- 无标题文档
查看论文信息

论文中文题名:

 煤矸石制备超细硅酸铝及聚合氯化铝铁研究    

姓名:

 李云英    

学号:

 22213226074    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 资源与环境    

研究方向:

 煤系矿产资源加工利用    

第一导师姓名:

 杜美利    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-17    

论文答辩日期:

 2025-05-28    

论文外文题名:

 Study on Preparation of Ultrafine Aluminum Silicate and Polyaluminum Ferric Chloride (PAFC) from Coal Gangue    

论文中文关键词:

 煤矸石 ; 浸出率 ; 超细硅酸铝 ; 表面改性 ; 聚合氯化铝铁 ; 絮凝    

论文外文关键词:

 Coal gangue ; Leaching rate ; Ultrafine aluminum silicate ; Surface modification ; Polyaluminum ferric chloride(PAFC) ; Flocculation    

论文中文摘要:

金鸡滩煤矿是陕北榆神矿区主力矿井之一,年产煤炭1700万t,煤炭开发过程中产生的固体废弃物——煤矸石100余万t/a,对煤矸石加以综合利用是实现区域煤炭资源绿色、低碳、清洁、高效利用的重要组成部分。本文以该区煤矸石为对象,运用现代分析测试技术对其基本性质进行了深入分析,通过Na2CO3煅烧活化-HCl酸浸去杂过程对煤矸石进行预处理,富集煤矸石中的硅元素制备出了性能优异的超细硅酸铝,对矸石提硅后残余的铝、铁元素制备了聚合氯化铝铁(PAFC),本研究旨在开辟区域煤矸石高值化利用新途径。

金鸡滩煤矸石灰分为70.59%,属于中灰煤矸石,主要矿物组成为石英、高岭石、方解石、伊利石和黄铁矿等。其灰成分主要由SiO2(53.61%)、Al2O3(23.25%)、Fe2O3(6.43%)组成,具有制备超细硅酸铝和PAFC的物质基础。

采用“Na2CO3煅烧活化-HCl酸浸”工艺对煤矸石进行提硅除杂预处理。煤矸石经Na2CO3煅烧后,石英和高岭石基本消失,生成了霞石和钠长石,黄铁矿转化为活性更高的偏铁酸钠;煅烧活化后的煤矸石在HCl酸浸后铝、铁等杂质浸出效果显著。研究表明:Na2CO3含量和酸浸时间是影响Al2O3、Fe2O3浸出率的主要因素;最佳浸出条件为:Na2CO3含量40%、煅烧温度850℃、煅烧时间2 h、HCl浓度6 mol/L、液固比15 mL/g、酸浸时间60 min,此条件下Al2O3、Fe2O3的浸出率分别为98.97%、99.03%,酸浸滤渣中SiO2含量为98.18%。

将酸浸滤渣与NaOH溶液水热反应制备水玻璃,结果表明NaOH浓度和液固比是影响水玻璃制备的主要因素。水玻璃最佳制备条件为:NaOH浓度为8%、液固比为10 mL/g、碱浸时间50 min,此条件下制备的水玻璃中SiO32-浓度为0.39 mol/L,SiO2浸出率为95.21%。将水玻璃与Al2(SO4)3反应制备超细硅酸铝,结果显示n(Si)/n(Al)为5时,合成的超细硅酸铝符合企业标准,所制备的超细硅酸铝平均粒径为531.17 nm,但粒径分布不太均匀,颗粒有一定团聚结块现象。

采用十二烷基苯磺酸钠(SDBS)、吐温-80(Tween-80)和硅烷偶联剂(KH-560)三种表面活性剂对超细硅酸铝改性。结果显示:KH-560改性效果最佳,其平均粒径从改性前的531.17 nm降至295.31 nm,且粒径分布均匀;SDBS和Tween-80改性后平均粒径分别为461.92 nm和396.06 nm,分散效果较差。FTIR分析表明,KH-560通过硅羟基与颗粒表面形成稳定的Si-O-Si化学键,而SDBS和Tween-80通过氢键或物理吸附作用于颗粒表面;这种机理差异直接影响超细硅酸铝的热稳定性,KH-560改性样品高温残留量(92.20%)接近未改性样品(92.59%),优于SDBS(90.85%)和Tween-80(91.47%),说明KH-560改性可有效维持材料高温结构稳定性。SEM分析直观揭示了不同改性剂对颗粒形貌的调控作用,KH-560改性样品呈现均匀分散的球形颗粒,而SDBS和Tween-80改性样品显示有部分颗粒软团聚。KH-560改性优化了超细硅酸铝的分散性、热稳定性及微观结构,为高性能复合材料开发提供理论支撑。

