- 无标题文档
查看论文信息

题名:

 彬长矿区软岩巷道蠕变失稳灾变机理及防控方法研究    

作者:

 凌志强    

学号:

 17120089002    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿山灾害力学    

导师姓名:

 张天军    

导师单位:

 西安科技大学    

提交日期:

 2024-06-19    

答辩日期:

 2024-05-26    

外文题名:

 Research on the Mechanism of Creep Destabilization Disaster and Prevention Control Methods of Soft Rock Roadway in Binchang Mine Area    

关键词:

 软岩巷道 ; 围岩失稳 ; 加速蠕变模型 ; 孕灾-致灾模型 ; 联合控制方法    

外文关键词:

 Soft rock roadway ; Surrounding rock instability ; Accelerated creep model ; Breeding- causing disaster model ; Joint control method    

摘要:

彬长矿区软岩巷道持续失稳破坏是长期困扰该矿区安全高效生产的重大问题之一。由于彬长矿区软岩赋存水文地质、水化作用及高应力环境等影响因素的特殊性,软岩蠕变现象、机理也表现不同,目前尚缺乏该方向的系统研究,致使从蠕变到巷道孕灾-致灾机理的分析不够充分,无法形成高效的彬长矿区软岩巷道联合控制方法。因此,本研究从彬长矿区软岩巷道失稳破坏的影响因素入手,结合软岩破坏中的力学行为,分析彬长矿区软岩加速蠕变本构关系;基于单元分担原理,构建彬长矿区软岩失稳孕灾-致灾理论模型,阐明软岩巷道蠕变破坏过程中的孕灾-致灾机理,进而形成一套针对彬长矿区软岩巷道失稳破坏的灾害防控方法,并进行工程应用。其主要研究工作如下:
(1)从软岩巷道失稳破坏的主要影响因素入手,测试彬长矿区典型矿井软岩巷道最大主应力的大小和方向,分析地应力场的作用形式,得出彬长矿区的地应力场属于双向不等压形式,最大主应力方向主要为水平方向,受高构造应力环境的影响,巷道变形严重;分析软岩赋存的水文地质环境,开展软岩的破坏强度测试试验,得出软岩强度受含水率的影响特征;通过分析彬长矿区软岩巷道围岩失稳破坏特征,得到影响彬长矿区软岩巷道失稳破坏的主要因素,为彬长矿区软岩蠕变模型建立及控制提供基础。
(2)分析巷道软岩的水化参数特征,利用自主设计的实验系统,开展不同含水率、不同应力水平的软岩变形破坏的蠕变试验,分析从软岩蠕变变形逐渐向失稳破坏过渡过程中的典型加速蠕变现象,建立了适合于彬长矿区的加速蠕变本构方程,并通过室内软岩蠕变试验对该加速蠕变模型的参数进行了测定和求解,并对本构模型进行了参数验证。
(3)从微观角度对巷道破坏与软岩强度的关系展开分析,引入软岩的微单元分担理论,阐明了软岩巷道蠕变失稳的孕灾过程;结合微单元的受力特征,基于邻近单元分担原理,分析软岩致灾的过程,结合软岩失稳破坏的加速蠕变本构关系,建立彬长矿区软岩巷道失稳破坏的孕灾-致灾理论模型,并给出灾害防控主控参量,为软岩巷道稳定性评价及控制提供理论基础。
(4)针对彬长矿区软岩巷道失稳破坏孕灾-致灾的影响因素,基于分担原理的围岩控制方法分析巷道围岩结构的稳定性,提出软岩巷道最大主应力“锚拉-注浆”控制方法;进行松软巷道围岩的全断面注浆改造,复合浆液注浆扩散半径可达0.54~1.12m、固化强度可达16.74MPa,由此,提出适用于软岩巷道的“全壳体”围岩注浆改造控制方法;通过对巷道围岩“全壳体”结构受力进行理论分析,提出了基于分担原理的围岩“全壳体”联合控制方法。
(5)基于围岩“全壳体”联合控制理论,开展彬长矿区典型矿井软岩巷道失稳破坏灾害防控工程实践。分别分析文家坡矿41盘区回风大巷、蒋家河矿ZF202工作面回风巷蠕变特点,设计“锚拉-注浆”与“全壳体”围岩分担改造的联合防治方案,采用数值分析与现场实测的方式,进行了工程响应验证。
通过以上理论与工程实践研究,揭示了彬长矿区软岩巷道蠕变失稳灾变机理,提出了适用于彬长矿区软岩巷道防控方法,解决了长期困扰彬长矿区软岩治理的难题,进一步丰富了软岩巷道围岩变形失稳机理的理论研究,具有重要的工程应用及理论价值。

外文摘要:

