- 无标题文档
查看论文信息

论文中文题名:

 石墨烯吸收器中色散HIE-FDTD方法的改进及仿真    

姓名:

 张辉    

学号:

 18207038005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080904    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位) - 电磁场与微波技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电磁场与微波技术    

研究方向:

 计算电磁学    

第一导师姓名:

 韩晓冰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-20    

论文答辩日期:

 2021-06-06    

论文外文题名:

 Improvement and Simulation of Dispersive HIE-FDTD Method in Graphene Absorber    

论文中文关键词:

 太赫兹频段 ; 色散HIE-FDTD方法 ; 石墨烯吸收器 ; 共形技术 ; 辅助差分方法    

论文外文关键词:

 Terahertz band ; Dispersion mixing explicit implicit finite difference time domain ; Graphene Absorber ; Conformal technology ; Auxiliary difference method    

论文中文摘要:

石墨烯具有零带隙结构、低损耗性、动态可调性,在太赫兹吸收器应用中具有较高的实用价值。时域有限差分(FDTD)方法结合辅助差分(ADE)方法已经应用于太赫兹频段石墨烯吸收器的仿真分析中,但该方法需要采用极小的网格剖分石墨烯区域,导致其对石墨烯吸收器计算效率低。因此,提高计算效率尤为重要。

本文在分析石墨烯相关理论和混合显隐式时域有限差分(HIE-FDTD)方法稳定性条件的基础上,采用ADE方法将太赫兹频段石墨烯的带内电导率引入到HIE-FDTD方法中,从而得到了石墨烯中色散HIE-FDTD方法的迭代公式,并对该方法的稳定性条件、CPML吸收边界、总场/散射场边界以及周期边界进行详细推导。在数值仿真中,通过无限大石墨烯结构验证色散HIE-FDTD方法的高效性。结果表明,该方法对石墨烯的仿真较FDTD方法计算速度更快。针对具有弯曲结构的石墨烯模型,在色散HIE-FDTD方法中引入共形技术形成了改进的色散HIE-FDTD方法,并采用改进的色散HIE-FDTD方法与色散HIE-FDTD方法分别对具有弯曲结构的石墨烯模型进行仿真。仿真结果表明,在保持相同计算精度条件下,改进的色散HIE-FDTD方法计算速度较色散HIE-FDTD提高了5倍。

最后设计了石墨烯的单频带和双频带太赫兹吸收器,并采用改进的色散HIE-FDTD方法对其进行了仿真分析。仿真结果表明,单频带石墨烯吸收器在2.68 THz附近对入射波的吸收率可达到99.8%。双频带石墨烯吸收器在1.66 THz和3.25 THz附近对入射波的吸收率均大于96%。因此,所设计的吸收器达到了对入射波较理想的吸收效果,该结构具有一定的参考价值。

论文外文摘要:

Graphene has zero band gap structure, low loss and dynamic adjustability, which has high practical value in the application of terahertz absorbers.Finite difference time domain (FDTD) method combined with assisted difference (ADE) method has been applied to the simulation analysis of graphene absorber in terahertz band, but this method requires a very small mesh to divide the graphene region, which leads to its low calculation efficiency for the graphene absorber.Therefore, it is very important to improve the computing efficiency.

In this thesis, based on the analysis of graphene-related theories and the stability conditions of the Hybrid Explicit Implicit Finite Difference Time Domain (HIE-FDTD) method, uses the ADE method to introduce the in-band conductivity of the terahertz band graphene into the HIE-FDTD method. In this way, the iterative formula of the dispersion HIE-FDTD method in graphene is obtained, and the stability conditions of the method, the CPML absorption boundary, the total field/scattering field boundary and the periodic boundary are derived in detail. In the numerical simulation, the high efficiency of the dispersive HIE-FDTD method is verified through the infinite graphene structure. The results show that this method is faster than FDTD method in the simulation of graphene. For graphene with a curved structure, the conformal technology is introduced into the dispersive HIE-FDTD method to form an improved dispersive HIE-FDTD method, and the improved dispersive HIE-FDTD method and the dispersive HIE-FDTD method are used for the curved structure respectively. Graphene is simulated. The simulation results show that the calculation speed of the improved chromatic dispersion HIE-FDTD method is 5 times higher than that of the chromatic dispersion HIE-FDTD under the condition of maintaining the same calculation accuracy.

