- 无标题文档
查看论文信息

论文中文题名:

 干湿循环条件下根土复合体抗剪强度时间效应研究    

姓名:

 耿咪咪    

学号:

 20209071021    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 矿山环境保护与地质灾害防治    

第一导师姓名:

 毛正君    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Study on time effect of shear strength of root-soil composite under dry-wet cycle    

论文中文关键词:

 干湿循环 ; 根土复合体 ; 抗剪强度 ; 时间效应 ; 预测模型    

论文外文关键词:

 Dry-wet cycle ; Root-soil complex ; Shear strength ; Time effect ; prediction model    

论文中文摘要:

土体在长期的季节性干湿交替环境下,内部结构受到损伤,进而降低土体强度,危害边坡稳定性。而植物根系可以有效固持边坡表层土壤,起到防止浅层边坡破坏的作用。为研究干湿循环作用下根土复合体强度特性与其微观结构损伤机制研究,本文选取草本植物紫花苜蓿为研究对象,采用PVC管人工种植获取紫花苜蓿根系-黄土复合体试样,通过开展干湿循环试验、三轴试验、CT扫描及核磁共振测试,研究了干湿循环作用下不同生长期根土复合体抗剪强度与微观结构的演化规律;并分析了干湿循环作用下根土复合体抗剪强度时间效应机理。本研究得出的主要成果如下:

(1)干湿循环作用影响下,无论是素土还是根土复合体,其有效黏聚力均与干湿循环次数呈显著负相关,且相对于素土,根土复合体有效黏聚力衰减幅度相对较低。随生长期增加,根土复合体有效黏聚力呈明显增加趋势,说明植物根系对土体强度的提高具有显著的正向作用,当植物生长至一定程度时,即可弱化干湿循环对土体的劣化作用。

(2)未经历干湿循环时的素土与根土复合体试样,其内部主要为小孔径且相互独立的孔隙,大孔径的、连通性好的孔隙数量占比较小。在经历不断的干湿循环过程后,微小孔隙逐渐减少,中大孔隙及裂隙逐渐增多;且随生长期增加,植物根系逐渐发育,也使得试样内部微小孔隙逐渐联通并转变为较大的、连通性更好的孔隙或裂隙。

(3)分析了干湿循环作用下根土复合体强度特性及微观结构的关系,干湿循环过程引起了微观结构的变化,进而导致不同生长期根土复合体有效黏聚力明显劣化,随生长期增加,劣化程度相对减弱,即干湿循环下根土复合体抗剪强度具有明显的时间效应;在此基础上提出了干湿循环下根土复合体抗剪强度时间效应预测模型。

论文外文摘要:

Under the long-term seasonal dry-wet alternating environment, the internal structure of soil is damaged, which further reduces the strength of soil and endangers the stability of slope. The plant roots can effectively hold the surface soil of the slope and prevent the shallow slope from being destroyed. In order to study the strength characteristics and microstructure damage mechanism of root-soil complex under the action of dry-wet cycle, alfalfa was selected as the research object, and the root-loess complex sample of alfalfa was obtained by artificial planting with PVC pipe. Through dry-wet cycle test, triaxial test, CT scanning and nuclear magnetic resonance test, the evolution law of shear strength and micropores of root-soil complex at different growth stages under the action of dry-wet cycle was studied. Considering the influence of dry-wet cycles and growth period, a prediction model of shear strength of root-soil composite under dry-wet cycles with time is proposed. The main results of this study are as follows:

(1) Under the influence of dry-wet cycle, the effective cohesion of both plain soil and root-soil complex is negatively correlated with the number of dry-wet cycles, and the attenuation range of effective cohesion of root-soil complex is relatively low compared with plain soil. With the increase of growth period, the effective cohesion of root-soil complex shows an obvious increasing trend, which shows that plant roots have a significant positive effect on the improvement of soil strength. When plants grow to a certain extent, the deterioration of soil by dry-wet cycle can be weakened.

(2) In the composite sample of plain soil and root soil, which has not experienced the dry-wet cycle, there are mainly independent pores with small pore size, and the number of pores with large pore size and good connectivity is relatively small. After the continuous dry-wet cycle, the micro-pores gradually decrease, and the large-sized pores and cracks gradually increase; And with the increase of growth period, the root system of the plant gradually develops, which also makes the tiny pores in the sample gradually communicate and transform into larger pores or cracks with better connectivity.