Continuous destabilisation of soft rock roadway in Binchang mine is one of the major problems that have long plagued the safe and efficient production of the mine. Due to the special characteristics of the soft rock in Binchang mining area, such as hydrogeology, hydration, expansion stress, and high stress environment, the soft rock creep phenomenon and mechanism are also different, and there is still a lack of systematic research in this direction, resulting in insufficient analysis of the mechanism from creep to the roadway disaster-causing mechanism, and the inability to form a highly efficient joint control method of the soft rock roadway in Binchang mining area. Therefore, this study starts from the influencing factors of destabilisation of soft rock roadway in Binchang mining area, combines the mechanical behaviour of soft rock destruction, analyses the ontological relationship of accelerated creep of soft rock in Binchang mining area; based on the principle of unit sharing, constructs the theoretical model of soft rock destabilisation and disaster-causing, elucidates the disaster-causing mechanism in the process of creep destruction of soft rock roadway, and forms a set of disaster prevention and control methods of destabilisation of soft rock roadway in Binchang mining area, and conducts the engineering work. Then a set of disaster prevention and control methods for the destabilisation of soft rock roadway in Binchang mine area will be formed and applied in engineering. The main research work is as follows:
(1) Starting from the main influencing factors of the destabilising damage of soft rock roadway, we tested the size and direction of the maximum principal stress of the soft rock roadway of typical mines in Binchang mining area, and analysed the action form of the geostress field, and came to the conclusion that the geostress field in Binchang mining area belongs to the form of bi-directional unequal compression, and the direction of the maximum principal stress is mainly in the horizontal direction, which is affected by the environment of high tectonic stress, and the roadway deformation is serious. We analyse the hydrogeological environment where soft rock exists, and carry out the destructive strength test of soft rock, and conclude that the strength of soft rock is influenced by the water content. By analysing the destabilisation and damage characteristics of the surrounding rock in the soft rock roadway in Binchang mining area, the main factors affecting the destabilisation and damage of the soft rock roadway in Binchang mining area are obtained, which provides a basis for the establishment and control of the soft rock creep model in Binchang mining area.
(2) The characteristics of hydration parameters of roadway soft rock were analyzed, and the creep tests of deformation and failure of soft rock with different water content and different stress levels were carried out by an independently designed experimental system. The typical accelerated creep phenomena during the transition from creep deformation to instability failure of soft rock were analyzed, and the accelerated creep constitutive equation suitable for Binchang mining area was established. The parameters of the accelerated creep model are determined and solved by the indoor soft rock creep test, and the parameters of the constitutive model are verified.
(3) The relationship between roadway failure and soft rock strength is analyzed from the microscopic point of view, and the micro-unit sharing theory of soft rock is introduced to clarify the disaster inducing process of creep instability of soft rock roadway. Combined with the stress characteristics of microunits, the disaster-induced process of soft rock was analyzed based on the principle of sharing of adjacent units, and combined with the accelerated creep constitutive relationship of the instability failure of soft rock, a disaster-induced theoretical model of the instability failure of soft rock roadway in Binchang Mining area was established, and the main control parameters of disaster prevention and control were given, providing a theoretical basis for the stability evaluation and control of soft rock roadway.
(4) Aiming at the disaster-inducing factors of the failure of soft rock roadway in Binchang Mining area, the surrounding rock control method based on the sharing principle analyzes the stability of the roadway surrounding rock structure, and puts forward the "anchor-grouting" control method for the maximum principal stress of soft rock roadway. The full section grouting reform of soft roadway surrounding rock is carried out, the diffusion radius of composite slurry grouting can reach 0.54~1.12m, and the curing strength can reach 16.74MPa. Therefore, the control method of "full shell" surrounding rock grouting reform suitable for soft rock roadway is put forward. Based on the theoretical analysis of the stress of "full shell" structure of roadway surrounding rock, the joint control method of "full shell" surrounding rock based on the principle of sharing is put forward.
(5) Based on the combined control theory of surrounding rock "full hull", the prevention and control engineering of typical soft rock roadway failure in Binchang Mining area is carried out. The creep characteristics of return air roadway in 41 Pan area of Wenjiapo Mine and ZF202 working face of Jiangjiahe Mine are analyzed respectively. The joint control scheme of "anchor-grouting" and "full shell" surrounding rock sharing transformation is designed. The engineering response is verified by numerical analysis and field measurement.
Through the above theoretical and engineering practice research, the creep instability disaster mechanism of soft rock roadway in Binchang Mining area is revealed, and the prevention and control method suitable for soft rock roadway in Binchang Mining area is proposed, which solves the problem of soft rock governance in Binchang mining area for a long time, and further enricheds the theoretical research on the deformation and instability mechanism of the surrounding rock of soft rock roadway, which has important engineering application and theoretical value.

参考文献:

[ ] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报, 2021, 40(1): 1-30.

[ ] 李树刚, 张天军. 高瓦斯矿煤岩力学性态及非线性失稳机理[M]. 北京:科学出版社, 2011.

[ ] 刘夕才, 林韵梅. 软岩巷道弹塑性变形的理论分析[J]. 岩土力学, 1994, 17(2): 27-35.

[ ] 康红普, 王金华, 林健. 煤矿巷道锚杆支护应用实例分析[J]. 岩石力学与工程学报, 2010, 29(4): 649-664.

[ ] 王普, 张百胜, 王磊, 等. 膨胀软岩顶板回采巷道支护技术研究[J]. 采矿与岩层控制工程学报, 2020, 2(2): 57-65.

[ ] 杨晓杰, 庞杰文, 娄浩朋. 亭南煤矿强膨胀性软岩巷道底臌变形力学机制[J]. 煤炭学报, 2015, 40(8): 1761-1767.