以酸浸滤液为原料制备PAFC,结果显示n(Al)/n(Fe)是影响PAFC制备的关键因素。PAFC最佳制备条件为:n(Al)/n(Fe)为9、pH值为3、聚合时间为2.5 h、聚合温度为90℃,此条件下制备的PAFC对400度污水的浊度去除率为85.57%。实验模拟PAFC处理煤泥水的实际效果表明,自制PAFC对2 g/L煤泥水絮凝效果优于市售PAFC;当煤泥水pH值为6~8时,絮凝效果最好;pH值为7时,自制PAFC投加量为300 mg/L对2 g/L煤泥水最大浊度去除率为85.65%。FTIR分析显示自制PAFC有明显的Fe-O-Fe、Al-O-Al的振动吸收峰,表明自制PAFC中金属离子得到有效聚合。

论文外文摘要:

Jinjitan Coal Mine, a key production site in the Yushen mining area of northern Shaanxi, produces 17 million tons of coal annually while generating over 1 million t/a of coal gangue solid waste. Comprehensive utilization of coal gangue is crucial for achieving green, low-carbon, clean, and efficient regional coal resource utilization. This study focuses on coal gangue from this region, employing modern analytical techniques to systematically characterize its properties. A pretreatment process involving Na2CO3 calcination-activation followed by HCl acid leaching was developed to remove impurities and enrich silicon, enabling the synthesis of high-purity ultrafine aluminosilicate. Residual aluminum and iron from the silicon extraction process were co-utilized to produce polyaluminum ferric chloride (PAFC), establishing a novel pathway for high-value, integrated utilization of coal gangue.

The ash content of Jinjitan coal gangue is 70.59%, classifying it as high-ash coal gangue. The primary mineral composition includes quartz, kaolinite, calcite, illite, and pyrite. The ash components are predominantly composed of SiO2 (53.61%), Al2O3 (23.25%), and Fe2O3 (6.43%), providing a material basis for the preparation of ultrafine aluminum silicate and co-production of PAFC.

The process of "Na2CO3 calcination activation -HCl acid leaching" was used to extract silicon and remove impurities from coal gangue. After calcination of coal gangue with Na2CO3, quartz and kaolinite disappeared, forming nepheline and albite, while pyrite transformed into more reactive sodium metafebrite. The leaching of impurities such as aluminum and iron was significantly improved after HCl acid leaching of the calcined and activated coal gangue. The study demonstrates that the Na2CO3 content and acid leaching time are the key factors influencing the leaching rates of Al2O3 and Fe2O3. The optimal leaching conditions are: Na2CO3 content of 40%, calcination temperature of 850°C, calcination time of 2 h, HCl concentration of 6 mol/L, liquid-to-solid ratio of 15 mL/g, and acid leaching time of 60 min. Under these conditions, the leaching rates of Al2O3 and Fe2O3 are 98.97% and 99.03%, respectively, and the SiO2 content in the acid leaching residue is 98.18%.

The hydrothermal reaction of the acid leaching residue with NaOH solution to prepare water glass revealed that the NaOH concentration and liquid-to-solid ratio are the main factors affecting the preparation of water glass. The optimal preparation conditions for water glass are: NaOH concentration of 8%, liquid-to-solid ratio of 10 mL/g, and alkali leaching time of 50 min. Under these conditions, the concentration of SiO32- in the prepared water glass is 0.39 mol/L, and the SiO2 leaching rate is 95.21%. The reaction of water glass with Al2(SO4)3 to prepare ultrafine aluminum silicate found that when n(Si)/n(Al) is 5, the synthesized ultrafine aluminum silicate meets the enterprise standards. The average particle size of the prepared ultrafine aluminum silicate is 531.17 nm, but the particle size distribution is non-uniform, with significant agglomeration.