(3) The relationship between the strength characteristics and microstructure of root-soil composite under the action of dry-wet cycle is analyzed. The dry-wet cycle causes the change of microstructure, which leads to the obvious deterioration of the effective cohesion of root-soil composite in different growth periods. With the increase of growth period, the deterioration degree is relatively weakened, that is, the shear strength of root-soil composite under dry-wet cycle has obvious time effect. On this basis, a prediction model of time effect of shear strength of root-soil composite under dry-wet cycle is proposed.

参考文献:

[1] Xu R, Li X, Yang W, et al. Use of local plants for ecological restoration and slope stability: a possible application in Yan'an, Loess Plateau, China[J]. Geomatics, Natural Hazards and Risk, 2017, 10(1): 2106-2128.

[2] 曹玉莹, 苏雪萌, 周正朝, 等. 黄土高原典型草本植物根-土复合体抗剪性能的空间差异性及其影响因素研究[J/OL]. 草业学报. https://kns.cnki.net/kcms/detail//62.1105.S.20221215.1637.007.html

[3] Guo W Z, Chen Z X, Wang W L, et al. Telling a different story: The promote role of vegetation in the initiation of shallow landslides during rainfall on the Chinese Loess Plateau[J]. Geomorphology, 2019, 350: 106879.

[4] 姚文艺, 刘国彬. 新时期黄河流域水土保持战略目标的转变与发展对策[J]. 水土保持通报, 2020, 40(5): 333-340.

[5] 蒋必凤, 王海飙, 李淑敏. 草本植物根系对土体加筋的效应[J]. 东北林业大学学报, 2017, 45(7): 51-54+68.

[6] 黄建坤, 王学林, 及金楠, 等. 基于渐近均匀化理论的黄土高原草本植物固土效果模拟[J]. 农业工程学报, 2020, 36(9): 168-176.

[7] 瞿文斌, 及金楠, 陈丽华, 等. 黄土高原植物根系增强土体抗剪强度的模型与试验研究[J]. 北京林业大学学报, 2017, 39(12): 79-87.

[8] Wu T H. Root reinforcement of soil: review of analytical models, test results, and applications to design[J]. Canadian Geotechnical Journal, 2013, 50(3): 259-274.

[9] Eab K H, Likitlersuang S, Takahashi A. Laboratory and modelling investigation of root-reinforced system for slope stabilisation[J]. Soils & Foundations, 2015, 55(5): 1270-1281.

[10] Ranjan V, Sen P, Kumar D, et al. Enhancement of mechanical stability of waste dump slope through establishing vegetation in a surface iron ore mine[J]. Environmental Earth Sciences, 2017, 76(1): 35.

[11] Yildi A, Graf F, Rickli C, et al. Determination of the shearing behaviour of root-permeated soils with a large-scale direct shear apparatus[J]. Catena, 2018, 166: 98-113.

[12] Hu X S, Brierley G, Zhu H L, et al. An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, Northeast Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 2013, 10(4): 668-686.

[13] 许永刚, 任建民. 干湿循环下复合黄土裂隙演化与力学特性试验[J]. 水电能源科学, 2022, 40(7): 193-197.

[14] 袁志辉, 倪万魁, 唐春, 等. 干湿循环下黄土强度衰减与结构强度试验研究[J]. 岩土力学, 2017, 38(7): 1894-1902+1942.

[15] Xie C R, Ni P P, Xu M J, et al. Combined measure of geometry optimization and vegetation for expansive soil slopes[J]. Computers and Geotechnics, 2020, 123: 103588.

[16] 吴美苏, 周成, 王林, 等. 根系和裂隙对土体水力和力学特性影响数值模拟[J]. 岩土力学, 2019, 40(S1): 519-526+534.

[17] 许英姿, 苏超, 刘德志, 等. 干湿循环下掺根率对膨胀土开裂的影响[J]. 科学技术与工程, 2022, 22(12): 4938-4944.

[18] 周德培, 张俊云著. 植被护坡工程技术[M]. 北京: 人民交通出版社, 2003.

[19] 陈丽华, 余新晓, 宋维峰, 著. 林木根系固土力学机制[M]. 北京: 科学出版社, 2008.

[20] 付江涛, 李光莹, 虎啸天, 等. 植物固土护坡效应的研究现状及发展趋势[J]. 工程地质学报, 2014, 22(6): 1135-1146.

[21] Osman N, Barakbah. Parameters to predict slope stability—Soil water and root profiles[J]. Ecological Engineering, 2006, 28: 90-95.

[22] Fan C C, Su C F. Role of roots in the shear strength of root-reinforced soils with high moisture content[J]. Ecological Engineering, 2008, 33: 157-166.

