.

[81] Liu Y., Wang C., Che D.. Ignition and Kinetics Analysis of Coal Combustion in Low Oxygen Concentration[J]. Energy Sources, 2012, 34(9-12):810-819.

[82] Xiao Yang, Li Qingwei, Deng Jun, et al. Experimental study on the corresponding relationship between the index gases and critical temperature for coal spontaneous combustion [J] Journal of Thermal Analysis and Calorimetry, 2017, 127: 1009–1017.

[83] 苏贺涛,宋小林,史波波.氧体积分数与煤低温氧化动力学参数的相关性研究[J].煤炭工程,2015,47(11):120-123.

[84] 陈龙,张嬿妮.氧气浓度对煤低温氧化热效应影响规律研究[J].中国安全生产科学技术,2020,16(06):49-54.

[85] Michaela, Perdochova, Katerina, et al. The influence of oxygen concentration on the composition of gaseous products occurring during the self-heating of coal and wood sawdust[J]. Process Safety & Environmental Protection, 2015.

[86] 卢国斌,张福革,郭晓阳.贫氧环境煤燃烧链烃生成规律试验研究[J].洁净煤技术,2018,24(03):75-80.

[87] 徐永亮,宋志鹏,王少坤,等.贫氧环境对煤低温氧化特性影响研究[J].中国安全生产科学技术, 2016, 12(11): 82–87.

[88] Manabendra Saha, Bassam B. Dally, Alfonso Chinnici,, et al. Effect of co-flow oxygen concentration on the MILD combustion of pulverised coal[J]. Fuel Processing Technology, 2019, 193:7-18.

[89] Morgan J. Hurley, Daniel T. Gottuk, John R. Hall Jr., et al. SFPE Handbook of Fire Protection Engineering [M]. New York: Springer,2016.

[90] 黄鑫炎,林少润,刘乃安.林火中的阴燃现象:研究前沿与展望[J].工程热物理学报,2021,42(02):512-528.

[91] Glenn B Stracher, Tammy P Taylor. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology, 2004, 59(1/2):7-17.

[92] Mishra R K, Bahuguna P P, Singh V K. Detection of coal mine fire in Jharia Coal Field using Landsat-7 ETM+ data[J]. International Journal of Coal Geology, 2011, 86(1):73-78.

[93] 亓冠圣,李敏,杨虎胜,等.煤堆水平阴燃传播特性试验研究[J].中国安全科学学报,2018,28(04):47-52.

[94] He Fang, Behrendt Frank. Comparison of Natural Upward and Downward Smoldering Using the Volume Reaction Method[J]. Energy & Fuels, 2009, 23(6):5813-5820.

[95] 陈海翔. 生物质热解的物理化学模型与分析方法研究[D].中国科学技术大学,2006.

[96] Ohlemiller T J, Bellan J, Rogers F. A model of smoldering combustion applied to flexible polyurethane foams[J]. Combustion and Flame, 1979, 36: 197-215.

[97] Hadden M. Rory, Rein Guillermo, Belcher M. Claire. Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2547-2553.

[98] Song Zeyang, Fan Haoran, Jiang Jiajia, et al. Insight into effects of pore diffusion on smoldering kinetics of coal using a 4-step chemical reaction model[J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 312-319.

[99] Huang Xinyan, Rein Guillermo. Smouldering combustion of peat in wildfires: Inverse modelling of the drying and the thermal and oxidative decomposition kinetics[J]. Combustion & Flame, 2014, 161(6):1633-1644.

[100] Huang Xinyan, Rein Guillermo. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena[J]. Bioresource Technology, 2016, 207:409-421.

[101] Dodd A B, Lautenberger C, Fernandez-Pello A C. Numerical examination of two-dimensional smolder structure in polyurethane foam[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2497-2504.

[102] Liyang Ma, Lan Zhang, Deming Wang, et al. Pore structure evolution during lean-oxygen combustion of pyrolyzed residual from low-rank coal and its effect on internal oxygen diffusion mechanism[J]. Fuel, 2022, 319: 123850.

[103] 卢占斌,董永.正向阴燃波的结构和稳定性[J].工程热物理学报,2011,32(03):521-524.

[104] 路长, 余明高. 阴燃火灾学[M]. 长春:吉林人民出版社, 2009.

