论文中文题名: |
含卤有机固废脱卤碳基材料的化学发光传感分析研究
|
姓名: |
李冰洁
|
学号: |
21209085029
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0830
|
学科名称: |
工学 - 环境科学与工程(可授工学、理学、农学学位)
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
地质与环境学院
|
专业: |
环境科学与工程
|
研究方向: |
环境化学分析
|
第一导师姓名: |
齐莹莹
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-19
|
论文答辩日期: |
2024-06-08
|
论文外文题名: |
Chemiluminescence sensing analysis of halogenated organic solid waste dehalogenated carbon-based materials
|
论文中文关键词: |
化学发光法 ; 含卤有机固废 ; 碳基材料 ; 邻苯二甲酸酯 ; 葡萄糖
|
论文外文关键词: |
Chemiluminescence ; halogen-containing organic solid waste ; carbon-based material ; phthalate ; glucose
|
论文中文摘要: |
︿
双碳背景下,有机固废资源化是我国减污降碳和无废城市建设的重要任务。在资源属性和污染属性共存的情况下,我们既要实现它的无害化,也要最大化提升它的资源属性。聚氯乙烯(PVC)作为产量第三大的合成聚合物塑料易产生二次污染对环境和公众健康构成重大风险,四溴双酚A型溴化环氧树脂(TBBPA-ER)作为常见的溴代阻燃剂长期接触会影响内分泌提高致癌风险。在各项脱卤技术中,亚临界水联合增强剂(金属、碱或其他固体废物)脱卤已发展成为有机固废脱卤重要技术。然而,几乎所有的研究都集中在脱卤行为及脱卤效率,没有对脱卤碳基材料进行研究。研究发现PVC及TBBPA-ER在亚临界水体系脱卤衍生的碳基材料,具有强催化活性,可显著催化鲁米诺+H2O2产生强化学发光信号。本文利用PVC/煤矸石和TBBPA-ER在亚临界水和亚临界水-CuO体系脱卤碳基材料的化学发光催化活性,建立了邻苯二甲酸酯和葡萄糖的分析检测方法。研究结果如下:
(1) PVC/煤矸石脱氯碳基材料化学发光法检测邻苯二甲酸酯。邻苯二甲酸酯被广泛用作塑料增塑剂,会干扰生殖、内分泌系统。本研究发现亚临界水中PVC/煤矸石脱氯碳基材料(CM-dPVC)是在碳基体上负载纳米Al2O3、SiO2和Fe2O3的复合材料,具有丰富的有机官能团和较大的比表面积,使得CM-dPVC对鲁米诺-H2O2化学发光反应体系具有较强的催化活性,建立了具有良好信号放大能力的鲁米诺-H2O2-CM-dPVC化学发光分析方法。邻苯二甲酸酯通过π-π作用、氢键作用、疏水作用在CM-dPVC上结合吸附,极大地抑制了鲁米诺-H2O2-CM-dPVC的化学发光反应。在此基础上,构建了检测环境中6种常见邻苯二甲酸酯混合物(PAEs)和邻苯二甲酸二(2-乙基己基)酯(DEHP)的低碳高效化学发光分析。6种不同的邻苯二甲酸酯对鲁米诺-H2O2-CM-dPVC化学发光反应体系的抑制效果不同,邻苯二甲酸酯的烷基链越长,抑制效果越好,这也证明疏水作用是邻苯二甲酸酯对CM-dPVC的重要作用。在最佳实验条件下,PAEs和DEHP分别在0.003 ~ 7 nM、0.007 ~ 2 nM浓度范围内与化学发光信号强度具有良好的线性相关性,检测限分别为0.16 pM和0.33 pM。将该方法用于真实样品中邻苯二甲酸酯含量的测定,加标回收率在93.20% ~ 110.33%之间,5次平行测定的相对标准偏差均≤4.35%,检测结果与标准高效液相色谱法无明显差异。构建的鲁米诺+H2O2+CM-dPVC化学发光传感体系具有良好的稳定性(相对标准偏差=2.7%)和重复性(相对标准偏差≤1.5%),为其在实际环境分析中的应用提供了必要的实验数据基础。此外,生命周期评价结果显示,用作化学发光传感材料的CM-dPVC全球变暖潜值相较于化学试剂专门合成的传感材料降低了91.0%。结果表明,利用CM-dPVC进行化学发光传感,既提高了PVC回收效率,又减少了化学发光传感材料获取的碳排放。
(2) TBBPA-ER脱溴碳基材料化学发光法检测葡萄糖。过量的葡萄糖会导致肥胖和糖尿病。亚临界水-CuO体系中TBBPA-ER脱溴碳基材料(CM-dTBBPA-ER)被证实是含有-C=C-、-C=C-C=C-、Cu、CuBr和较大比表面的碳基纳米复合材料,对鲁米诺-H2O2化学发光反应有较强的催化活性。密度泛函理论计算结果也进一步表明,CM-TBBPA-ER中C 2p轨道与Cu 3d轨道之间的强相互作用,增强了CM-TBBPA-ER中的局部电子密度,导致碳基材料介导电子迁移的能力较强。在此基础上,结合葡萄糖和葡萄糖氧化酶的反应,构建了快速、高灵敏度检测葡萄糖的化学发光分析方法。在最佳实验条件下,过氧化氢和葡萄糖分别在6×10-7 ~ 7×10-9 M、2.5×10-6 ~ 3×10-8 M浓度范围内与化学发光信号强度具有良好的线性相关性,检测限分别低至2.2×10-10 M和3.7×10-9 M。构建的鲁米诺+H2O2+CM-dTBBPA-ER化学发光传感体系具有良好的稳定性(相对标准偏差=2.1%)和重复性(相对标准偏差≤1.1%),为其在实际环境分析中的应用提供了必要的实验数据基础。将所构建的化学发光传感体系用于人血清中葡萄糖的检测,加标回收率在102.0% ~ 105.7%之间,5次平行测定的相对标准偏差均≤3.2%,测定结果与当地医院提供的结果无明显差异。通过对生命周期评价的环境影响分析,与化学试剂合成的传感材料相比,使用CM-dTBBPA-ER进行化学发光传感分析的全球变暖潜值降低了90.4%。本方法首次将TBBPA-ER脱溴碳基材料用作化学发光传感材料,提供了一种快速、经济和环保检测葡萄糖的技术方法,并为开发其他环境友好型传感分析开辟了新的途径。
﹀
|
论文外文摘要: |
︿
Under the background of double carbon, organic solid waste recycling is an important task for China's pollution reduction, carbon reduction and waste-free city construction. In the case of coexistence of resource attributes and pollution attributes, we must not only achieve its harmlessness, but also maximize its resource attributes. Polyvinyl chloride (PVC), as the third largest synthetic polymer plastic, is prone to secondary pollution and poses a major risk to the environment and public health. Tetrabromobisphenol A brominated epoxy resin (TBBPA-ER), as a common brominated flame retardant, long-term exposure will affect endocrine and increase carcinogenic risk. Among various dehalogenation technologies, subcritical water combined with