[24] 周云艳, 陈建平, 杨倩, 等. 植物根系固土护坡效应的原位测定[J]. 北京林业大学学报, 2010, 32(6): 66-70.

[24] 余芹芹, 胡夏嵩, 李国荣, 等. 寒旱环境灌木植物根–土复合体强度模型试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 1020-1031.

[25] 段青松, 何丙辉, 余建新, 等. 金沙江干热河谷乡土草本植物根系固土能力原位测定[J]. 云南大学学报(自然科学版), 2015, 37(5): 779-785.

[26] 卢海静, 胡夏嵩, 付江涛, 等. 寒旱环境植物根系增强边坡土体抗剪强度的原位剪切试验研究[J].岩石力学与工程学报, 2016,35(8): 1712-1721.

[27] 王晓春, 王远明, 张桂荣, 等. 粉砂土岸坡三维加筋生态护坡结构力学效应研究[J]. 岩土工程学报, 2018, 40(S2): 91-95.

[28] 李姜瑶, 余冬梅, 张西营, 等. 西宁盆地黄土区边坡土体含水量对植物根-土复合体抗剪强度影响的试验研究[J]. 工程地质学报, 2022, 30(2): 281-292.

[29] Zhang C B, Chen L H, Liu Y P, et al. Triaxial compression test of soil–root composites to evaluate influence of roots on soil shear strength[J]. Ecological Engineering, 2010, 36(1): 19-26.

[30] Ghestem M, Veylon G, Bernard A, et al. Influence of plant root system morphology and architectural traits on soil shear resistance[J]. Plant & Soil, 2014, 377(1-2):43-61.

[31] Ma'ruf M F. Shear strength of Apus bamboo root reinforced soil[J]. Ecological Engineering, 2012, 41: 84-86.

[32] Saifuddin M, Osman N, Rahman M M, et al. Soil reinforcement capability of two legume species from plant morphological traits and mechanical properties[J]. Current Science, 2015, 108(7): 1340-1347.

[33] Fattet M, Fu Y, Ghestem M, et al. Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength[J]. Catena, 2011, 87(1): 60-69.

[34] 徐华, 袁海莉, 王歆宇, 等. 根系形态和层次结构对根土复合体力学特性影响研究[J]. 岩土工程学报, 2022, 44(5): 926-935.

[35] 田佳, 及金楠, 钟琦, 等. 贺兰山云杉林根土复合体提高边坡稳定性分析[J]. 农业工程学报, 2017, 33(20): 144-152.

[36] 刘昌义, 窦增宁, 胡夏嵩, 等. 黄河源区高寒草地植物组合对根-土复合体抗剪强度的影响[J]. 草地学报, 2019, 27(1): 43-52.

[37] Waldron L J. The shear resistance of root‐permeated homogeneous and stratified soil[J]. Soil Science Society of America Journal, 1977, 41(5): 843-849.

[38] Wu T H, McKinnell W P, Swanston D N. Strength of tree roots and landslides on Price of Wales Island, Alaska[J]. Canadian Geotechnical Journal, 1979, 16(1): 19-33.

[39] Baets S D, Poesen J, Reubens B, et al. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength[J]. Plant & Soil, 2008, 305(s1-2): 207-226.

[40] Cohen D, Schwarz M, OR D. An analytical fiber bundle model for pullout mechanics of root bundles[J]. Journal of Geophysical Research-Earth Surface, 2011, 116: F03010.

[41] Pollen N, Simon A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model[J]. Water Resources Research, 2005, 41(7): W07025.

[42] Pollen-Bankhead N, Simon A. Enhanced application of root‐reinforcement algorithms for bank‐stability modeling[J]. Earth Surface Processes and Landforms, 2009, 34(4): 471-480.

[43] Schwarz M, Lehmann P, Or D. Quantifying lateral root reinforcement in steep slopes – from a bundle of roots to tree stands[J]. Earth Surface Processes and Landforms, 2010, 35: 354-367.

[44] Schwarz M, Cohen D, Or D. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling[J]. Journal of Geophysical Research-Earth Surface. 2011, 116(F2): F02007.

[45] 胡长明, 袁一力, 王雪艳, 等. 干湿循环作用下压实黄土强度劣化模型试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2804-2818.

[46] 王飞, 李国玉, 穆彦虎, 等. 干湿循环条件下压实黄土变形特性试验研究[J]. 岩土力学, 2016, 37(8): 2306-2312+2320.

[47] 郝延周, 王铁行, 程磊, 等. 考虑干湿循环影响的压实黄土结构性本构关系[J]. 岩土力学, 2021, 42(11): 2977-2986.