[105] 黄万齐,唐一博,郭倩,等.固液热阻对无烟煤阴燃蔓延特性影响实验研究[J].燃烧科学与技术,2022,28(05):591-598.

[106] Huang Xinyan, Rein Guillermo. Computational study of critical moisture and depth of burn in peat fires[J]. International Journal of Wildland Fire, 2015, 24(6):798.

[107] 王文才,王瑞智,贺媛,等.褐煤阴燃转化为焰火燃烧的试验研究[J].煤炭科学技术,2010,38(04):45-47+51.

[108] 尹赛男,单延龙,宋光辉,等.不同粒径腐殖质火垂直燃烧特征研究[J].中南林业科技大学学报,2019,39(10):95-101.

[109] 余明高,孟牒,路长,等.聚氨酯泡沫材料密度对阴燃及向明火转化过程的影响[J].中南大学学报(自然科学版),2012,43(05):1864-1870.

[110] 路长,李芳,谢艳鹏.排烟条件对聚氨酯泡沫材料阴燃传播的影响[J].中南大学学报(自然科学版),2014,45(11):4006-4011.

[111] 亓冠圣,杨雪花,张小翌,等.煤火竖直正向阴燃特性研究[J].煤矿安全,2018,49(11):54-58.

[112] 杨玖玲. 泥炭阴燃及阴燃气体生成规律的实验与机理研究[D].中国科学技术大学,2017.

[113] Qi Guansheng, Lu Wei, Qi Xuyao, et al. Differences in smoldering characteristics of coal piles with different smoldering propagation directions[J]. Fire Safety Journal, 2018, 102(DEC.):77-82.

[114] 黄万齐,唐一博,王俊峰,等.粒径对地下煤炭正向阴燃蔓延速率影响试验研究[J].矿业研究与开发,2022,42(06):90-97.

[115] 者香,赵伟涛,陈海翔,等.泥炭粒径对阴燃蔓延速率影响的实验研究[J].火灾科学,2014,23(03):129-135.

[116] Thomas J. Ohlemiller. Forced smolder propagation and the transition to flaming in cellulosic insulation[J]. Combustion & Flame, 1990, 81(3-4):354-365.

[117] Ratu Hadianti Putri, Fadhilah Fitriani, Sherly Veronica, et al. Effect of air flow velocity in smoldering combustion with opposed propagation on cellulosic material[J]. Procedia engineering, 2017, 170: 528-535.

[118] 李劲松,李君,杨轶楠.不同通风条件下的煤颗粒堆积床阴燃传播特性[J].燃烧科学与技术,2021,27(05):545-552.

[119] 张志刚. 仓储环境中棉花典型热灾害与阴燃蔓延特性研究[D].中国科学技术大学,2020.

[120] Peng Lei, Lu Chang, Zhou Jianjun, et al. Smoldering combustion of horizontally oriented polyurethane foam with controlled air supply[J]. Fire Safety Science, 2005, 8:693-704.

[121] Wang J.H, Chao C.Y.H, Kong Wenjun. Experimental study and asymptotic analysis of horizontally forced forward smoldering combustion[J]. Combustion & Flame, 2003, 135(4):405-419.

[122] Yang Jiuling, Liu Naian, Chen Haixiang, et al. Effects of atmospheric oxygen on horizontal peat smoldering fires: Experimental and numerical study[J]. Proceedings of the Combustion Institute, 2019, 37(3): 4063-4071.

[123] Bjarne C. Hagen, Vidar Frette, Gisle Kleppe, et al. Transition from smoldering to flaming fire in short cotton samples with asymmetrical boundary conditions[J]. Fire Safety Journal, 2015, 71: 69-78.

[124] Roberta A. Hartford. Smoldering combustion limits in peat as influenced by moisture mineral content and organic bulk density[J]. 1993.

[125] Hungerford R D, Frandsen W H, Ryan K C. Ignition and burning characteristics of organic soils[C]. Tall Timbers Fire Ecology Conference. 1995, 19: 78-91.

[126] Rein Guillermo, Cleaver Natalie, Ashton Clare, et al. The severity of smouldering peat fires and damage to the forest soil[J]. Catena, 2008, 74(3): 304-309.

