论文中文题名: | 甲基纤维素温敏水凝胶制备及灭火性能研究 |
姓名: | |
学号: | 19220089041 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 消防科学与工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-23 |
论文答辩日期: | 2022-05-31 |
论文外文题名: | Preparation and Fire Extinguishing Performance of Thermosensitive hydrogel of methyl cellulose |
论文中文关键词: | |
论文外文关键词: | Methyl cellulose ; Phase transformation mechanism ; Wood crib fire ; Coal fire |
论文中文摘要: |
火灾频发导致人类的生命及财产安全受到极大威胁,快速高效扑灭火灾以最大程度减少损失意义重大。温敏性水凝胶兼具“溶胶-凝胶”后相变吸热、高汽化潜热和高粘附性等特点,在火灾防控领域具有较好的应用前景。本文首次在甲基纤维素(MC)中加入聚丙烯酸钠(PAAS)、氯化镁(MgCl2)以制备温敏性水凝胶,探讨其对木垛和煤体两种不同燃烧形式固体火灾的灭火效果,揭示其灭火机理。 采用单因素法研究了三元体系下各组分浓度对凝胶时间、凝胶强度、常温粘度及临界转变温度等参数的影响,从宏观和微观两个角度揭示了凝胶转变机理。采用CCD响应曲面法对配方进行优化设计,优选制备比例为MC:PAAS:MgCl2=1.3:2.11:16。通过失水率测试、傅立叶红外光谱(FT-IR)及扫描电镜(SEM)等方法表征了凝胶性能。 MC-PAAS-MgCl2凝胶灭木垛火效果,通过降温速率、火焰面积和灭火时间变化等参数表征灭火效率,为温敏性水凝胶灭火工艺及参数设置提供依据。采用2wt%的温敏性水凝胶进行灭1A木垛火实验,结果表明:温敏性水凝胶灭火后无复燃现象发生,由于溶胶-凝胶转变过程可逆,灭火结束后随着火场温度降低温敏性水凝胶逐渐变稀,残存的灭火剂容易处理,灭火效率较高。 通过程序升温实验测试了三种不同变质程度煤样经温敏性水凝胶处理前后的气体产物、阻化率及耗氧速率等参数,分析了胶体在煤自燃过程中的抑制作用。搭建中型煤火试验台(装煤量200 kg)进行了胶体灭煤火性能测试,结果表明:温敏性凝胶注入高温煤体后相变降温,吸收了煤体火区的高温热能,降低了煤氧复合速度,致使煤火熄灭。本文的研究成果为凝胶类灭火剂的研究与应用提供了新的思路。 |
论文外文摘要: |
The frequent occurrence of fires has greatly threatened human life and property safety. It is of great significance to quickly and efficiently extinguish fires to minimize losses. Thermosensitive hydrogels have good application prospects in the field of fire prevention and control due to their characteristics of "sol-gel" post-phase transition endothermic, high latent heat of vaporization, and high adhesion. In this paper, sodium polyacrylate (PAAS) and magnesium chloride (MgCl2) were added to methylcellulose (MC) for the first time to prepare thermosensitive hydrogel to discuss their fire-extinguishing effects on wood stacks and coal and revealt their fire-extinguishing mechanism. The effects of the concentration of each component on the parameters of gelation time, gel strength, room temperature viscosity and critical transition temperature were tested by single factor method, and the gel transition mechanism was revealed from both macroscopic and microscopic perspectives. The formula was optimized by CCD response surface method, and the preferred preparation ratio was: MC: PAAS: MgCl2=1.3: 