Three surfactants—sodium dodecylbenzene sulfonate(SDBS), Tween-80, and silane coupling agent (KH-560)—were used to modify the ultrafine aluminum silicate. The results show that KH-560 exhibits the best modification effect, with its average particle size decreasing from 531.17 nm before modification to 295.31 nm, and the particle size distribution uniformity is optimal. The particle sizes after SDBS and Tween-80 modification are 461.92 nm and 396.06 nm, respectively, with poorer dispersion. FTIR analysis shows that KH-560 forms a stable Si-O-Si chemical bond with the particle surface through silanol groups, while SDBS and Tween-80 interact with the particle surface through hydrogen bonding or physical adsorption. This difference in mechanism directly affects the thermal stability of the ultrafine aluminum silicate. The high-temperature residue (92.20 %) of the KH-560 modified sample is close to that of the unmodified sample (92.59%), which is significantly better than SDBS (90.85%) and Tween-80 (91.47%), indicating that KH-560 modification can effectively maintain the high-temperature structural stability of the material. SEM analysis visually reveals the regulatory effect of different modifiers on particle morphology. The KH-560 modified sample presents uniformly dispersed spherical particles, while the SDBS and Tween-80 modified samples exhibit some particle soft agglomeration. KH-560 modification optimizes the dispersibility, thermal stability, and microstructure of ultrafine aluminum silicate, providing a theoretical basis for the development of high-performance composite materials.

Using acid leaching filtrate as a raw material to prepare PAFC, the study found that n(Al)/n(Fe) is a key factor affecting PAFC preparation. The optimal preparation conditions for PAFC are: n(Al)/n(Fe) of 9, pH of 3, polymerization time of 2.5 h, and polymerization temperature of 90°C. Under these conditions, the turbidity removal rate of the prepared PAFC for simulated wastewater (400 NTU) is 85.57%. Laboratory simulation of the actual effect of PAFC on treating coal slurry water revealed that the flocculation performance of the in-house synthesized PAFC on 2 g/L coal slurry water is superior to that of commercially available PAFC. Achieving the same flocculation effect requires a lower dosage of the in-house synthesized PAFC. When the pH of the coal slurry water sample is between 6 and 8, the treatment effect is optimal. At pH=7, the maximum turbidity removal rate of 85.65% is achieved with an in-house synthesized PAFC dosage of 300 mg/L for 2 g/L coal slurry water. FTIR analysis revealed that the in-house synthesized PAFC exhibits distinct vibrational absorption peaks corresponding to Fe-O-Fe and Al-O-Al, indicating effective polymerization of metal ions within the PAFC.

参考文献:

[1] 孙宝东, 滕霄云, 张帆, 等. 2024年中国能源供需形势研判[J]. 中国煤炭, 2024, 50(4): 20-26.

[2] 潘硕, 胡雨晴, 王海燕, 等. 煤矸石综合利用技术现状与标准体系研究[J]. 中国矿业, 2024, 33(7): 89-98.

[3] 史晓凯, 陈文慧, 王浩, 等. 煤矸石规模化综合利用整体解决方案研究[J]. 中国煤炭, 2024, 50(3): 133-142.

[4] 王双明, 刘浪, 朱梦博, 等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报, 2024, 49(03): 1-21.

[5] 姜耀东. 推动煤矸石从“生态包袱”向“资源富矿”转型[N]. 人民政协报, 2025-2-21(09).

[6] Liu X. Low-carbon utilization of coal gangue under the carbon neutralization strategy: a short review[J]. Journal of Material Cycles and Waste Management, 2023, 25(4): 1978-1987.

[7] Zheng Q, Zhou Y, Liu X, et al. Environmental hazards and comprehensive utilization of solid waste coal gangue[J]. Progress in Natural Science: Materials International, 2024, 34(2):223-239.

[8] 冯来宏, 陈良发, 李义朝, 等. 双碳背景下我国煤矸石资源化利用现状与进展[J]. 矿产综合利用, 2024(3): 1-14.

[9] Li D, Wu D, Xu F, et al. Literature overview of Chinese research in the field of better coal utilization[J]. Journal of Cleaner Production, 2018, 185: 959-980.

[10] Zhang Y, Yang Y, Zeng Q. Research on coal gangue recognition based on multi-source time–frequency domain feature fusion[J]. ACS omega, 2023, 8(28): 25221-25235.

[11] Pan J, Nie T, Zhou C, et al. The effect of calcination on the occurrence and leaching of rare earth elements in coal refuse[J]. China Rare Earth Information, 2022(3): 31-31.

[12] Xu H, Du H, Kang L, et al. Constructing straight pores and improving mechanical properties of Gangue-Based porous ceramics[J]. Journal of Renewable Materials, 2021, 9(12): 2129-2141.

[13] 王丽萍, 李超, 常宁, 等. 煤矸石中有价元素回收技术研究进展[J]. 无机盐工业, 2023, 55(07): 10-17.

[14] 徐培杰, 朱毅菲, 曹永丹, 等. 煤矸石资源高值化利用研究进展[J]. 环境工程学报, 2023, 17(10): 3137-3147.