[48] Liu K, Gu T F, Wang X G, et al. Time-Dependence of the Mechanical Behavior of Loess after Dry-Wet Cycles[J]. Applied Sciences-Basel, 2022, 12(3): 1212.

[49] Xu J, Li Y F, Wang S H, et al. Shear strength and mesoscopic character of undisturbed loess with sodium sulfate after dry-wet cycling[J]. Bulletin of Engineering Geology and the Environment, 2022, 79(3): 1523-1541.

[50] 刘宽, 叶万军, 高海军, 等. 干湿环境下膨胀土力学性能劣化的多尺度效应[J]. 岩石力学与工程学报, 2020, 39(10): 2148-2159.

[51] 慕现杰, 张小平. 干湿循环条件下膨胀土力学性能试验研究[J]. 岩土力学, 2008, 29(S1): 580-582.

[52] 肖杰, 杨和平, 林京松, 等. 模拟干湿循环及含低围压条件的膨胀土三轴试验[J]. 中国公路学报, 2019, 32(1): 21-28.

[53] 杨和平, 唐咸远, 王兴正, 等. 有荷干湿循环条件下不同膨胀土抗剪强度基本特性[J]. 岩土力学, 2018, 39(7): 2311-2317.

[54] 常锦, 杨和平, 肖杰, 等. 酸性环境干湿循环条件下膨胀土的膨胀特性及微观作用分析[J]. 中国公路学报, 2019, 32(3): 34-43.

[55] Zhou Z H, Bai Y, Wu Y T, et al. Multiscale study on the microstructural evolution and macromechanical deterioration of expansive soil under dry-wet cycles[J]. Journal of Mechanics, 2022, 38: 610-620.

[56] Kong L W, Wang M, Guo A G, et al. Effect of drying environment on engineering properties of an expansive soil and its microstructure[J]. J.Mt.Sci, 2017, 14(6): 1194-1201.

[57] 陈锐, 张星, 郝若愚, 等. 干湿循环下地聚合物固化黄土强度劣化机制与模型研究[J]. 岩土力学, 2022, 43(5): 1164-1174.

[58] 钟秀梅, 王谦, 刘钊钊, 等. 干湿循环作用下粉煤灰改良黄土路基的动强度试验研究[J]. 岩土工程学报, 2020, 42(S1): 95-99.

[59] 程佳明, 王银梅, 苗世超, 等. 固化黄土的干湿循环特性研究[J]. 工程地质学报, 2014, 22(2): 226-232.

[60] Wang H, Garg A, Huang S, et al. Mechanism of compacted biochar‑amended expansive clay subjected to drying–wetting cycles: simultaneous investigation of hydraulic and mechanical properties[J]. Acta Geophysica, 2020, 68(3): 737-749.

[61] 陈筠, 陈泰徐, 王爽, 等. 根-土复合体的胀缩变形及干湿循环后的力学特性研究[J/OL]. 水利水电技术(中英文): 1-11. http://kns.cnki.net/kcms/detail/10.1746.TV.20221226.0828.001.html.

[62] Ma Q, Li Z, Xiao H L, et al. Mechanical properties of clay reinforced with Bermuda grass root under drying–wetting cycles[J]. Environmental Earth Sciences, 2020, 80: 31.

[63] 程积民, 万惠娥, 王静. 黄土丘陵区紫花苜蓿生长与土壤水分变化[J]. 应用生态学报, 2005,16(3): 435-438.

[64] 沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析[J]. 科学通报, 2016, 61(2): 139-154.

[65] 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868-882.

[66] 孙洪仁, 武瑞鑫, 李品红, 等. 紫花苜蓿根系入土深度[J]. 草地学报, 2008, 16(3): 307-312.

[67] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

[68] 唐国斌. 干湿循环条件下伊犁河谷黄土强度劣化特征及促滑效应[D].新疆大学,2021.

[69] 李建兴, 何丙辉, 谌芸, 等. 不同护坡草本植物的根系分布特征及其对土壤抗剪强度的影响[J]. 农业工程学报, 2013, 29(10): 144-152.

[70] Czarnes S, Hallett P D, Bengough A G, et al. Root-and microbial-derived mucilage’s affect soil structure and water transport. European Journal of Soil Science, 2000, 51: 435-443.

[71] 蔡沛辰, 阙云, 蒋振梁, 等. 基于CT扫描的花岗岩残积土3D大孔隙定量表征及流动模拟[J]. 中国科学:技术科学, 2022, 52(7): 1065-1082.