enhancer (metal, alkali or other solid waste) dehalogenation has developed into an important technology for organic solid waste dehalogenation. However, almost all studies have focused on dehalogenation behavior and dehalogenation efficiency, and no research has been conducted on dehalogenated carbon-based materials. It was found that the carbon-based materials derived from the dehalogenation of PVC and TBBPA-ER in subcritical water system have strong catalytic activity and can significantly catalyze luminol+H2O2 to produce strong CL signal. In this paper, CL catalytic activity of PVC/coal gangue and TBBPA-ER in subcritical water and subcritical water-CuO system dehalogenated carbon-based materials was used to establish an analytical method for phthalates and glucose. The results of the study are as follows:
(1)PVC/coal gangue dechlorinated carbon-based material CL method for the detection of phthalates. Phthalate esters are widely used as plastic plasticizers, which can interfere with the reproductive and endocrine systems. In this study, it was found that the PVC/coal gangue dechlorination carbon-based material (CM-dPVC) in subcritical water is a composite material loaded with nano-Al2O3, nano-SiO2 and nano-Fe2O3 on the carbon matrix. It has rich organic functional groups and large specific surface area, which makes CM-dPVC have strong catalytic activity for the luminol-H2O2 CL reaction system. A luminol-H2O2-CM-dPVC CL analysis method with good signal amplification ability was established. The CL reaction of luminol-H2O2-CM-dPVC was greatly inhibited by the adsorption of phthalic acid ester on CM-dPVC through π-π interaction, hydrogen bonding and hydrophobic interaction. On this basis, a low-carbon and high-efficiency CL analysis of six common phthalate mixtures (PAEs) and di (2-ethylhexyl) phthalate (DEHP) in the detection environment was constructed. The inhibitory effects of six different phthalates on CL reaction system of luminol-H2O2-CM-dPVC were different. The longer the alkyl chain of phthalates, the better the inhibitory effect, which also proved that hydrophobic interaction was an important role of phthalates on CM-dPVC. Under the optimal experimental conditions, PAEs and DEHP have a good linear correlation with CL signal intensity in the concentration range of 0.003~7 nM and 0.007~2 nM, and the detection limits are 0.16 pM and 0.33 pM, respectively. The method was applied to the determination of phthalate esters in real samples. The spiked recoveries were 93.20%~110.33%, and the relative standard deviations of five parallel determinations were less than 4.35%. There was no significant difference between the test results and the standard high performance liquid chromatography. The constructed luminol+H2O2+CM-dPVC CL sensing system has good stability (Relative Standard Deviation=2.7%) and repeatability (Relative Standard Deviation≤1.5%), which provides the necessary experimental data for its application in actual environmental analysis. In addition, the life cycle assessment results showed that the global warming potential of CM-dPVC as CL sensing material was 91.0% lower than that of the sensing material specially synthesized by chemical reagents. The results show that the use of CM-dPVC for CL sensing not only improves the recovery efficiency of PVC, but also reduces the carbon emissions obtained by CL sensing material.