[15] 张晶, 李华民, 丁一慧. 煤矸石发电发展趋势探讨[J]. 煤炭工程, 2014, 46(02): 103-105.

[16] 罗作球, 姚源, 孟刚, 等. 煤矸石用作混凝土集料的建材资源化研究进展[J]. 材料导报, 2015, 29(S2): 460-475.

[17] 张凯峰, 吴雄, 杨文, 等. 煤矸石建材资源化的研究进展[J]. 材料导报, 2013, 27(S1): 290-293.

[18] 宋伟, 刘成勇, 杨军军, 等. 煤矸石规模化处置及高附加值利用现状与展望[J]. 矿业研究与开发, 2024, 44(11): 268-282.

[19] 黄韵, 马晓燕. 硅酸盐粘土及其聚合物基纳米复合材料制备方法综述[J]. 矿业研究与开发, 2005, 25(02): 39-42.

[20] 张海棠. 对硅酸铝制备过程的研究[J]. 黑龙江科技信息, 2008(02): 12-13.

[21] Tamura K, Kawamura K. Molecular dynamics modeling of tubular aluminum silicate: Imogolite[J]. The Journal of Physical Chemistry B, 2002, 106(2): 271-278.

[22] 徐建生, 常跃, 李大振, 等. 纳米硅酸铝的制备方法及在涂料中的应用[J]. 化工新型材料, 2001, 29(07): 13-14.

[23] 徐建生, 邵建人. 超细硅酸铝的制备方法及在涂料中的应用[J]. 硅铝化合物, 2001(3): 25-26.

[24] 曾鹏, 谢海云, 晋艳玲, 等. 我国煤矸石的特性及其提取氧化铝研究进展[J]. 矿产保护与利用, 2022, 42(06): 21-29.

[25] 武丹宇, 庄故章, 刘梅, 等. 碳酸钠焙烧活化——硫酸浸出提取煤矸石中氧化铝的研究[J]. 矿产保护与利用, 2023, 43(06): 27-32.

[26] Zhang T, Yang H, Zhang H, et al. Aluminum extraction from activated coal gangue with carbide slag[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105504.

[27] 邢波, 彭方杰, 钟佳, 等. 采用煤矸石制取白炭黑的优化实验[J]. 辽宁师专学报(自然科学版), 2023, 25(03): 105-108.

[28] Wu Y, Du H, Gao Y, et al. Syntheses of four novel silicate-based nanomaterials from coal gangue for the capture of CO2[J]. Fuel, 2019, 258: 116192.

[29] 宁琴, 李彩霞, 刘鑫, 等. 煤矸石制备聚硅酸氯化铝及其絮凝性能[J]. 硅酸盐学报, 2023, 51(01): 204-214.

[30] Zheng Y, Zhou J, Ma Z, et al. Preparation of a high-silicon ZSM-5 molecular sieve using only coal gangue as the silicon and aluminum sources[J]. Materials, 2023, 16(12): 4338-4352.

[31] Kong D, Zhou Z, Song S, et al. Preparation of poly aluminum-ferric chloride (PAFC) coagulant by extracting aluminum and iron ions from high iron content coal gangue[J]. Materials, 2022, 15(6): 2253-2267.

[32] Li L, Ren X, Jia W, et al. Surface hydrophobic modification of ultra-fine aluminum silicate by mechanically grinding and heating[J]. Applied surface science, 2010, 256(22): 6824-6828.

[33] Mochizuki K, Hirabayashi D, Kojima Y, et al. Evaluation of nanoporous aluminum silicate including active oxygen species[J]. Materials transactions, 2005, 46(12): 2629-2632.

[34] 吴瑞巧, 焦淑红, 邹若飞, 等. 超细硅酸铝合成研究[J]. 山东化工, 2004, (05): 6-7.

[35] Cai Y, Kumar R, Huang W, et al. Mesoporous aluminum silicate catalyst with single-type active sites: characterization by solid-state NMR and studies of reactivity for Claisen rearrangement reactions[J]. The Journal of Physical Chemistry C, 2007, 111(3): 1480-1486.

[36] 吴燕, 于浩. 超细硅酸铝粉体表面改性[J]. 无机硅化合物(天津), 2008(1): 48-50.

[37] 毋伟, 陈建峰, 邵磊, 等. 化学沉淀原位改性法高比表面积硅酸铝的制备与表征[J]. 矿冶工程, 2003, 23(02): 42-45.