Finally, the graphene single-band and dual-band terahertz absorbers are designed, and the improved dispersion HIE-FDTD method is used to simulate and analyze them. The simulation results show that the single-band graphene absorber has an absorption rate of 99.8% for incident waves near 2.68 THz. The absorption rate of the double-band graphene absorber to the incident wave is greater than 96% near 1.66 THz and 3.25 THz. The above results show that the designed absorber achieves an ideal absorption effect on the incident wave, and this structure has a certain reference value.

参考文献:

[1] Sang, Min, Baek, et al. A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application [J]. International Journal of Aeronautical and Space Sciences, 2017, 18(2):215-221.

[2] Zhu H, Zhang Y, Ye L, et al. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption [J]. Optics Express, 2020, 28(26): 38626-38637.

[3] GEIM, K. Andre. Random Walk to Graphene [J]. International Journal of Modern Physics B, 2011, 25(30): 4055–4080.

[4] G. Huang, C, Lv, J. He, et al. Study on Preparation and Characterization of Graphene Based on Ball Milling Method [J]. Journal of Nanomaterials, 2020, 2020(424): 1-11.

[5] H.-J. Song and T. Nagatsuma. Present and future of terahertz communications [J]. IEEE T. THz Sci. Techn., 2011, 1(1): 256–263.

[6] R. Yan, S. Arezoomandan, Sensale-Rodriguez. B, et al. Exceptional Terahertz Wave Modulation in Graphene Enhanced by Frequency Selective Surfaces [J]. Acs Photonics, 2016, 3(3): 315–323.

[7] He. J, Yu. T, Geng. N, et al. Method of moments analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium [J]. Radio Science, 2016, 35(2):305–313.

[8] M. Nicolas, J. Dolbow, Belytschko. T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 2015, 46(1):131–150.

[9] J. Roden, S. D. Gedney. Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media [J]. Microwave and Optical Technology Letters, 2015, 27(5): 334–339.

[10] RL. Mackie, JT. Smith, TR. Madden. Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example [J]. Radio Science, 2016, 29(4): 923–935.

[11] Abedin M J, Barua T, Shaibani M, et al. A High Throughput and Unbiased Machine Learning Approach for Classification of Graphene Dispersions [J]. Advanced Science, 2020, 7(20): 2001600.

[12] V. A. Margulis, E. E. Muryumin, Gaiduk. E. A. Frequency dependence of optical third-harmonic generation from doped graphene [J]. Physics Letters A, 2016, 380(1-2): 304–310.

[13] E. Yarmoghaddam, S. Rakheja. Dispersion characteristics of THz surface plasmons in nonlinear graphene-based parallel-plate waveguide with Kerr-type core dielectric [J]. Journal of Applied Physics, 2017, 122(8): 083101.

[14] O. Ramadan. Improved Direct Integration Auxiliary Differential Equation FDTDScheme for Modeling Graphene Drude Dispersion [J]. Optik - International Journal for Light and Electron Optics, 2020, 219:165173.

[15] A. Mock. Padé approximant spectral fit for FDTD simulation of graphene in the near infrared [J]. Optical Materials Express, 2012, 2(6): 771–781.

[16] BD. Welfert. Analysis of iterated ADI-FDTD schemes for Maxwell curl equations [J]. Journal of Computational Physics, 2015, 222(1) :9–27.