(2) TBBPA-ER debrominated carbon-based material CL detection of glucose. Excessive glucose can lead to obesity and diabetes. In the subcritical water-CuO system, TBBPA-ER debrominated carbon-based materials (CM-dTBBPA-ER) were confirmed to be carbon-based nanocomposites containing-C=C-, -C=C-C=C-, Cu, CuBr and larger specific surface, which had strong catalytic activity for luminol-H2O2 CL reaction. The results of density functional theory calculations further show that the strong interaction between the C 2p orbital and the Cu 3d orbital in CM-TBBPA-ER enhances the local electron density in CM-TBBPA-ER, resulting in a strong ability of carbon-based materials to mediate electron migration. On this basis, combined with the reaction of glucose and glucose oxidase, a rapid and highly sensitive CL analysis method for the detection of glucose was constructed. Under the optimal experimental conditions, hydrogen peroxide and glucose had a good linear correlation with CL signal intensity in the concentration range of 6×10-7~7×10-9 M and 2.5×10-6~3×10-8 M, and the detection limits were as low as 2.2×10-10 M and 3.7×10-9 M, respectively. The constructed luminol+H2O2+CM-dTBBPA-ER CL sensing system has good stability (Relative Standard Deviation=2.1%) and repeatability (Relative Standard Deviation ≤1.1%), which provides the necessary experimental data for its application in actual environmental analysis. The constructed CL sensing system was used for the detection of glucose in human serum. The spiked recovery wa 102.0%~105.7%, and the relative standard deviation of 5 parallel measurements was ≤3.2%. There was no significant difference between the determination results and the results provided by local hospitals. Through the environmental impact analysis of life cycle assessment, the global warming potential of CL sensing analysis using CM-dTBBPA-ER was reduced by 90.4% compared with the sensing material synthesized by chemical reagents. This method is the first time to use TBBPA-ER debrominated carbon-based material as CL sensing material, providing a rapid, economical and environmentally friendly technical method for the detection of glucose, and opening up a new way for the development of other environmentally friendly sensing analysis.
﹀
|
参考文献: |
︿
[1]张海燕, 郑仁栋, 袁璐韫, 等. 固体废弃物资源化的发展趋向分析 [J]. 中国资源综合利用, 2019, 37(10): 81-83. [2]王雪雪, 马嘉乐, 王珊姗, 等. 浅析我国工业固体废物管理的历史沿革 [J]. 环境工程学报, 2023, 17(10): 3115-3123. [3]彭程, 龙红明, 范春龙, 等. 钢铁流程协同利用有机固废研究进展 [J]. 钢铁: 1-12. [4]Ghosh B, Ghosh M K, Parhi P, et al. Waste Printed Circuit Boards recycling: an extensive assessment of current status [J]. Journal of Cleaner Production, 2015, 94: 5-19. [5]张海燕, 郑仁栋, 袁璐韫, 等. 固体废弃物资源化的发展趋向分析 [J]. 中国资源综合利用, 2019, 37(10): 81-83. [6]王超, 李庆远, 许世佩, 等. 城市多源有机固废资源化利用与发展氢能的耦合路径研究 [J]. 中国能源, 2022, 44(11): 64-71. [7]2022年1-12月我国PVC树脂产量 [J]. 聚氯乙烯, 2023, 51(01): 47. [8]Sjöström E, Alén R. Analytical methods in wood chemistry, pulping, and papermaking[M]. Springer Science & Business Media, 1998. [9]Barontini F, Marsanich K, Petarca L, Cozzani V. The Thermal Degradation Process of Tetrabromobisphenol A [J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 1952-1961. [10]Guerra P, Alaee M, Eljarrat E, Barceló D. Introduction to Brominated Flame Retardants: Commercially Products, Applications, and Physicochemical Properties [M]//ELJARRAT E, BARCELó D. Brominated Flame Retardants. Berlin, Heidelberg; Springer Berlin Heidelberg. 2011: 1-17. [11]Birnbaum Linda S, Staskal Daniele F. Brominated flame retardants: cause for concern? [J]. Environmental Health Perspectives, 2004, 112(1): 9-17. [12]Lyche J L, Rosseland C, Berge G, Polder A. Human health risk associated with brominated flame-retardants (BFRs) [J]. Environment International, 2015, 74: 170-180. [13]Roda A. Chemiluminescence and Bioluminescence: Past, Present and Future [M]. 2010. [14]Su Y, Song H, Lv Y. Recent advances in chemiluminescence for reactive oxygen species sensing and imaging analysis [J]. Microchemical Journal, 2019, 146: 83-97. [15]Morais I P A, Tóth I V, Rangel A O S S. An overview on flow methods for the chemiluminescence determination of phosphorus [J]. Talanta, 2005, 66(2): 341-347. [16]Gámiz-Gracia L, García-Campaña A M, Huertas-Pérez J F, Lara F J. Chemiluminescence detection in liquid chromatography: Applications to clinical, pharmaceutical, environmental and food analysis—A review [J]. Analytica Chimica Acta, 2009, 640(1): 7-28. [17]Liu M, Lin Z, Lin J-M. A review on applications of chemiluminescence detection in food analysis [J]. Analytica Chimica Acta, 2010, 670(1): 1-10. [18]Christodouleas D, Fotakis C, Economou A, et al. Flow-Based Methods with Chemiluminescence Detection for Food and Environmental Analysis: A Review [J]. Analytical Letters, 2011, 44(1-3): 176-215. [19]Lin Z, Chen H, Lin J. Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry [J]. Analyst, 2013, 138(18): 5182-5193. [20]White E H, Bursey M M. Chemiluminescence of luminol and related hydrazides: the light emission step[J]. Journal of the American Chemical Society, 1964, 86(5): 941-942. [21]Zhou Y, Nagaoka T, Li F, Zhu G. Evaluation of luminol–H2O2–KIO4 chemiluminescence system and its application to hydrogen peroxide, glucose and ascorbic acid assays [J]. Talanta, 1999, 48(2): 461-467. [22]Li Y, Niu W, Lu J. Sensitive determination of phenothiazines in pharmaceutical preparation and biological fluid by flow injection chemiluminescence method using luminol–KMnO4 system [J]. Talanta, 2007, 71(3): 1124-1129. [23]Zhang Z, Cui H, Lai C-Z, Liu L. Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications [J]. Analytical Chemistry, 2005, 77(10): 3324-3329. [24]赵冕, 王贝贝, 王冰, 等.鲁米诺化学发光抑制法测定阿洛酮糖 [J]. 化学研究与应用, 2024, 36 (01): 28-33. [25]王刚. 城市固废填埋场址的优选方法及应用 [J]. 当代化工研究, 2021, (09): 114-5. [26]杨苹, 黄月盈. 垃圾焚烧项目环境污染与控制途径分析 [J]. 资源节约与环保, 2022, (08): 88-91. [27]马瀚程, 蔡鹏涛, 詹明秀, 等. 有机固废共热解气化产物及其污染物排放特性研究综述 [J]. 能源工程, 2020, (03): 80-85. [28]Jahirul M I, Rasul M G, Schaller D, et al. Transport fuel from waste plastics pyrolysis -A review on technologies, challenges and opportunities [J]. Energy Conversion and Management, 2022, 258: 115451. [29]李田, 赵培涛, 祝飞. 松木屑水热提质过程及其燃烧特性 [J]. 过程工程学报, 2016, 16(05): 819-826. [30]邓瑞. 污泥和煤泥的共水热碳化特性研究 [D]. 太原: 山西大学, 2021. [31]莫婷, 曾辉. 塑料消费品垃圾焚烧过程中PBDE与HBCD释放情况 [J]. 环境科学与技术, 2016, 39(03): 170-181. [32]Shen Y, Yu S, Ge S, et al. Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale [J]. Energy, 2017, 118: 312-323. [33]Xiu F-R, Tan X, Qi Y, Wang M. Treatment of DEHP-rich PVC waste in subcritical urine wastewater: Efficient dechlorination, denitrification, plasticizer decomposition, and preparation of high-purity phthalic acid crystals [J]. Journal of Hazardous Materials, 2023, 441: 129820. [34]Tai L, Musivand S, de Caprariis B, et al. Co-treatment of plastics with subcritical water for valuable chemical and clean solid fuel production [J]. Journal of Cleaner Production, 2022, 337: 130529. [35]Xiu F-R, Lu Y, Qi Y. DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: A comparative study [J]. Chemosphere, 2020, 249: 126138. [36]Yang F, Liu X, Li M, et al. Polyvinyl chloride (PVC) derived microporous carbons prepared via hydrothermal dechlorination and potassium hydroxide activation for efficient CO2 capture [J]. Renewable and Sustainable Energy Reviews, 2023, 180: 113279. [37]Xiu F-R, Wang Y, Yu X, et al. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment [J]. Science of The Total Environment, 2020, 708: 134532. [38]Zhao P, Li Z, Li T, et al. The study of nickel effect on the hydrothermal dechlorination of PVC [J]. Journal of Cleaner Production, 2017, 152: 38-46. [39]Xiu F, Yu X, Qi Y. A high-efficiency and low-temperature subcritical water dechlorination strategy of polyvinyl chloride using coal fly ash (CFA) and coal gangue (CG) as enhancers [J]. Journal of Cleaner Production, 2020, 260: 121085. [40]Xiu F, Zhou K, Yu X, Qi Y. Co-treatment of PVC and used LCD panels in low-temperature subcritical water: Enhanced dechlorination and mechanism [J]. Process Safety and Environmental Protection, 2021, 151: 10-19. [41]Lu J, Borjigin S, Kumagai S, et al. Practical dechlorination of polyvinyl chloride wastes in NaOH/ethylene glycol using an up-scale ball mill reactor and validation by discrete element method simulations [J]. Waste Management, 2019, 99: 31-41. [42]Yu H, Qu J, Liu Y, et al. Co-pyrolysis of biomass and polyvinyl chloride under microwave irradiation: Distribution of chlorine [J]. Science of The Total Environment, 2022, 806: 150903. [43]Čolnik M, Kotnik P, Knez Ž, Škerget M. Degradation of Polyvinyl Chloride (PVC) Waste with Supercritical Water [J]. Processes, 2022, 10(10): 1940. [44]Das P, Gabriel J, Tay C Y, Lee J-M. Value-added products from thermochemical treatments of contaminated e-waste plastics [J]. Chemosphere, 2021, 269: 129409. [45]Chen Y, Liang S, Xiao K, et al. A cost-effective strategy for metal recovery from waste printed circuit boards via crushing pretreatment combined with pyrolysis: Effects of particle size and pyrolysis temperature [J]. Journal of Cleaner Production, 2021, 280. [46]Zhang J, Quast T, He W H, et al. In Situ Carbon Corrosion and Cu Leaching as a Strategy for Boosting Oxygen Evolution Reaction in Multimetal Electrocatalysts [J]. ADVANCED MATERIALS, 2022, 34(13). [47]Zhang Y, Zhou C, Liu Y, et al. Product characteristics and potential energy recovery for microwave assisted pyrolysis of waste printed circuit boards in a continuously operated auger pyrolyser [J]. Energy, 2022, 239: 122383. [48]Zhu J, Chen X, Zhao N, et al. Bromine removal from resin particles of crushed waste printed circuit boards by vacuum low-temperature heating [J]. Journal of Cleaner Production, 2020, 262: 121390. [49]Zhao C, Zhang X, Shi L. Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR [J]. Waste Management, 2017, 61: 354-361. [50]Kumagai S, Grause G, Kameda T, et al. Thermal decomposition of tetrabromobisphenol-A containing printed circuit boards in the presence of calcium hydroxide [J]. Journal of Material Cycles and Waste Management, 2017, 19(1): 282-293. [51]Li K, Zhang L, Xu Z. Decomposition behavior and mechanism of epoxy resin from waste integrated circuits under supercritical water condition [J]. Journal of Hazardous Materials, 2019, 374: 356-364. [52]Xiu F-R, Zhang F-S. Materials recovery from waste printed circuit boards by supercritical methanol [J]. Journal of Hazardous Materials, 2010, 178(1): 628-634. [53]Xing M, Li Y, Zhao L, et al. Swelling-enhanced catalytic degradation of brominated epoxy resin in waste printed circuit boards by subcritical acetic acid under mild conditions [J]. Waste Management, 2020, 102: 464-473. [54]Xiu F-R, Li Y, Qi Y, et al. A novel treatment of waste printed circuit boards by low-temperature near-critical aqueous ammonia: Debromination and preparation of nitrogen-containing fine chemicals [J]. Waste Management, 2019, 84: 355-363. [55]Yin J, Li G, He W, et al. Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards [J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(1): 131-136. [56]Chen Y, Yang J, Liang S, et al. New insights into the debromination mechanism of non-metallic fractions of waste printed circuit boards via alkaline-enhanced subcritical water route [J]. Resources Conservation and Recycling, 2021, 165. [57]Xiu F-R, Qi Y, Wang S, et al. Application of critical water-alcohol composite medium to treat waste printed circuit boards: Oil phase products characteristic and debromination [J]. Journal of Hazardous Materials, 2018, 344: 333-342. [58]Xiu F-R, Bai Q, Chen C, et al. Highly selective conversion of tetrabromobisphenol A epoxy resin waste to high-purity phenolic chemicals by subcritical water-CuO process [J]. Journal of Analytical and Applied Pyrolysis, 2022, 168: 105773. [59]Chen Y, Yang J, Liang S, et al. New insights into the debromination mechanism of non-metallic fractions of waste printed circuit boards via alkaline-enhanced subcritical water route [J]. Resources, Conservation and Recycling, 2021, 165. [60]Ji K, Xia S, Sang X, et al. Enhanced Luminol Chemiluminescence with Oxidase-like Properties of FeOOH Nanorods for the Sensitive Detection of Uric Acid [J]. Analytical Chemistry, 2023, 95(6): 3267-3273. [61]Orooji Y, Haddad Irani-nezhad M, Hassandoost R, et al. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 234. [62]Hou Y, Wang J, Liu S, et al. A novel flower-shaped Ag@ZIF-67 chemiluminescence sensor for sensitive detection of CEA [J]. Talanta, 2023, 253: 123938. [63]Wang Z, Xie J, Han S. Synergistic enhancement of potassium permanganate-induced chemiluminescence by nitrogen and silver carbon dots and formaldehyde for selective detection of tannin [J]. Journal of Food Composition and Analysis, 2024, 125: 105792. [64]Liu K, Zhang F-S. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water [J]. Journal of Hazardous Materials, 2016, 316: 19-25. [65]Ardagh M A, Bo Z, Nauert S L, Notestein J M J A C. Depositing SiO2 on Al2O3: a Route to Tunable Brønsted Acid Catalysts [J]. 2016, 6: 6156-6164. [66]Wolek A T Y, Hicks K E, Notestein J M. Tuning acidity in silica-overcoated oxides for hydroalkoxylation [J]. Journal of Catalysis, 2023, 426: 113-125. [67]Busca G. Catalytic materials based on silica and alumina: Structural features and generation of surface acidity [J]. Progress in Materials Science, 2019, 104: 215-249. [68]Xiu F-R, Yang R, Qi Y, et al. High-efficiency promotion on dechlorination of polyvinyl chloride in subcritical water treatment by introducing waste concrete [J]. Process Safety and Environmental Protection, 2023, 174: 1056-1064. [69]Qi Y, Sun Y, Song D, et al. PVC dechlorination residues as new peroxidase-mimicking nanozyme and chemiluminescence sensing probe with high activity for glucose and ascorbic acid detection [J]. Talanta, 2023, 253: 124039. [70]Deng Y, Yan W, Guo Y, et al. Highly sensitive and selective photoelectrochemical aptasensing of di-2-ethylhexyl phthalate based on graphene quantum dots decorated TiO2 nanotube arrays [J]. Journal of Hazardous Materials, 2021, 426: 128107. [71]Segall M D, Philip J D L, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717. [72]Zhao C, Lu Y, Liu H, Chen L. First-principles computational investigation of nitrogen-doped carbon nanotubes as anode materials for lithium-ion and potassium-ion batteries [J]. RSC Advances, 2019, 9(30): 17299-17307. [73]Di Cataldo S, von der Linden W, Boeri L. First-principles search of hot superconductivity in La-X-H ternary hydrides [J]. npj Computational Materials, 2022, 8(1): 2. [74]Simón L, Goodman J M. How reliable are DFT transition structures? Comparison of GGA, hybrid-meta-GGA and meta-GGA functionals [J]. Organic & Biomolecular Chemistry, 2011, 9(3): 689-700. [75]Körzdörfer T, Brédas J. Organic Electronic Materials: Recent Advances in the DFT Description of the Ground and Excited States Using Tuned Range-Separated Hybrid Functionals [J]. Accounts of Chemical Research, 2014, 47(11): 3284-3291. [76]Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078. [77]Seifert G. Tight-Binding Density Functional Theory: An Approximate Kohn−Sham DFT Scheme [J]. The Journal of Physical Chemistry A, 2007, 111(26): 5609-5613. [78]秦承露. 