[127] 孙文策,解茂昭,张明阁,等.水平燃料床阴燃的传播及其向明火转捩的实验研究[J].火灾科学,1995(S1):23-29.

[128] Frandse H. William. Burning rate of smoldering peat[J]. Northwest science., 1991, 65(4).

[129] Frandse H. William. Smoldering spread rate: a preliminary estimate[C]. Society of American Foresters, 1991.

[130] 卢景雰. 现代电子顺磁共振波谱学及其应用[M]. 北京大学医学出版社, 2012.

[131] 仲晓星, 王德明, 徐永亮, 等. 煤氧化过程中的自由基变化特性[J]. 煤炭学报, 2010, 35(06):960-963.

[132] Zhang Yutao, Zhang Yuanbo, Li Yaqing, et al. Low-temperature oxidation characteristics of coals at the methane-containing atmosphere[J]. Journal of Thermal Analysis and Calorimetry, 2021: 1-11.

[133] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2022.

[134] 张明乾,李宗翔,杨志斌,等.断层构造对煤结构及氧化自燃特性的影响[J/OL].煤炭学报:1-9[2023-04-05].

[135] 王德明. 煤氧化动力学理论及应用[M]. 北京: 科学出版社, 2012.

[136] Niu Zhiyuan, Liu Guijian, Yin Hao, et al. In-situ FTIR study of reaction mechanism and chemical kinetics of a Xundian lignite during non-isothermal low temperature pyrolysis[J]. Energy Conversion and Management, 2016, 124: 180-188.

[137] Zhang Guanglei, Ranjith P. G., Li Zhongsheng, et al. Application of synchrotron ATR-FTIR microspectroscopy for chemical characterization of bituminous coals treated with supercritical CO2[J]. Fuel, 2021, 296: 120639.

[138] Biao Hu, Yuanping Cheng, Zhejun Pan. Classification methods of pore structures in coal: A review and new insight[J]. Gas Science and Engineering, 2023: 204876.

[139] Zhao Yixin, Liu Shimin, Elsworth Derek, et al. Pore structure characterization of coal by synchrotron small-angle X-ray scattering and transmission electron microscopy[J]. Energy & Fuels, 2014, 28(6): 3704-3711.

[140] Haijiao Fu, Xiangzeng Wang, Lixia Zhang, et al. Investigation of the factors that control the development of pore structure in lacustrine shale: A case study of block X in the Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1422-1432.

[141] 汤宗情. 煤自燃过程中孔隙演化机制及其对多元气体吸附特性的影响[D].中国矿业大学,2020.

[142] 刘淑敏. 液氮冷浸对煤体微观结构演化及吸附变形特性影响的实验研究[D].重庆大学,2021

[143] Mustafa Abunowara, Suriati Sufian, Mohamad Azmi Bustam, et al. Experimental measurements of carbon dioxide, methane and nitrogen high-pressure adsorption properties onto Malaysian coals under various conditions[J]. Energy, 2020, 210: 118575.

[144] Yi Minghao, Cheng Yuanping, Wang Chenghao, et al. Effects of composition changes of coal treated with hydrochloric acid on pore structure and fractal characteristics[J]. Fuel, 2021, 294: 120506.

[145] 李祥春,李忠备,张良,等.不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J].煤炭学报,2019,44(S1):142-156.

[146] 林柏泉,钟璐斌,张祥良,等.高压电脉冲对烟煤微观孔隙结构的影响作用[J].采矿与安全工程学报,2022,39(02):380-386.

[147] 秦雷,王平,翟成,等.基于氮气吸附法和压汞法低温液氮冻结煤体分形特征研究[J].采矿与安全工程学报,2023,40(01):184-193+203.

[148] 中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会. GB T 6425-2008 热分析术语[S]. 北京:中国标准出版社,2008.

[149] 赵伟涛. 森林泥炭热解动力学特性和阴燃蔓延规律研究[D].中国科学技术大学,2014.

[150] 冯望生,房艳,徐继香等.高斯多峰拟合在径向分布函数中的应用[J].物理化学学报,2008(03):497-501.

[151] Yan Jingchong, Jiao Hanren, Li Zhanku, et al. Kinetic analysis and modeling of coal pyrolysis with model-free methods[J]. Fuel, 2019, 241: 382-391.