[ ] 张天军. 富含瓦斯煤岩体采掘失稳非线性力学机理研究[D]. 西安: 西安科技大学, 2009.

[ ] 袁亮, 薛俊华, 刘泉声, 等. 煤矿深部岩巷围岩控制理论与支护技术[J]. 煤炭学报, 2011, 36(4): 535-543.

[ ] 谢文兵, 荆升国, 王涛, 等. U型钢支架结构稳定性及其控制技术[J].岩石力学与工程学报, 2010, 29(S2): 3743-3748.

[ ] Zhang T., Ling Z., Pang M., et al. Experimental Study of Creep Acoustic Emission Characteristics of Coal Bodies around Boreholes under Different Moisture Contents[J]. Energies, 2021, 14: 1-13.

[ ] 何满潮, 景海河, 孙晓明. 软岩工程地质力学研究进展[J].工程地质学报, 2000(1): 46-62.

[ ] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制. 第2版[M]. 徐州: 中国矿业大学出版社, 2010.

[ ] 蔡美峰. 深部开采围岩稳定性与岩层控制关键理论和技术[J]. 采矿与岩层控制工程学报, 2020, 2(3): 5-13.

[ ] 王旭锋, 陈旭阳, 王纪尧, 等. 平顶山矿区深部软岩巷道围岩蠕变破坏机制及控制研究[J/OL]. 采矿与安全工程学报, 2022(9): 1-12.

[ ] 王连国, 李明远, 王学知. 深部高应力极软岩巷道锚注支护技术研究[J]. 岩石力学与工程学报, 2005(16): 2889-2893.

[ ] 康红普, 姜鹏飞, 杨建威, 等. 煤矿千米深井巷道松软煤体高压锚注-喷浆协同控制技术[J]. 煤炭学报,2021, 46(3): 747-762.

[ ] 王方田, 屈鸿飞, 张洋. 深井煤巷帮部围岩剪切滑块理论及防控策略研究[J/OL]. 煤炭学报. 2022, 9:1-11.

[ ] 陈盼, 谷拴成. 高地应力下巷道底板拱结构分析及其应用[J]. 西安科技大学学报, 2022, 42(4): 701-708.

[ ] 黄庆享, 刘玉卫. 巷道围岩支护的极限自稳平衡拱理论[J]. 采矿与安全工程学报, 2014, 31(3): 354-358.

[ ] 王金平, 周宏, 黎劲东, 等. 复合软岩淋水顶板及底鼓巷道锚注一体化支护技术研究[J].煤炭技术, 2022, 41(7): 47-50.

[ ] 王凯兴, 潘一山. 冲击地压矿井的围岩与支护统一吸能防冲理论[J]. 岩土力学, 2015, 36(9): 2585-2590.

[ ] 刘学伟, 刘泉声, 汪志强, 等. 基于格栅拱架的软岩巷道分步联合控制技术研究[J]. 岩土力学, 2022, 43(S1): 469-478.

[ ] 张晓锋. 煤矿软岩巷道掘进支护技术研究[J]. 内蒙古煤炭经济, 2022(7): 10-12.

[ ] Yu W, Li K, Jing Z, et al. Deformation characteristics and control factors of the surrounding rock in the deep buried soft rock roadway under the influence of mining. 2020(1): 202016.

[ ] 刘学伟, 刘泉声, 汪志强, 等. 基于格栅拱架的软岩巷道分步联合控制技术研究[J]. 岩土力学, 2022, 43(S1): 469-478.

[ ] 陈庆港, 左宇军, 林健云, 等. 互层岩体中巷道顶板应力分布及破坏特征研究[J]. 地下空间与工程学报, 2022, 18(2): 513-521.

[ ] 邵泽渠. 昊锦塬煤矿过软岩破碎带施工技术[J]. 能源技术与管理, 2022, 47(2): 78-80.

[ ] 刘振江. 动压影响底板巷道失稳特征及控制技术[J]. 煤炭技术, 2022, 41(4): 40-43.

[ ] 何满潮. 软岩巷道工程概论[M]. 徐州: 中国矿业大学出版社, 1993.

[ ] 董方庭. 巷道围岩松动圈支护理论及应用技术[M]. 北京: 煤炭工业出版社, 2001.

[ ] Feng X T, Haimson B, Li X, et al. ISRM Suggested Method: Determining Deformation and Failure Characteristics of Rocks Subjected to True Triaxial Compression[J]. Rock Mechanics and Rock Engineering, 2019(8): 201920.

[ ] 李刚. 水岩耦合作用下软岩巷道变形机理及其控制研究.[D]. 沈阳: 辽宁工程技术大学, 2009.

[ ] Xie J, Gao M, Zhang R, et al. Experimental investigation on the anisotropic fractal characteristics of the rock fracture surface and its application on the fluid flow description[J]. Journal of Petroleum Science and Engineering, 2020, 191(3-4):107190.

[ ] 方祖烈. 拉压域特征及主次承载区的维护理论[M]. 世纪之交软岩工程技术现状与展望. 北京: 煤炭工业出版社, 1999.