[72] 李鑫, 卢玉东, 张晓周, 等. 基于X-ray CT的古土壤孔裂隙识别与表征[J]. 水土保持通报, 2018, 38(6): 224-230+239.

[73] 杨振威,任克彬,尹松. 土工测试技术与土遗址保护[M]. 郑州: 黄河水利出版社, 2019.

[74] 高浩东, 安然, 孔令伟, 等. 干燥失水条件下膨胀土的细观裂隙演化特征研究[J]. 岩土力学, 2023, 44(2): 442-450+460.

[75] Dong H, Blunt M J. Pore-network extraction from micro-computerized-tomography images[J]. Physical Review E, 2009, 80(3): 036307.

[76] Wu Y Q, Tahmasebi P, Lin C Y, et al. Effects of micropores on geometric, topological and transport properties of pore systems for low-permeability porous media[J]. Journal of Hydrology, 2019, 575: 327-342.

[77] 杨鹏飞, 李显, 阙云, 等. 花岗岩残积土大孔隙3D细观结构特征定量表征[J/OL]. 长江科学院院报: 1-9. http://kns.cnki.net/kcms/detail/42.1171.TV.20211008.1105.002.html.

[78] 刘禹阳, 安驰, 来弘鹏, 等. 不同干湿循环路径下Q2原状黄土强度与微观结构演化试验[J]. 中国公路学报, 2022, 35(12): 168-180.

[79] 江强强, 刘路路, 焦玉勇, 等. 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学, 2019, 40(3): 1005-1012+1022.

[80] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑 化学 生物学 农学 医学 地学), 1987, (12): 1309-1318.

[81] 雷祥义. 陕北陇东黄土孔隙分布特征[J]. 科学通报, 1985, (3): 206-209.

[82] 吴云涛, 叶万军, 杨更社, 等. 考虑应力路径的土体微观孔隙及宏观变形特征试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2311-2320.

[83] 叶万军, 强艳红, 景宏君, 等. 基于核磁共振的不同含水率黄土古土壤冻融循环试验研究[J]. 工程地质学报, 2022, 30(1): 144-153.

[84] An R, Zhang X W, Kong L W, et al. Drying-wetting impacts on granite residual soil: a multi-scale study from macroscopic to microscopic investigations[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(10): 1-14.

[85] 贾海梁, 王婷, 项伟, 等. 含水率对泥质粉砂岩物理力学性质影响的规律与机制[J]. 岩石力学与工程学报, 2018, 37(7): 1618-1628.

[86] 陈宾, 周乐意, 赵延林, 等. 干湿循环条件下红砂岩软弱夹层微结构与剪切强度的关联性[J]. 岩土力学, 2018, 39(5): 1633-1642.

[87] 林志红, 项伟, 张云明. 湘西红砂岩基本物理指标和微结构参数对其强度影响的试验研究[J]. 岩石力学与工程学报, 2010, 29(1): 124-133.

[88] Rahardjo H, Lim T T, Chang M F, et al. Shear-strength characteristics of a residual soil[J]. Can Geotech J, 1995, 32(1): 60–77.

[89] Bordoloi S, Ni J J, Ng C W W. Soil desiccation cracking and its characterization in vegetated soil: A perspective review[J]. Science of the Total Environment, 2020, 729: 138760.

[90] 安然, 孔令伟, 黎澄生, 等. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J]. 岩石力学与工程学报, 2020, 39(9): 1902-1911.

[91] 潘振兴, 杨更社, 叶万军, 等. 干湿循环作用下原状黄土力学性质及细观损伤研究[J]. 工程地质学报, 2020, 28(6): 1186-1192.

[92] 郝延周, 王铁行, 汪朝, 等. 干湿循环作用下压实黄土三轴剪切特性试验研究[J]. 水利学报, 2021, 52(3): 359-368.

[93] 王铁行, 郝延周, 汪朝, 等. 干湿循环作用下压实黄土动强度性质试验研究[J].岩石力学与工程学报, 2020, 39(6): 1242-1251.

[94] 李冠野. 干湿循环作用下土-岩接触面剪切力学特性劣化规律试验研究[D]. 三峡大学, 2022.

[95] Chen C H, Wu L, Harbottle M. Influence of biopolymer gel-coated fibres on sand reinforcement as a model of plant root behaviour[J]. Plant and Soil, 2019, 438(1-2): 361-375.

[96] Czarnes S, Hallett P D, Bengough A G, et al. Root- and microbial-derived mucilages affect soil structure and water transport[J]. European Journal of Soil Science, 2000, 51: 435-443.

中图分类号:

 P642.116    

开放日期:

 2024-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式