[17] Zhang K, Wang L, Wang M, et al. Applications of anisotropic one-step leapfrog HIE-FDTD method in microwave circuit and antenna [J]. International journal of RF and microwave computer-aided engineering, 2020, 30(5): e22151.1-e22151.10.

[18] K. Zhang, L. Wang, M. Wang, et al. Applications of anisotropic one-step leapfrog HIE-FDTD method in microwave circuit and antenna [J]. International journal of RF and microwave computer-aided engineering, 2020, 30(5): 1096–4290.

[19] F. Moharrami, Z. Atlasbaf. Simulation of Multilayer Graphene-Dielectric Metamaterial by Implementing SBC Model of Graphene in the HIE-FDTD Method [J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2238–2245.

[20] Alvarez, et al. A New Efficient and Stable 3D Conformal FDTD [J]. IEEE Microwave & Wireless Components Letters A Publication of the IEEE Microwave Theory & Techniques Society, 2016, 26(8): 553–555.

[21] B. Huang, G. Wang, Y. Jiang, et al. A hybrid implicit-explicit FDTD scheme with weakly conditional stability [J]. Microwave and Optical Technology Letters, 2003, 39(2): 97–101.

[22] M. Unno, H. Asai. HIE-FDTD Method for Hybrid System With Lumped Elements and Conductive Media [J]. IEEE Microwave & Wireless Components Letters, 2011, 21(9): 453–455.

[23] Y. Mao, B. Chen, H. Liu, et al. A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures [J]. Progress In Electromagnetics Research. 2012, 128:153-170.

[24] J. Wang., B. Zhou, L. Shi, et al. A Novel 3-D HIE-FDTD Method With One-Step Leapfrog Scheme [J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(6): 1275–1283.

[25] M. Dong, A. Zhang, Chen. J, et al. The Fourth-Order One-Step Leapfrog HIE-FDTD Method [J]. Applied Computational Electromagnetics Society Journal, 2016, 31(12): 1370–1376.

[26] F. Liang, A. Chen, D. Zhao, et al. ADE-WCS-FDTD method for general dispersive materials and PML implementation [J]. Microwave & Optical Technology Letters, 2015, 56(11): 2489–2495

[27] K. Niu, Z. Huang, X. Ren, et al. An Optimized 3-D HIE-FDTD Method With Reduced Numerical Dispersion [J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 1558–2221.

[28] L. Zhang, G. Qin, W. Fang, et al. Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility [J]. Rep, 2016, 6(1): 2045–2322.

[29] X. Rui, C. Dong, B. Zhu, et al. Numerical Analysis on Ribbon-Array-Sheet Coupled Graphene Terahertz Absorber [J]. IEEE Photonics Technology Letters, 2016, 28(20): 2207–2210.

[30] X. He, X. Zhong, F. Lin, et al. Investigation of graphene assisted tunable terahertz metamaterials absorber [J]. Optical Materials Express, 2016, 6(2): 331.

[31] W. Lei, S. Ge, H. Wei, et al. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber [J]. Optics Express, 2017, 25(20): 23873–23879.

[32] F. Zeng, L. Ye, X. Xu, et al. Tunable terahertz absorber using double-layer decussate graphene ribbon arrays [J]. IEE MTT-S international Wireless Symposium (IWS) 2018, 8(10): 1–3.

[33] M. Chen, W. Sun, J. Cai, et al. Frequency-tunable terahertz absorbers based on graphene metasurface [J]. Optics Communications, 2017, 382: 144-150.

[34] Z. Xu, D. Wu, Y. Liu, et al. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons [J]. Nanoscale Research Letters, 2018, 13(1): 143.

[35] G. Bouzianas, N. Kantartzis, C. Antonopoulos, et al. Optimal Modeling of Infinite Graphene Sheets via a Class of Generalized FDTD Schemes [J]. IEEE Transactions on Magnetics, 2012, 48(2): 379–382.