[152] Deng Jun, Li Bei, Xiao Yang, et al. Combustion properties of coal gangue using thermogravimetry–Fourier transform infrared spectroscopy[J]. Applied Thermal Engineering, 2017, 116: 244-252.

[153] Deng Jun, Yang Yi, Zhang Yanni, et al. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion[J]. Energy, 2018, 160: 1174-1185.

[154] Nicolas Sbirrazzuoli. Determination of pre-exponential factors and of the mathematical functions f (α) or G (α) that describe the reaction mechanism in a model-free way[J]. Thermochimica Acta, 2013, 564: 59-69.

[155] Chen Chunxiang, Ma Xiaoqian, He Yao. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA[J]. Bioresource technology, 2012, 117: 264-273.

[156] 王连聪. 煤氧化自燃临界转变特性研究[D].中国科学技术大学,2021.

[157] 仇逊超. 机器视觉和近红外光谱对红松籽品质检测方法的研究[D].东北林业大学,2017.

[158] Sun Shaolong, Qiao Han, Wei Yunjie, et al. A new dynamic integrated approach for wind speed forecasting[J]. Applied energy, 2017, 197: 151-162.

[159] Wang Zhiwei, Lei Tingzhou, Chang Xia, et al. Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: a study using cornstalks in China[J]. Applied Energy, 2015, 157: 523-532.

[160] Lin Chiunsin, Liou Fenmay, Huang Chihpin. Grey forecasting model for CO2 emissions: A Taiwan study[J]. Applied energy, 2011, 88(11): 3816-3820.

[161] Chiang KoTa, Chang Fuping. Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis[J]. Journal of Materials Processing Technology, 2006, 180(1-3): 96-101.

[162] Lv Yumin, Tang Dazhen, Xu Hao, et al. Production characteristics and the key factors in high-rank coalbed methane fields: A case study on the Fanzhuang Block, Southern Qinshui Basin, China[J]. International Journal of Coal Geology, 2012, 96: 93-108.

[163] Li Pengpeng, Zhou Shixin, Zhang Xiaodong, et al. Analysis on correlation between nanopores and coal compositions during thermal maturation process[J]. Marine and Petroleum Geology, 2020, 121: 104608.

[164] Ren Shuaijing, Wang Caiping, Xiao Yang, Thermal properties of coal during low temperature oxidation using a grey correlation method [J]. Fuel 2020;260:116287.

[165] 杨锴,杨胜强,许芹.不同粒径原煤、初次氧化煤与二次氧化煤氧化特性对比分析[J].河南理工大学学报(自然科学版),2022,41(01):17-22.

[166] 褚廷湘,韩学锋,余明高.承压破碎煤体低温氧化特征与宏观致因分析[J].中国安全科学学报,2019,29(09):77-83..

[167] GB/T 23561. 12—2010 煤和岩石物理力学性质测定方法第12部分:煤的坚固性系数测定方法[S].

[168] 刘轶康,牛会永,鲁义等.防火墙漏风对矿井封闭火区气体运移的影响[J].化工矿物与加工,2020,49(10):46-49.

[169] 郭艳飞,郝殿,李学臣等.沿空留巷工作面“一进两回”通风方式下采空区漏风规律研究[J].矿业安全与环保,2022,49(06):46-51.

[170] 李艳昌,靖泽浩,贾进章.切顶卸压沿空留巷“Y”型通风模式下采空区漏风规律研究[J].自然灾害学报,2022,31(03):184-189.

[171] He Fang, Yi Weiming, Li Yongjun, et al. Effects of fuel properties on the natural downward smoldering of piled biomass powder: Experimental investigation [J]. Biomass and Bioenergy, 2014, 67: 288-296.

[172] 赵婧昱,张永利,邓军,等.影响煤自燃气体产物释放的主要活性官能团[J].工程科学学报,2020,42(09):1139-1148.

[173] 蒋嘉楠. 采空区煤自燃火区封闭前后烟气变化规律研究[D].中国矿业大学,2021.

[174] Jiang Yuan, Zong Peijie, Tian Bin, et al. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 179(JAN.):72-80.

[175] 徐静颖. 典型煤种热解与燃烧过程挥发性有机物生成与排放特性[D].清华大学,2019.

中图分类号:

 TD752.2    

开放日期:

 2026-06-30    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式