2.11: 16. The gel properties were characterized by water loss rate test, fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM). A small fire extinguishing test bench was built to test the fire extinguishing effect of three concentrations of MC: PAAS: MgCl2 gel, and the fire extinguishing efficiency was characterized by parameters of cooling rate, flame area and fire extinguishing time, which can provide the basis for fire extinguishing process and parameter setting of thermosensitive hydrogel. The 1A wood stack fire extinguishing experiment was carried out with 2wt% thermosensitive hydrogel. The results showed that there was no re-ignition phenomenon after the thermosensitive hydrogel extinguished the fire. Since the sol-gel transition was reversible, the thermosensitive hydrogel gradually became thinner as the temperature of the fire field decreases after the fire extinguishing, the remaining fire extinguishing agent was easy to handle, and the fire extinguishing efficiency was high. The parameters such as gas product, resistance rate and oxygen consumption rate before and after treatment with thermosensitive hydrogels were tested by temperature-programmed experiments, and the inhibitory effect of colloids on coal spontaneous combustion was analyzed. A medium-sized test bench (with a coal loading capacity of 200 kg) was built to test the fire extinguishing performance of colloial coal. The results showed that the thermosensitive gel was injected into the high-temperature coal after phase change and cooled down, absorbed the high-temperature heat energy in the fire area, and reduced the coal-oxygen recombination speed, and caused the coal fire to extinguish. The research results of this paper provide new ideas for the research and application of gel fire extinguishing agents. |
参考文献: |
[1] 俞晨. 建筑火灾烟气危害分析[J]. 现代盐化工, 2021,48(03):59-60. [2] 颜琛. 火灾分类国家标准[J]. 中国消防, 1985(02):19. [3] 东靖飞, 张全灵, 冯伟, 等. 大范围固体深位火灾扑救技术研究[Z]. 2014. [5] 高扬, 邓青, 李玉, 等. 石蜡火灾灭火效果对比实验研究[J]. 清华大学学报(自然科学版), 2021,61(06):494-501. [6] 朱秀凯, 吴之心, 卢宝阳. 水凝胶作为灭火防火材料的研究进展与应用[J]. 江西科技师范大学学报, 2020,19(06):42-46. [9] 贾春雷, 蒋仲安, 杨漪, 等. 温敏性高分子水凝胶制备及灭火性能研究[J]. 功能材料, 2013,44(11):1593-1597. [10] 杨漪. 基于氧化特性的煤自燃阻化剂机理及性能研究[D]. 西安科技大学, 2015. [11] 朱显伟, 贾广超, 靳庆生. 