基于LCA的城市产业共生系统环境效益评价研究 [D]. 大连: 大连理工大学, 2019. [79]杨冬璐. 典型再生纸产品的生命周期环境与经济影响评价 [D].济南: 山东大学, 2019. [80]Hu Q, Huang H, Kung C-C. Ecological impact assessment of land use in eco-industrial park based on life cycle assessment: A case study of Nanchang High-tech development zone in China [J]. Journal of Cleaner Production, 2021, 300: 126816. [81]Finkbeiner M, Inaba A, Tan R, et al. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044 [J]. The International Journal of Life Cycle Assessment, 2006, 11(2): 80-85. [82]Li S, Qin Y, Subbiah J, Dvorak B. Life cycle assessment of the U.S. beef processing through integrated hybrid approach [J]. Journal of Cleaner Production, 2020, 265: 121813. [83]岳忠春. 稀土磁性材料生命周期评价中的不确定性研究 [D]. 包头: 内蒙古科技大学, 2019. [84]杨娜. 基于生命周期评价的耕作农业向草地农业转变的资源环境效应研究 [D]. 兰州: 兰州大学, 2019. [85]赵义. 城市有机废弃物制生物天然气潜力及并网优化 [D].重庆: 重庆大学, 2020. [86]Xu J, Wang L, Zhang L, et al. Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity [J]. Redox Biology, 2021, 38: 101776. [87]Xie H, Han W, Xie Q, et al. Face mask-A potential source of phthalate exposure for human [J]. Journal of Hazardous Materials, 2022, 422: 126848. [88]Benjamin S, Masai E, Kamimura N, et al. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action [J]. Journal of Hazardous Materials, 2017, 340: 360-383. [89]Kimber I, Dearman R J J T. An assessment of the ability of phthalates to influence immune and allergic responses [J]. 2010, 271 3: 73-82. [90]Mondal T, Mondal S, Ghosh S K, et al. Phthalates - A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches [J]. Environmental Research, 2022, 214: 114059. [91]Wang X, Sun X, Wang X, et al. Determination of 15 phthalic acid esters based on GC–MS/MS coupled with modified QuEChERS in edible oils [J]. Food Chemistry: X, 2022, 16: 100520. [92]Alshehri M M, Ouladsmane M A, Aouak T A, et al. Determination of phthalates in bottled waters using solid-phase microextraction and gas chromatography tandem mass spectrometry [J]. Chemosphere, 2022, 304: 135214. [93]Dan A, Zhang S, Chen Z, et al. Facile synthesis of Cu2+-immobilized magnetic covalent organic frameworks for highly efficient enrichment and sensitive determination of five phthalate monoesters from mouse plasma with HPLC-MS/MS [J]. Talanta, 2023, 253: 123923. [94]Prasanna V L, Mamane H, Vadivel V K, Avisar D. Ethanol-activated granular aerogel as efficient adsorbent for persistent organic pollutants from real leachate and hospital wastewater [J]. Journal of Hazardous Materials, 2020, 384: 121396. [95]Yang Y, Li Y, Zhai W, et al. Electrokinetic Preseparation and Molecularly Imprinted Trapping for Highly Selective SERS Detection of Charged Phthalate Plasticizers [J]. Analytical Chemistry, 2021, 93(2): 946-955. [96]Xu H, Zhu J, Cheng Y, Cai D. Functionalized UIO-66@Ag nanoparticles substrate for rapid and ultrasensitive SERS detection of di-(2-ethylhexyl) phthalate in plastics [J]. Sensors and Actuators B: Chemical, 2021, 349: 130793. [97]Sun Y, Hou Y, Cao T, et al. A Chemiluminescence Sensor for the Detection of α-Fetoprotein and Carcinoembryonic Antigen Based on Dual-Aptamer Functionalized Magnetic Silicon Composite [J]. Analytical Chemistry, 2023, 95(18): 7387-7395. [98]Amirzehni M, Eskandari H, Vahid B, Hassanzadeh J. An efficient chemiluminescence system based on mimic CuMOF/Co3O4 nanoparticles composite for the measurement of glucose and cholesterol [J]. Sensors and Actuators B: Chemical, 2021, 348: 130690. [99]Sun Y, Zhu X, Liu H, et al. Novel Chemiluminescence Sensor for Thrombin Detection Based on Dual-Aptamer Biorecognition and Mesoporous Silica Encapsulated with Iron Porphyrin [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5569-5577. [100]Yang H, Liu J, Wang L, et al. Metal-organic framework as a mimetic enzyme with excellent adaptability for sensitive chemiluminescence detection of glutathione in cell lysate [J]. Talanta, 2022, 238: 123041. [101]Qi Y, Xiu F, Yu G, et al. Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: A new signal amplification mechanism [J]. Biosensors and Bioelectronics, 2017, 87: 439-446. [102]Xiu F, Lu Y, Qi Y, et al. Ultrasensitive and practical chemiluminescence sensing pesticide residue acetamiprid in agricultural products and environment: Combination of synergistically coupled co-amplifying signal and smart interface engineering [J]. Talanta, 2021, 235: 122811. [103]Yu J, Sun L, Ma C, et al. Thermal degradation of PVC: A review [J]. Waste Management, 2016, 48: 300-314. [104]Wu J, Chen T, Luo X, et al. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS [J]. Waste Management, 2014, 34(3): 676-682. [105]Cao Q, Yuan G, Yin L, et al. Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: Influence of PVC content and heating rate [J]. Waste Management, 2016, 58: 241-249. [106]Busca G. Chapter Three-Structural, Surface, and Catalytic Properties of Aluminas [M]//BUSCA G. Advances in Catalysis. Academic Press. 2014: 319-404. [107]Peratello S, Molinari M, Bellussi G, Perego C. Olefins oligomerization: thermodynamics and kinetics over a mesoporous silica–alumina [J]. Catalysis Today, 1999, 52(2): 271-277. [108]Morterra C, Magnacca G. A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species [J]. Catalysis Today, 1996, 27(3): 497-532. [109]Busca G. The surface of transitional aluminas: A critical review [J]. Catalysis Today, 2014, 226: 2-13. [110]Zhang A, Sang K, Zeng D, et al. Preparation and properties of porous alumina with inter-locked platelets structure [J]. Ceramics International, 2022, 48(18): 25918-25922. [111]Gruskiene R, Krivorotova T, Staneviciene R, et al. Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin [J]. Colloids and Surfaces B: Biointerfaces, 2018, 169: 126-134. [112]Zhou H, Wu C, Onwudili J A, et al. Influence of process conditions on the formation of 2-4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride [J]. Fuel Processing Technology, 2016, 144: 299-304. [113]Zhou J, Gui B, Qiao Y, et al. Understanding the pyrolysis mechanism of polyvinylchloride (PVC) by characterizing the chars produced in a wire-mesh reactor [J]. Fuel, 2016, 166: 526-532. [114]Yoshioka T, Kameda T, Ieshige M, Okuwaki A. Dechlorination behaviour of flexible poly(vinyl chloride) in NaOH/EG solution [J]. Polymer Degradation and Stability, 2008, 93(10): 1822-1825. [115]Torres D, Jiang Y, Sanchez-Monsalve D A, Leeke G A. Hydrochloric acid removal from the thermogravimetric pyrolysis of PVC [J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104831. [116]Xu F, Wang B, Yang D, et al. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis [J]. Energy Conversion and Management, 2018, 171: 1106-1115. [117]Zhou C, Xu P, Lai C, et al. Rational design of graphic carbon nitride copolymers by molecular doping for visible-light-driven degradation of aqueous sulfamethazine and hydrogen evolution [J]. Chemical Engineering Journal, 2019, 359: 186-96. [118]Zhou C, Zeng G, Huang D, et al. Distorted polymeric carbon nitride via carriers transfer bridges with superior photocatalytic activity for organic pollutants oxidation and hydrogen production under visible light [J]. Journal of Hazardous Materials, 2020, 386: 121947. [119]Zhao P, Li T, Yan W, Yuan L. Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives [J]. Environmental Technology, 2018, 39(8): 977-985. [120]Du F, You Z, Meng K, et al. Dealuminization for a Modified (Si-OH)n-Pt Interface: Self-Activation of Pt/NaY Catalysts for Oxidation of Ethylene Glycol in a Base-Free Medium [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(43): 14416-14429. [121]Hadjiivanov K. Chapter Two - Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy [M]//HADJIIVANOV K. Advances in Catalysis. Academic Press. 2014: 99-318. [122]Xie X, Xie R, Suo Z, et al. A highly dispersed Co–Fe bimetallic catalyst to activate peroxymonosulfate for VOC degradation in a wet scrubber [J]. Environmental Science: Nano, 2021, 8(10): 2976-2987. [123]Qi Y, Song D, Chen Y. Colorimetric oligonucleotide-based sensor for ultra-low Hg2+ in contaminated environmental medium: Convenience, sensitivity and mechanism [J]. Science of The Total Environment, 2021, 766: 142579. [124]Qi Y, Li B, Song D, et al. Ultrafast colorimetric detection of Cr(VI) based on competition of 8-HQ to Cr(VI) and TMB oxides using GO/AuNPs nanocomposites as peroxidase mimic [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 297: 122722. [125]Chen X, Gao J, Zhao G, Wu C. In situ growth of FeOOH nanoparticles on physically-exfoliated graphene nanosheets as high performance H2O2 electrochemical sensor [J]. Sensors and Actuators B: Chemical, 2020, 313: 128038. [126]Huang Y, Zou R, Lin Y, Lu C. Electronic Metal-Support Interactions for Electrochemiluminescence Signal Amplification [J]. Analytical Chemistry, 2021, 93(32): 11291-11297. [127]Cheng W, Teng X, Lu C. Structurally Ordered Catalyst-Amplified Chemiluminescence Signals [J]. Analytical Chemistry, 2020, 92(7): 5456-5463. [128]Shah S N A, Khan M, Rehman Z U. A prolegomena of periodate and peroxide chemiluminescence [J]. TrAC Trends in Analytical Chemistry, 2020, 122: 115722. [129]Liu D, Li S, Zhang T, et al. 3D Magnetic Field-Controlled Synthesis, Collective Motion, and Bioreaction Enhancement of Multifunctional Peasecod-like Nanochains [J]. ACS Appl Mater Interfaces, 2021, 13(30): 36157-36170. [130]Wang J, Liu P, Boronat M, et al. Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment [J]. 2020, 59(39): 17225-17228. [131]Net S, Sempéré R, Delmont A, et al. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices [J]. Environmental Science & Technology, 2015, 49(7): 4019-4035. [132]Lim H J, Kim A R, Yoon M-Y, et al. Development of quantum dot aptasensor and its portable analyzer for the detection of di-2-ethylhexyl phthalate [J]. Biosensors and Bioelectronics, 2018, 121: 1-9. [133]Guo R, Shu C, Chuang K, Hong G. Rapid colorimetric detection of phthalates using DNA-modified gold nanoparticles [J]. Materials Letters, 2021, 293: 129756. [134]Qiu C, Gong Y, Guo Y, et al. Sensitive Fluorescence Detection of Phthalates by Suppressing the Intramolecular Motion of Nitrophenyl Groups in Porous Crystalline Ribbons [J]. Analytical Chemistry, 2019, 91(21): 13355-13359. [135]Mura S, Jiang Y, Vassalini I, et al. Graphene oxide/iron oxide nanocomposites for water remediation [J]. ACS Applied Nano Materials, 2018, 1(12): 6724-6732. [136]Batool R, Akhtar M A, Hayat A, et al. A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose [J]. Microchimica Acta, 2019, 186(5): 267. [137]Miao Z, Wang P, Zhong A, et al. Development of a glucose biosensor based on electrodeposited gold nanoparticles–polyvinylpyrrolidone–polyaniline nanocomposites [J]. Journal of Electroanalytical Chemistry, 2015, 756: 153-160. [138]Qi M, Zhang Y, Cao C, et al. Increased sensitivity of extracellular glucose monitoring based on AuNP decorated GO nanocomposites [J]. RSC Advances, 2016, 6(45): 39180-39187. [139]Umapathi S, Singh H, Masud J, et al. Nanostructured copper selenide as an ultrasensitive and selective non-enzymatic glucose sensor [J]. Materials Advances, 2021, 2(3): 927-932. [140]Lv J, Kong C, Xu Y, et al. Facile synthesis of novel CuO/Cu2O nanosheets on copper foil for high sensitive nonenzymatic glucose biosensor [J]. Sensors and Actuators B: Chemical, 2017, 248: 630-638. [141]Kaya M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes [J]. Waste Management, 2016, 57: 64-90. [142]Yao Z, Reinmöller M, Ortuño N, et al. Thermochemical conversion of waste printed circuit boards: Thermal behavior, reaction kinetics, pollutant evolution and corresponding controlling strategies [J]. Progress in Energy and Combustion Science, 2023, 97: 101086. [143]Liu K, Li J, Yan S, et al. A review of status of tetrabromobisphenol A (TBBPA) in China [J]. Chemosphere, 2016, 148: 8-20. [144]Liu K, Zhang Z, Zhang F. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes [J]. Waste Management, 2016, 56: 423-430. [145]Kumar A, Holuszko M, Espinosa D C R. E-waste: An overview on generation, collection, legislation and recycling practices [J]. Resources, Conservation and Recycling, 2017, 122: 32-42. [146]Lu Y, Xu Z. Precious metals recovery from waste printed circuit boards: A review for current status and perspective [J]. Resources, Conservation and Recycling, 2016, 113: 28-39. [147]Lin W-J, Lin Y-S, Chang H-T, et al. Electrocatalytic CuBr@CuO nanoparticles based salivary glucose probes [J]. Biosensors and Bioelectronics, 2021, 194: 113610. [148]Liu M, Zhao H, Chen S, et al. Interface Engineering Catalytic Graphene for Smart Colorimetric Biosensing [J]. ACS Nano, 2012, 6(4): 3142-3151. [149]He W, Jia H, Li X, et al. Understanding the formation of CuS concave superstructures with peroxidase-like activity [J]. Nanoscale, 2012, 4(11): 3501-3506. [150]Zhang X, Wang G, Gu A, et al. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors [J]. Chemical Communications, 2008, (45): 5945-5947. [151]Kong L, Wang C, Yang W, et al. The ultrathin palladium nanosheets for sensitive and visual Hg(2+) detection in the food chain [J]. J Hazard Mater, 2022, 427: 128135. [152]Liu M, Zhang S, Wang Y, et al. Hexavalent Chromium as a Smart Switch for Peroxidase-like Activity Regulation via the Surface Electronic Redistribution of Silver Nanoparticles Anchored on Carbon Spheres [J]. Analytical Chemistry, 2022, 94(3): 1669-1677. [153]Qian Tang X, Dan Zhang Y, Wei Jiang Z, et al. Fe3O4 and metal–organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose [J]. Talanta, 2018, 179: 43-50. [154]Shen C-L, Zheng G-S, Wu M-Y, et al. Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose [J]. 2020, 9(11): 3597-3604. [155]Chen W, Hong L, Liu A-L, et al. Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic [J]. Talanta, 2012, 99: 643-648. [156]Tummala S, Bandi R, Ho Y-P. Synthesis of Cu-doped carbon dot/chitosan film composite as a catalyst for the colorimetric detection of hydrogen peroxide and glucose [J]. Microchimica Acta, 2022, 189(8): 284. [157]Yu J, Cao M, Wang H, Li Y. Novel manganese(II)-based metal-organic gels: synthesis, characterization and application to chemiluminescent sensing of hydrogen peroxide and glucose [J]. Microchimica Acta, 2019, 186(11): 696. [158]Dong W, Huang Y. CeO2/C nanowire derived from a cerium(III) based organic framework as a peroxidase mimic for colorimetric sensing of hydrogen peroxide and for enzymatic sensing of glucose [J]. Microchimica Acta, 2019, 187(1): 11. [159]Mao X, Lu Y, Zhang X, Huang Y. β-Cyclodextrin functionalization of metal-organic framework MOF-235 with excellent chemiluminescence activity for sensitive glucose biosensing [J]. Talanta, 2018, 188: 161-167.
﹀
|
中图分类号: |
X132
|
开放日期: |
2024-06-25
|