[ ] Yang X, Liu C, Sun H, et al. Research on the Deformation Mechanism and DirectionalBlasting Roof Cutting Control Measures of a Deep Buried High-Stress Roadway[J]. Shock andVibration, 2020, 2020(6): 1-14.

[ ] Wang C, Liu L, Elmo D, et al. Improved energy balance theory applied to roadway supportdesign in deep mining[J]. Journal of Geophysics and Engineering, 2018, 15(4): 1588-1601.

[ ] Kong X, Chen X, Tang C, et al. Study on Large Deformation Control Technology andEngineering Application of Tunnel with High Ground Stress and Weak Broken SurroundingRock[J]. Structural Engineering International, 2020: 1-9.

[ ] Han G, Meng B, Jing H, et al. Field experimental study on the broken rock zone ofsurrounding rock and the rock borehole shear tests of the large deformation tunnel[J]. Advances in Materials Science and Engineering, 2019: 1753518.

[ ] 荆升国. 高应力破碎软岩巷道棚-索协同支护围岩控制机理研究[D]. 徐州: 中国矿业大学, 2009.

[ ] 马明杰, 杨新安, 谢文兵, 等. 可缩性U型钢支架承载性能足尺试验研究[J]. 中南大学学报 (自然科学版), 2023, 54(1): 280-291.

[ ] 朱乐章, 黄北海, 丁可. 极松软易破碎综放面巷道“降钻锚注平”支护技术[J]. 煤炭工程, 2023, 55(3): 47-51.

[ ] Yang S Q, Chen M, Jing H W, et al. A case study on large deformation failure mechanics mof deep soft rock roadway in Xin'An coal mine, China [J]. Engineering Geology, 2016, 20(8): 217.

[ ] 伍国军, 陈卫忠, 谭贤君, 等. 饱和岩体渗透性动态演化对引水隧洞稳定性的影响研究[J] .岩石力学与工程学报, 2020, 39(11): 2172-2182.

[ ] 孟庆彬, 王锐, 韩立军, 等. 多中段联合开采围岩扰动效应及采矿进路支护技术[J]. 中南大学学报(自然科学版), 2023, 54(3): 930-943.

[ ] 彬庆山, 乔卫国, 林登阁, 等. 深部高应力膨胀性软岩泵房支护技术[J]. 金属矿山, 2010, 8: 11-14.

[ ] 乔卫国, 韦九洲, 林登阁, 等. 侏罗白垩纪极弱胶结软岩巷道变形破坏机理分析[J]. 山东科技大学学报(自然科学版), 2013, 4: 1-6.

[ ] 李骏, 乔卫国, 林登阁. 深井厚冲积层软岩硐室稳定性控制[J]. 煤炭技术, 2017, 36(4): 49-51.

[ ] 孙晓明, 姜铭, 王新波, 等. 万福煤矿不同含水率砂岩蠕变力学特性实验研究[J/OL]. 岩土力学, 2023, 21(4): 1-13.

[ ] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报, 2021, 40(1): 1-30.

[ ] 高延法, 王波, 王军, 等. 深井软岩巷道钢管混凝土支护结构性能试验及应用[J]. 岩石力学与工程学报, 2010, 29(S1): 2604-2609.

[ ] 王波. 软岩巷道变形机理分析与钢管混凝土支架支护技术研究[D]. 北京: 中国矿业大学(北京), 2009.

[ ] 杨米加, 陈明雄, 贺永年. 注浆理论的研究现状及发展方向[J]. 岩石力学与工程学报, 2001, 20(6): 839-839.

[ ] 余伟健, 高谦, 朱川曲. 深部软弱围岩叠加拱承载体强度理论及应用研究[J]. 岩石力学与工程学报, 2010, 29(10): 2134-2142.

[ ] 李海燕, 张红军, 李术才, 等. 新型高预应力锚索及锚注联合支护技术研究与应用[J]. 煤炭学报, 2017, 42(3): 582-589.

[ ] 张明建, 镐振, 郜进海, 等. 不同水平应力作用下巷道围岩破坏特征研究[J]. 煤炭科学技术, 2014, 42(3): 4-7.

[ ] Yin Z, Liu J, Sun W, et al. Study on the “Pressure Relief and Yielding Support” JointPrevention and Control Technology for the Weak Impact Roadway in the Extremely ThickCoal Seam[J]. Advances in Civil Engineering, 2021: 6635350.

[ ] Xie S, Pan H, Zeng J, et al. A case study on control technology of surrounding rock of a largesection chamber under a 1200m deep goaf in Xingdong coal mine, China[J]. EngineeringFailure Analysis, 2019, 104: 112-125.

[ ] 康永水, 耿志, 刘泉声, 等. 我国软岩大变形灾害控制技术与方法研究进展[J]. 岩土力学, 2022, 43(8): 2035-2059.

[ ] Huder J, Amberg G. Quellen in mergel, opalinuston und anhydrit[J]. Schweizerische Bauzeitung. 1970,88(43): 975-980.

[ ] Komomik A, Zeitlen J G. Laboratory Determination of Lateral and Vertical Stresses in Compacted Swelling Clay[J]. ] Mater. 1970, 5(1): 108-128.