[38] Ohashi F, Arai K, Shibahara A. Effect of structure-controlled aluminum silicate nanofiller on surface properties of emulsion coating films[J]. Journal of Coatings Technology and Research, 2022, 19(1): 355-360.

[39] Selvaggio G, Kruss S. Preparation, properties and applications of near-infrared fluorescent silicate nanosheets[J]. Nanoscale, 2022, 14(27): 9553-9575.

[40] 张英华, 赵启红, 李来发, 等. 微波干燥法制备纳米硅酸铝[J]. 化工时刊, 2007, 21(6): 1-3.

[41] Krysztafkiewicz A, Werner R, Lipska L K, et al. Effect of silane coupling agents on properties of precipitated sodium–aluminium silicates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 182(1-3): 65-81.

[42] Werner R, Krysztafkiewicz A, Dec A, et al. Effect of surface modification on physicochemical properties of precipitated sodium–aluminium silicate, used as a pigment in acrylic dispersion paints[J]. Dyes and pigments, 2001, 50(1): 41-54.

[43] Jo H S, Kim H, Yoon S Y. Synthesis and characterization of mesoporous aluminum silicate and its adsorption for Pb (II) ions and methylene blue in aqueous solution[J]. Materials, 2022, 15(10): 3562-3576.

[44] 刘彬,于少明,张颍. 等. 由膨润土制取超细硅酸铝的方法[J]. 广州化工, 2011, 39(15): 109-122.

[45] 黄伶俐. 由膨润土制取超细硅酸铝和氧化铝晶须工艺研究[D]. 合肥工业大学, 2012.

[46] 褚亮. 高炉渣制备超细硅酸铝和镁铝尖晶石的研究[D]. 安徽工业大学, 2014.

[47] 李辽沙, 李洪花, 王梅, 等. 纳米硅酸铝粉体制备及影响因素分析[J]. 过程工程学报, 2007, (03): 546-550.

[48] 李洪花, 李辽沙. 含铝废液制备超细硅酸铝[J]. 化工学报, 2007, 58(02): 514-517.

[49] 李辽沙, 李洪花, 王梅, 等. 含铝废液制备超细硅酸铝中除杂机理探讨[J]. 硅酸盐通报, 2007(03): 436-440.

[50] 贺晓唯, 毕诗文, 朱龙, 等. 可溶性聚硅酸铝铁的制备及其在废水处理中的应用[J]. 分子科学学报, 2006, 22(03): 200-205.

[51] 李顺超. 聚硅酸铝铁絮凝剂的制备及其在印染废水处理中的应用[J]. 中国石油和化工标准与质量, 2013(18): 30-30.

[52] Kadooka H, Kiso Y, Goto S, et al. Flocculation behavior of colloidal suspension by use of inorganic and polymer flocculants in powder form[J]. Journal of water process engineering, 2017, 18: 169-175.

[53] Yu J, Sun D D, Tay J H. Characteristics of coagulation-flocculation of humic acid with effective performance of polymeric flocculant and inorganic coagulant[J]. Water Science and Technology, 2003, 47(1): 89-95.

[54] Zhang W, Tang M, Li D, et al. Effects of alkalinity on interaction between EPS and hydroxy-aluminum with different speciation in wastewater sludge conditioning with aluminum based inorganic polymer flocculant[J]. Journal of Environmental Sciences, 2021, 100: 257-268.

[55] Zhen Z, He C, Wang Y, et al. A novel method of synthesizing polymeric aluminum ferric sulfate flocculant and preparing red mud-based ceramsite[J]. Materials, 2024, 17(6): 1239-1253.

[56] Jin W, Nan J, Chen M, et al. Superior performance of novel chitosan-based flocculants in decolorization of anionic dyes: Responses of flocculation performance to flocculant molecular structures and hydrophobicity and flocculation mechanism[J]. Journal of Hazardous Materials, 2023, 452: 131273.

[57] Liu C, Gao B, Wang S, et al. Synthesis, characterization and flocculation performance of a novel sodium alginate-based flocculant[J]. Carbohydrate Polymers, 2020, 248: 116790.

[58] Feng B, Peng J, Zhu X, et al. The settling behavior of quartz using chitosan as flocculant[J]. Journal of Materials Research and Technology, 2017, 6(1): 71-76.

[59] Kocaman E, Yildiz M. Investigation of starch as flocculant for removing oil from oily wastewater[J]. Journal of Water Process Engineering, 2023, 56: 104499.