[36] Y. Xue, C. Sarris. A Perfectly Matched Layer for Subcell FDTD and Applications to the Modeling of Graphene Structures [J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 1080–1083.

[37] H. Lin, M. Pantoja, L. Angulo, et al. FDTD Modeling of Graphene Devices Using Complex Conjugate Dispersion Material Model [J]. Microwave and Wireless Components Letters, IEEE, 2012, 22(12): 612–614.

[38] V. Nayyeri, M. Soleimani, O. Ramahi. Wideband Modeling of Graphene Using the Finite-Difference Time-Domain Method [J]. IEEE Transactions on Antennas & Propagation, 2013, 61(12): 6107–6114.

[39] M. Feizi, V. Nayyeri, O. Ramahi. Modeling Magnetized Graphene in the Finite-Difference Time-Domain Method using an Anisotropic Surface Boundary Condition [J]. IEEE Transactions on Antennas & Propagation, 2017, 66(1): 233–241.

[40] Gao, Jian-Yun, Chen, et al. Unconditionally Stable One-Step Leapfrog ADI-FDTD for Dispersive Media [J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2829–2834.

[41] M. Zhai, H. Peng, J. Mao, et al. Modeling tunable graphene-based filters using leapfrog ADI-FDTD method [C]// 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2015: 379–381.

[42] J. Chen, G. Hao, Q. Liu. Using the ADI-FDTD Method to Simulate Graphene-Based FSS at Terahertz Frequency [J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4): 1218–1223.

[43] J. Chen, J. Wang. Three-dimensional dispersive hybrid implicit–explicit finite-difference time-domain method for simulations of graphene [J]. Computer Physics Communications, 2016, 207: 211–216.

[44] J. Chen, J. Li, Q. Liu. Designing Graphene-Based Absorber by Using HIE-FDTD Method [J]. IEEE Transactions on Antennas & Propagation, 2017, 65(4): 1896–1902.

[45] C. Tian, J. Chen. Analysis of magnetically biased graphene absorber using anisotropic HIE-FDTD method [J]. Journal of Electromagnetic Waves, 2019, 33(6): 722–733.

[46] J. Van. Dark-matter-like solutions to Einstein's unified field equations [J]. Physical Review D, 2018, 97(4): 044018

[47] K. S Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media [J]. IEEE Transactions on Antennas & Propagation, 1966, 14(3): 302–307.

[48] He B, Tang L, Jiang X, et al. Parallel Numerical Simulations of Three-Dimensional Electromagnetic Radiation with MPI-CUDA Paradigms [J]. Mathematical Problems in Engineering, 2015, 2015(pt.11): 823426.1-823426.9.

[49] Balsara D S, Simpson J J. Making a Synthesis of FDTD and DGTD Schemes for Computational Electromagnetics [J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2020, (99): 1-1.

[50] BD Welfert. Analysis of iterated ADI-FDTD schemes for Maxwell curl equations [J]. Journal of Computational Physics, 2015, 222(1): 9-27.

[51] Y. Mao, P. Huang, L. Ma. The CPML for Hybrid Implicit-Explicit FDTD Method Based on Auxiliary Differential Equation [J]. Advanced Materials Research, 2014, 989–994: 1869–1872.

[52] B. Wu, H. Tuncer, M. Naeem, et al. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz [J]. Scientific Reports, 2014, 4(1): 2045–2322.

[53] 徐笛. 基于时域有限差分法的石墨烯器件仿真算法 [D]. 华中师范大学, 2016.

[54] J. Chen, J. Li, Q. Liu H. Designing Graphene-Based Absorber by Using HIE-FDTD Method [J]. IEEE Transactions on Antennas & Propagation, 2017, 65(4):1896–1902.

[55] Roden J A, Gedney S D. Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media [J]. Microwave and Optical Technology Letters, 2015, 27(5): 334-339.

[56] S. Dey, R. Mittra. A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators [J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(9): 1739–1739.

中图分类号:

 TM15/O441.4    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式