[ ] Doostmohammadi R, Mutschler T, Osan C. Modeling the complex and long term swelling behavior of ar I gillaceous rocks[J] Mining Science and Technology (China). 2011, 21(5): 655-659.

[ ] Doostmohammadi R, Moosavi M, Mutschler T, et al. Influence of cyclic wetting and drying on swelling behavior of mudstone in south west of Iran[J]. Environmental Geology. 2009, 58(5): 999-1009.

[ ] Vergara M R, Triantafyllidis T. Swelling behavior of volcanic rocks under cyclic wetting and drying[J].International Journal of Rock Mechanics and Mining Sciences. 2015, 80: 231-240.

[ ] Vergara M R, Balthasar K, Triantafyllidis T. Comparison of experimental results in a testing device for swelling rocks[J]. International Journal of Rock Mechanics and Mining Sciences. 2014, 66: 177-180.

[ ] Zhang Z, Gao W, Chen Q, et al. A Lateral Unconfined Swelling Test for Swelling Rocks[J]. Advances in Materials Science and Engineering. 2018, 2018: 1-5.

[ ] 刘光廷, 胡昱, 李鹏辉. 软岩遇水软化膨胀特性及其对拱坝的影响[J]. 岩石力学与工程学报. 2006 (9): 1729-1734.

[ ] 刘新荣, 李栋梁, 张梁, 等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报. 2016(7): 1291-1300.

[ ] 姚华彦, 朱大勇, 周玉新, 等. 干湿交替作用后砂岩破裂过程实时观测与分析[J]. 岩土力学. 2013 , 34(2): 329-336.

[ ] 季明, 高峰, 高亚楠, 等. 灰质泥岩遇水膨胀的时间效应研究[J]. 中国矿业大学学报. 2010(4): 511-515.

[ ] 王幼麟. 开展软岩工程性质的微观研究[J]. 岩石力学与工程学报. 1989(1): 94-96.

[ ] 朱建明, 任天贵, 高谦, 等. 小官庄铁矿软岩微观特性的实验室研究[J]. 中国矿业. 1997(4): 56-60.

[ ] Seedsman R. The behaviour of clay shales in water[J]. 1986, 23(1): 18-22.

[ ] 傅学敏, 潘清莲. 软岩的膨胀规律和膨胀机理[J]. 煤炭学报. 1990(2): 31-38.

[ ] 茅献彪, 缪协兴, 陈智纯. 膨胀岩特性的细观力学试验研究[J]. 矿山压力与顶板管理. 1995(1): 60-63.

[ ] 朱珍德, 杨永杰, 蒋志坚, 等. 用数字图像处理技术进行膨胀红砂岩细观结构动态劣变特征研究[J]. 岩石力学与工程学报. 2007(10): 2007-2013.

[ ] 陈宗基, 闻萱梅. 膨胀岩与隧洞稳定[J]. 岩石力学与工程学报. 1983(1): 1-10.

[ ] 左清军, 吴立, 袁青, 等. 软板岩膨胀特性试验及微观机制分析[J]. 岩土力学. 2014(4): 986-990.

[ ] Wang L L, Bornert M, Yang D S, et al. Microstructural insight into the nonlinear swelling of argillaceousrocks[J]. Engineering Geology. 2015, 193: 435-444.

[ ] 王军, 何淼, 汪中卫. 膨胀砂岩的抗剪强度与含水量的关系[J]. 土木工程学报, 2006(1): 98-102.

[ ] 朱珍德, 邢福东, 刘汉龙, 等. 红砂岩膨胀力学特性试验研究[J]. 岩石力学与工程学报, 2005(4): 596-600.

[ ] W. G. Holtz, J.J. Gibbs, Engineering Properties of Expansive Clays [J]. Proc. Am. Soc. Civ. Eng. 1956, 121: 641-677.

[ ] 王凯, 刁心宏. 膨胀岩湿度应力场本构模型二次开发研究[J]. 岩石力学与工程学报, 2015, 34(S2): 3781-3792.

[ ] 谭罗荣, 孔令伟. 膨胀土膨胀特性的变化规律研究[J]. 岩土力学, 2004(10): 1555- 1559.

[ ] 王炳忠, 王起才, 张戎令, 等. 低黏土矿物含量原状泥岩膨胀力试验研究[J].水利水运工程学报, 2018, 168(2): 67-73.

[ ] 欧孝夺, 唐迎春, 钟子文, 等. 重塑膨胀岩土微变形条件下膨胀力试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 1067-1072.

[ ] Zhang C. L, Rothfuchs T, Jockwer N, et al.Results of laboratory investigations on clays[C]. In: Proceedings of the International Conference on Radioactive Waste Disposal-DisTec 2004. Berlin: 2004: 26-28.

[ ] Zhang C. L, Rothfuchs T. Moisture effects on argillaceous rocks[C]. In: Schanz T ed. Proceedings of the 2nd International Conference of Mechanics of Unsaturated Soils, Springer Proceedings in Physics 112. Berlin-Heidelberg: Springer-Verlag, 2007, 319- 326.

[ ] C. L. Zhang, K. Wieczorek, M. L. Xie.Swelling experiments on mudstones[J]. Journal of Rock Mechanics and Geotechnical Engineering. 2010, 2 (1):44-51.