木炭粉堆垛火灾扑救方法试验研究[J]. 消防科学与技术, 2021,40(11):1580-1583. [12] 汤华清. 高分子水凝胶灭火剂黏附性改进与应用研究[J]. 中国安全科学学报, 2019,29(04):64-69. [13] 张宇. 环保水系天然生物灭火剂试验与应用[J]. 消防科学与技术, 2017,36(01):92-95. [14] 郭芬芬. 水系灭火剂的优化及智能灭火的研究[D]. 南京理工大学, 2016. [15] 吴辉. 温敏性羟丁基壳聚糖/丝素共混凝胶的制备[D]. 苏州大学, 2017. [20] 毛海良, 潘鹏举, 单国荣, 等. 生物可降解温敏性物理交联水凝胶的研究进展[J]. 高分子材料科学与工程, 2014,30(11):180-184. [21] 赵小燕, 单国荣. N-异丙基丙烯酰胺嵌段共聚物自组装行为研究进展[J]. 化工学报, 2017,68(02):535-541. [22] 陈其铽, 田景振. 外用温敏水凝胶基质的研究进展[J]. 药学研究, 2013,32(10):596-599. [23] 隋美玉, 刘夕升, 赵聪, 等. 明胶基温敏性水凝胶的合成及凝胶性能[J]. 高分子材料科学与工程, 2019,35(07):13-17. [25] 刘夕升, 隋美玉, 赵聪, 等. 壳聚糖交联智能型水凝胶的制备与降解性能[J]. 高分子材料科学与工程, 2019,35(12):138-142. [26] 张碧君, 邹祖豪, 聂小琴, 等. 壳聚糖温敏水凝胶研究进展[J]. 山东化工, 2020,49(10):49-51. [28] 康传真, 程晓杰, 陈西广. 壳聚糖及其衍生物温敏水凝胶研究进展及其应用[J]. 天然产物研究与开发, 2010,22(05):919-927. [30] 王津, 陈莉敏, 蒋智清, 等. 壳聚糖-明胶体系的温敏凝胶及其药物缓释性能[J]. 功能材料, 2013,44(09):1294-1297. [31] 沈娟莉, 付时雨. 纤维素基水凝胶的研究进展[J]. 化工进展, 2020,47(18):88-89. [32] 潘晓晨, 庄华红, 张琳, 等. 甲基纤维素硬脂酸酯/γ-聚谷氨酸复合温敏水凝胶的制备及其性能研究[J]. 离子交换与吸附, 2018,34(01):9-18. [33] 何伟健. 纤维素基快速响应多功能水凝胶的构建及功能特性研究[D]. 华南理工大学, 2020. [35] 陈丽嫚, 汪涛, 李康. 壳聚糖/羟丙基甲基纤维素温敏水凝胶的制备[J]. 高分子材料科学与工程, 2016,32(11):156-161. [36] 韦嘉盛, 戴磊, 贺瓶. 基于纤维素及其衍生物的凝胶材料设计[J]. 复合材料学报, 2022, 39(7): 1-20. [38] 张敏, 李碧婵, 陈良壁. 互穿网络聚合物水凝胶的制备及其吸附研究进展[J]. 化工进展, 2015,34(04):1043-1049. [41] 邝清林. 温敏甲基纤维素基凝胶的转变及性质研究[D]. 天津大学, 2004. [43] 周珊. 盐和表面活性剂共存条件下甲基纤维素溶液凝胶化行为研究[D]. 中国科学技术大学, 2011. [45] 宫晓颐. 甲基纤维素水溶液的凝胶转变[J]. 成都科技大学学报, 1985,29(03):169-172. [49] 邓军, 杨漪, 唐凯. 温敏性水凝胶制备及灭火性能研究[J]. 中国矿业大学学报, 2014,43(01):1-7. [50] 贾春雷, 蒋仲安, 杨漪, 等. 温敏性高分子水凝胶制备及灭火性能研究[J]. 功能材料, 2013,44(11):1593-1597. [60] 刘伟, 刘子龙, 刘畅. 响应曲面法优化低品位铜钼矿生物浸出工艺[J]. 中南大学学报(自然科学版), 2021,52(09):3111-3120. [61] 王续. 矿用粉煤灰/CMC复合凝胶防灭火性能研究[D]. 太原理工大学, 2016. [62] 刘立威. 煤自燃阻化剂高温阻燃特性研究[D]. 中国矿业大学, 2019. [64] 解杨, 钟凌云, 薛晓, 等. 基于多指标-响应曲面法优选炆地黄炮制工艺及成分与色泽相关性分析[J]. 中国中药杂志, 2022,68(5):1-13. [65] 黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究[J]. 材料导报, 2017,31(21):158-163. [66] 杨毅, 李丽霞, 吕保和, 等. 多孔半互穿温敏水凝胶的制备及其性能研究[J]. 现代化工, 2017,37(08):104-108. [67] 杨元博. 温敏性水凝胶制备及灭火特性实验研究[D]. 西安科技大学, 2019. [68] 高江涛, 冉小波. 氯盐及其复配阻化剂对煤氧化抑制作用的实验研究[J]. 煤炭转化, 2022,45(4):1-8. [69] 姜智威. 防治煤炭自燃的天然多糖接枝水凝胶的制备与特性研究[D]. 中国矿业大学, 2021. [70] 邓军, 张敏, 雷昌奎, 等. 不同变质程度煤自燃特性及低温氧化动力学分析[J]. 安全与环境学报, 2021,21(01):94-100. |
中图分类号: | TQ569 |
开放日期: | 2022-06-23 |