[60] Maruyama H, Seki H. Evaluation of flocculation performance of polysaccharide-protamine complex flocculant by flocculation model[J]. Biochemical Engineering Journal, 2022, 180: 108356.

[61] Guo Y, Li X, Sun J, et al. Physicochemical characterization and flocculation performance evaluation of PAC/PMAPTAC composite flocculant[J]. Journal of Applied Polymer Science, 2022, 139(7): 51653-51667.

[62] Li Y, Zhang H, Wang X, et al. Preparation and flocculation performance of polysilicate aluminum-cationic starch composite flocculant[J]. Water, Air, & Soil Pollution, 2020, 231: 1-7.

[63] Kangama A, Zeng D, Tian X, et al. Application of chitosan composite flocculant in tap water treatment[J]. Journal of Chemistry, 2018, 2018(1): 2768474.

[64] Dlamini N G, Basson A K, Pullabhotla R V S R. Wastewater treatment by a polymeric bioflocculant and iron nanoparticles synthesized from a bioflocculant[J]. Polymers, 2020, 12(7): 1618-1633.

[65] Natarajan K A. Use of bioflocculants for mining environmental control[J]. Transactions of the Indian Institute of Metals, 2017, 70: 519-525.

[66] Zhang Y, Li M, Liu D, et al. Aluminum and iron leaching from power plant coal fly ash for preparation of polymeric aluminum ferric chloride[J]. Environmental technology, 2019, 40(12): 1568-1575.

[67] Cheng Y, Xu L, Liu C. Red mud-based polyaluminium ferric chloride flocculant: Preparation, characterisation, and flocculation performance[J]. Environmental Technology & Innovation, 2022, 27: 102509-102523.

[68] 黄前, 邹丽霞, 兰鹏, 等. 碳酸钠焙烧粉煤灰提铝研究[J]. 中国煤炭, 2019, 45(10): 70-74.

[69] 汪欣林, 黄朋, 吴家铭, 等. 煤矸石钠盐焙烧增白工艺与机理[J]. 煤炭学报, 2024, 49(S1): 434-445.

[70] 张又中, 车敏, 刘义青, 等. 热活化―酸浸法提取煤矸石中铝和铁的实验研究[J]. 能源环境保护, 2024, 38(06): 179-187.

[71] 郭文超, 朱晓波, 张治国, 等. 煤矸石焙烧活化-酸浸提取氧化铝的实验研究[J]. 煤炭转化, 2023, 46(06): 80-89.

[72] 贾敏, 杨磊.煤矸石煅烧活化提取氧化铝技术研究[J]. 矿产综合利用, 2020, (02):140-144.

[73] 武占强. 助熔剂对煤灰熔融特性及其成分的影响[J]. 氮肥与合成气, 2019, 47(07): 27-31.

[74] 燕可洲, 郭彦霞, 李宁静, 等. 氧化钙添加剂对碳酸钠活化粉煤灰的影响及机理[J]. 硅酸盐通报, 2018, 37(03): 1003-1009.

[75] 武泽民, 王钰菲, 李淑敏. 煤矸石资源化利用技术进展[J]. 煤化工, 2025, 53(01): 87-91.

[76] Akturk B, Nayak S, Das S, et al. Microstructure and strength development of sodium carbonate–activated blast furnace slags[J]. Journal of Materials in Civil Engineering, 2019, 31(11): 04019283.

[77] 秦岭, 夏举佩, 张召述. 煤矸石酸渣制备水玻璃工艺研究 [J]. 硅酸盐通报, 2011, 30(06): 1420-1424.

[78] 贾陆营, 连勇, 张津, 等. 羟基硅酸镁粉体表面改性及作为润滑油添加剂的摩擦学性能研究[J]. 表面技术, 2020, 49(04): 213-221.

[79] Jeong E J, Park C K, Kim S H. Fabrication of microcellular polylactide/modified silica nanocomposite foams[J]. Journal of Applied Polymer Science, 2020, 137(17): 48616-48630.

[80] Yan L, Wang Y, Li J, et al. Preparation of polymeric aluminum ferric chloride (PAFC) coagulant from fly ash for the treatment of coal-washing wastewater[J]. Desalination and Water Treatment, 2016, 57(39): 18260-18274.

[81] Niu X, Li X, Zhao J, et al. Preparation and coagulation efficiency of polyaluminium ferric silicate chloride composite coagulant from wastewater of high-purity graphite production[J]. Journal of Environmental Sciences, 2011(07):1122-1128.

中图分类号:

 TQ536.9    

开放日期:

 2025-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式