[ ] 康红普, 王金华等. 煤巷锚杆支护理论与成套技术[M]. 北京: 煤炭工业出版社, 2007.

[ ] Jianxi Gao. Research on orthogonal experimental design technology based on anchor mesh cable coupling support[J]. International Journal of Frontiers in Engineering Technology, 2023, 5(1): 397.

[ ] 桑伟冲, 乔西如. 高应力软岩巷道锚注加固技术研究与应用[J]. 山东煤炭科技, 2023, 41(1): 4.

[ ] 陈祖煜. 关于边坡稳定性的三维极限平衡分析方法及应用的讨论[J]. 岩土工程学报, 2001, 23(1): 127-129.

[ ] 于学馥. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社, 1983.

[ ] 袁文伯, 陈进. 软化岩层中巷道的塑性区与破碎区分析[J]. 煤炭学报, 1986(3): 77-85.

[ ] 贾蓬, 唐春安, 王述红等. 巷道层状岩层顶板破坏机理[J]. 煤炭学报, 2006, 31(1): 11-15.

[ ] 张慧君. 高应力软岩巷道围岩变形机理及支护技术研究[J]. 山西冶金, 2022, 45(8): 171-172.

[ ] 姜耀东, 刘文岗, 赵毅鑫等. 开滦矿区深部开采中巷道围岩稳定性研究[J]. 岩石力学与工程学报, 2005, 24(11): 1857-1861.

[ ] WJ. Gale. Strata Control Dtillising Rock Reinforcement Techniques and Stress Control Methodsin Australia Coal Mines[J] . Mining Engineer, 1991(1): 91039.

[ ] 郑建伟, 管增伦, 鞠文君, 等. 三向应力下支护应力对圆形巷道围岩应力分布规律的影响[J/OL].采矿与岩层控制工程学报, 2024, 7(6): 1-10.

[ ] Hou Z, He Y, Zhang Y. Key technique to compositely supporting theroadway driven along previous goaf with bolts, bara and chainmeshes under complex condition[J]. Journal of Coal Science and Engineering(China), 1995, 7: 62-66.

[ ] 张华磊. 采场底板应力传播规律及其对底板巷道稳定性影响研究[D]. 徐州: 中国矿业大学, 2011.

[ ] 康红普, 姜鹏飞, 高富强, 等. 掘进工作面围岩稳定性分析及快速成巷技术途径[J]. 煤炭学报, 2021, 46(7): 2023-2045.

[ ] 李明远, 王连国, 易恭蝤等. 软岩巷道锚注支护理论与实践[M]. 北京: 煤炭工业出版社, 2001.

[ ] 乔志, 孙华清, 王聪, 等. 顶煤破坏区采动影响下巷道变形机理与控制技术[J]. 煤炭工程, 2022, 54(6): 95-100.

[ ] 蒋斌松, 张强, 贺永年等. 深部圆形巷道破裂围岩的弹塑性分析[J]. 岩石力学与工程学报, 2007, 26(5): 982-986.

[ ] 高瑞, 吴志国, 宁掌玄, 等. 深部埋深巷道变形特征数值模拟研究[J]. 山西焦煤科技, 2023, 47(1): 16-19.

[ ] 卢爱红, 茅献彪, 彭维红. 软岩巷道的粘弹性分析[J]. 采矿与安全工程学报, 2008, 25(3): 313-317.

[ ] 李忠华, 官福海, 潘一山. 基于损伤理论的圆形巷道围岩应力场分析[J]. 岩土力学, 2004, 25(S): 160-163.

[ ] Yang Xiaojie, Ming Wei, Zhang Weiran, et al. Support on deformation failure of layered soft rock tunnel under asymmetric stress[J]. Rock Mechanics and Rock Engineering, 2022, 55(12).

[ ] 谢和平, 刘夕才, 王金安. 关于21世纪岩石力学发展战略的思考[J]. 岩土工程学报, 1996(4): 101-105.

[ ] 刘夕才, 林韵梅. 软岩扩容性对巷道围岩特性曲线的影响[J]. 煤炭学报, 1996, 21(6): 596-601.

[ ] 胡南燕, 刘兰心, 黄建彬, 等. 深部巷道围岩分区破裂化的三维光弹试验[J]. 有色金属工程, 2023, 13(3): 102-109.

[ ] 蒋斌松, 杨乐, 时林坡. 基于Hoek-Brown准则的破裂围岩应力分析[J]. 固体力学学报, 2011(32)专辑: 300-305.

[ ] 孙福江, 宋平, 庞新坤. 深井高应力软岩巷道底鼓力学机理及控制技术研究[J]. 煤炭工程, 2024, 56(3): 45-50.

[ ] Mingkun Pang, Hongyu Pan, Bingnan Ji, et al. Experimental investigation of flow regime transition characteristics of fractured coal bodies around gas extraction boreholes [J]. Energy, 2023, 126758.

[ ] 卢建宇. 上海庙矿区弱胶结软岩巷道底鼓破坏机制与支护技术研究[D]. 青岛: 山东科技大学, 2020.

[ ] 陈晓轩, 李彦斌, 李立功. 高应力软岩巷道破坏特征及最佳支护技术研究[J].煤炭技术, 2024, 43(3): 36-41.

[ ] 张良, 齐庆新, REN Ting, 等. 基于显微CT扫描和统计强度的煤岩损伤破裂特性研究[J/OL]. 煤炭科学技术, 2023,16(4) :1-16.

[ ] Gale W. Strata control utilising rock reinforcement techniques and stress control methods, in Australian coal mines [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 1991, 28(4): 254-352.

[ ] 康红普, 王金华. 煤巷锚杆支护理论与成套技术[M]. 北京: 煤炭工业出版社, 2007.

[ ] 杨强, 王昀, 段宏飞, 等. 基于不平衡力的坚硬顶板破断数值分析[J]. 煤炭学报, 2023, 48(1): 139-149.

[ ] Yang H., Zhang N., Han C., et al. Stability Control of Deep Coal Roadway under the Pressure Relief Effect of Adjacent Roadway with Large Deformation: A Case Study [J]. Sustainability, 2021, 13(8): 4412-4426.

[ ] X. Wu, L. Jiang, X. Xu, et al. Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress [J]. Journal of Central South University, 2021, 28(2): 543-555.

[ ] Peng Kong, Lishuai Jiang, Jinquan Jiang, et al. Numerical Analysis of Roadway Rock-Burst Hazard under Superposed Dynamic and Static Loads[J]. Energies, 2019, 12(19): 3761-3800.

[ ] Wu Hai, Jia Qian, Wang Weijun, et al. Experimental Test on Nonuniform Deformation in the Tilted Strata of a Deep Coal Mine [J]. Sustainability, 2021, 13(23): 13280- 13294.

[ ] 胡宝文, 李长洪, 魏晓明, 等. 基于遗传与序列二次规划算法的复杂巷道断面应力解[J]. 岩石力学与工程学报, 2017, 36(2): 407-419.

[ ] 王宏伟, 张登强, 姜耀东, 等. 巷道围岩破碎区分布特征及其影响因素的数值模拟[J]. 煤炭学报, 2018, 43(S2): 377-384.

[ ] 李家卓. 采场底板围岩应力壳力学特征研究[D]. 合肥: 安徽理工大学, 2015.

[ ] 周辉, 李震, 胡大伟, 等. 岩石空心圆柱扭剪仪[P]. 中国: CN201410343475.0, 2014.

[ ] 周辉, 渠成堃, 王竹春, 等. 深井巷道掘进围岩演化特征模拟与扰动应力场分析[J]. 岩石力学与工程学报, 2017, 36(8): 1821-1831.

[ ] 赵增辉, 杨鹏, 张明忠, 等. 水环境和非均匀地压联合作用下弱胶结软岩巷道围岩稳定性解析[J]. 采矿与安全工程学报, 2022, 39(1): 126-135.

[ ] 唐胜兰, 王海, 俞缙, 等. 考虑围岩应变强化及扩容的深埋软岩隧洞时变位移解[J]. 隧道建设, 2017, 37(S1): 72-78.

[ ] 孟庆彬, 韩立军, 张帆舸, 等. 深部高应力软岩巷道耦合支护效应研究及应用[J]. 岩土力学, 2017, 38(5): 1424-1435.

[ ] 王波, 高延法, 夏方迁. 流变特性引起围岩应力场演变规律分析[J]. 采矿与安全工程学报, 2011, 28(3): 441-445.

[ ] 高延法, 曲祖俊, 牛学良, 等. 深井软岩巷道围岩流变与应力场演变规律[J]. 煤炭学报, 2007(12): 1244-1252.

[ ] 杨建华, 朱彬. 大跨度软岩隧道开挖方法及施工方案数值模拟研究[J]. 西安科技大学学报, 2011, 31(3): 287-292.

[ ] 刘高, 聂德新, 韩文峰. 高应力软岩巷道围岩变形破坏研究[J]. 岩石力学与工程学报, 2000(6): 726-730.

[ ] 田洪铭, 陈卫忠, 田田, 等. 软岩蠕变损伤特性的试验与理论研究[J]. 岩石力学与工程学报, 2012, 31(3): 610-617.

[ ] 戴永浩, 陈卫忠, 田洪铭, 等. 大梁隧道软岩大变形及其支护方案研究[J]. 岩石力学与工程学报, 2015, 34(S2): 4149-4156.

[ ] 张德华, 刘士海, 任少强. 基于围岩-支护特征理论的高地应力软岩隧道初期支护选型研究[J]. 土木工程学报, 2015, 48(1): 139-148.

[ ] 黄建飞. 复杂构造条件下巷道过寒武系灰岩的水害治理[J]. 中州煤炭, 2012(7): 120-123.

[ 陈智颖, 陈冰. 邻近超大断层巷道施工期间水害综合探查技术研究与应用[J]. 煤炭技术, 2021, 40(5): 107-110.

[ ] 高连荣. 巷道掘进过导水断层水害防治技术研究[J]. 中国矿山工程, 2020, 49(2): 21-23.

[ ] 吕兆海, 闫学忠, 朱海鱼, 等. 掘进巷道过含水断层水害分析及施工工艺[J]. 中国煤炭, 2014, 40(3): 89-92.

[ ] 许江, 叶桂兵, 李波波, 等. 不同黏结剂配比条件下型煤力学及渗透特性试验研究[J].岩土力学, 2015, 36(1):7.

[ ] 杨彩虹, 王永岩, 李剑光. 含水率对岩石蠕变规律影响的研究[J]. 煤炭学报, 2007, 32(7): 695-699.

[ ] Sih G C. Handbook of stress-intensity factors[M]. Lehigh University, Institute of Fracture and Solid Mechanics, 1973.

[ ] 冒海军, 杨春和, 刘江, 等. 板岩蠕变特性试验研究与模拟分析[J]. 岩石力学与工程学报, 2006,25(6):1204-1209.

[ ] 赵延林, 曹平, 文有道, 等. 岩石弹黏塑性流变试验和非线性流变模型研究[J]. 岩石力学与工程学报, 2008, 27(3): 477-486.

[ ] Vyalov S S. Rheological fundamentals of soil mechanics[M]. Elsevier, 1986.

[ ] Cruden D M. The static fatigue of brittle rock under uniaxial compression[C] InternationalJournal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1974,11(2): 67-73.

[ ] Kranz R L, Scholz C H. Critical dilatant volume of rocks at the onset of tertiary creep[J]. Journal of Geophysical Research, 1977, 82(30): 4893-4898.

[ ] 赵帅. 采空区下泥质软岩巷道底鼓机理与联合支护技术研究[J].煤炭工程, 2022, 54(9): 54-58.

[ ] 王祥秋, 杨林德, 高文华. 软弱围岩蠕变损伤机理及合理支护时间的反演分析[J].岩石力学与工程学报, 2004(5): 793-796.

[ ] 范庆忠, 高延法, 崔希海, 等. 软岩非线性蠕变模型研究[J]. 岩土工程学报, 2007(4): 505-509.

[ ] 朱珍德, 舒晓云, 陈卫忠, 等. 考虑锚固支护对层面剪切特性影响的隧道变形破坏特征[J]. 中南大学学报(自然科学版), 2023, 54(3): 895-907.

[ ] 王来贵, 赵娜, 何峰, 等. 岩石蠕变损伤模型及其稳定性分析[J]. 煤炭学报, 2009, 34(1): 64-68.

[ ] 杨秀荣, 姜谙男, 江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. 岩土力学, 2018, 39(S1): 167-174.

[ ] 胡波, 王宗林, 梁冰,等. 岩石蠕变特性试验研究[J]. 实验力学, 2015, 30(4): 438- 446.

[ ] 潘宏宇. 复合关键层下采场压力及煤层瓦斯渗流耦合规律研究[D]. 西安: 西安科技大学, 2009.

[ ] 双海清. 缓倾斜煤层采动卸压瓦斯储运优势通道演化机理及应用[D]. 西安: 西安科技大学, 2017.

[ ] 钱鸣高, 缪协兴, 许家林, 等. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003.

[ ] 李树刚, 林海飞. 煤与甲烷共采学导论[M]. 北京: 科学出版社, 2014.

[ ] 潘荣建, 钟启锋, 刘先林, 等. 水力环境变化条件下夹软岩顺层边坡稳定性分析[J/OL]. 中外公路, 2023, 16(4): 1-5.

[ ] 唐端剑. 松软围岩巷道锚杆加固的理论分析与工程实践[J]. 矿山压力与顶板管理, 2002(3): 43-47.

[ ] 王凯. 深井微裂隙软岩高压注浆渗流特性及应用研究[D]. 徐州: 中国矿业大学, 2020.

[ ] 张玉. 水泥基注浆材料浆液扩散规律和预测控制试验研究[D]. 北京: 北京交通大学, 2020.

[ ] 朱帅, 李明飞, 姜丽萍, 等. 基于改进西原体模型的岩石流变特性分析[J]. 石油工业技术监督, 2022, 38(7): 20-24.

[ ] 赵国贞, 马占国, 孙凯, 等. 小煤柱沿空掘巷围岩变形控制机理研究[J]. 采矿与安全工程学报, 2010, 27(4): 517-521.

[ ] 张吉雄, 张强, 巨峰, 等. 深部煤炭资源采选充绿色化开采理论与技术[J]. 煤炭学报, 2018, 43(2): 377-389.

[ ] 李鹏. 深部大变形巷道注浆加固技术应用[J]. 山东煤炭科技, 2023, 41(2): 75-77.

[ ] 侯朝炯, 王襄禹, 柏建彪, 等. 深部巷道围岩稳定性控制的基本理论与技术研究[J].中国矿业大学学报, 2021, 50(1): 1-12.

[ ] 康红普, 姜鹏飞, 黄炳香, 等. 煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报, 2020, 45(3): 845-864.

[ ] 常聚才, 谢广祥. 深部巷道围岩力学特征及其稳定性控制[J]. 煤炭学报,2009, 34(7): 881-886.

[ ] 王羽扬, 刘勇, 王沉, 等. 高应力大变形软岩巷道“三壳”围岩控制机理及应用[J]. 中国安全生产科学技术, 2019, 15(7): 100-106.

中图分类号:

 TD322    

开放日期:

 2026-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式