- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 李亚清    

学号:

 19120089001    

保密级别:

     

论文语种:

 chi    

学科代码:

 085224    

学科名称:

  - -     

学生类型:

     

学位级别:

     

学位年度:

 2024    

培养单位:

 西    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

     

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-21    

论文答辩日期:

 2024-05-26    

论文外文题名:

 Ultrasonic extraction of surface active groups and the oxidation kinetic mechanism of coal spontaneous combustion    

论文中文关键词:

 煤自燃 ; 活性基团 ; 超声萃取 ; 量子化学 ; 活性位点 ; 氧化动力学    

论文外文关键词:

 Coal spontaneous combustion ; Ultrasonic extraction technique ; Active functional groups ; Quantum chemical ; Active sites ; Oxidation kinetics    

论文中文摘要:
<p></p> <p>YMWYMGaussian 16YMWYMRDG-OHN-</p> <p>YMWYMYMWYM100300~350-C-O-&minus;C=O-COO250~300</p> <p>TG/DSCTG线-OH使300使-OH</p> <p>&nbsp;</p> <p>线TG/DSCFTIRESRTG-MS-CH<sub>2</sub>-&middot;OOH&middot;OHCOCO<sub>2</sub></p>
论文外文摘要:
<p>The spontaneous combustion of coal and its induced secondary disasters pose a significant threat to coal mine safety production. However, due to the complex molecular structure of coal, the study of the mechanism underlying coal spontaneous combustion has long been confronted with formidable challenges. Hence, the ultrasonic extraction technique&nbsp;was employed to separate active functional groups from the complex macromolecular system of coal according to organic chemical reactions in this paper. Based on systematically studying the oxidization reaction characteristics of each active functional group, investigates the microscopic reaction mechanism of coal spontaneous combustion, so as to provide theoretical support for the study of coal spontaneous combustion chemical targeting inhibition materials. The results of the study are of great scientific and practical significance for further revealing the nature of coal spontaneous ignition, improving the theory of coal spontaneous ignition and developing the high efficiency inhibition technology of coal spontaneous ignition.</p> <p>The Nuclear Magnetic Resonance (NMR) spectroscopy was employed to obtain the semi-quantitative structural information of the carbon skeleton, and naphthalene was the core structure of YM sample, while phenanthrene was that of the WYM sample. The surface functional groups of both coal samples include hydroxyl (-OH), carbonyl groups, aliphatic groups, and aromatic groups. Gaussian 16 software was used to construct stable structure models of active functional groups for four types of YM with naphthalene as the core and hydroxyl, carbonyl ethyl and phenyl rings as side chains; and for four types of WYM, with phenanthrene as the core and hydroxyl, carbonyl, methyl and phenyl rings as side chains. Finally, the Reduced Density Gradient (RDG) analysis method was used to clarify the weak interactions between organic solvent molecules and surface active groups of coal molecules, and the four dominant extractants ethylenediamine, NMP, petroleum ether and toluene targeting the -OH group, carbon-oxygen group, carbon-oxygen group, and aromatic group, respectively, were preferentially selected.</p> <p>The dominant extractants were used for solvent extraction of YM and WYM under ultrasound assistance to unitize and discretize the complex structures in coal, and then the main reactive groups in the spontaneous combustion process of coal were identified and their evolution patterns were revealed by combining Fourier infrared spectroscopy, electron paramagnetic resonance spectroscopy and in situ infrared spectroscopy techniques. The results show that YM is dominated by small molecular radicals at low temperatures, while WYM is dominated by large molecular radicals. In the low-temperature oxidation stage, the conjugated hydroxyl group decreases rapidly before 100, while the alcohol hydroxyl group decreases rapidly at 300~350; -C-O- shows a tendency of increasing, then decreasing, and then increasing, while -C=O and -COO groups remain basically stable before 250~300, and then increase rapidly; there is an obvious progressive relationship between the evolution of aliphatic hydrocarbons and carbon-oxygen groups The aliphatic hydrocarbons are oxidized to carbon-oxygen groups.</p> <p>The oxidation characteristics of the coal samples before and after extraction were further investigated by TG/DSC test. The results showed that the TG curves of the extracted coal samples shifted to the high-temperature region, and the reduction of -OH and carbon-oxygen groups led to the decrease of the exothermic amount of the coal samples before 300, while the reduction of aliphatic and aromatic groups led to the decrease of the exothermic amount of the coal in the combustion stage, and -OH is the most critical oxygen-containing reactive group in low-temperature oxidization process.</p> <p>The electron density, electrostatic potential, and front-line orbital distribution of the reactive group were simulated by quantum chemical calculation software, and then combined with TG/DSC, FTIR, ESR and TG-MS tests to reveal the molecular dynamics of the evolution of the reactive group in the coal oxidation reaction, and to elucidate the generation of the main indicator gases in the process of spontaneous combustion of coal. It was shown that the active sites of coal-oxygen complexes of oxygen-containing groups in the coal samples were located at the hydrogen atoms of the groups, while the active sites of the side chains were preferentially located at the hydrogen atoms in -CH<sub>2</sub>-, and there were no active sites in the benzene ring side chains. During the low-temperature oxidation of coal, the active groups on its molecular surface first undergo the process of oxygen-robbing for hydrogen, forming -OOH radicals, which then decompose into -OH, the key radical that can sustainably trigger a series of chain complex reactions, and gradually transform the aliphatic side chains into carbonyl and carboxyl groups. Carbonyl group breakage and decomposition is the main source of CO in the low-temperature oxidation process, while CO<sub>2</sub>&nbsp;comes from the breakage of the carboxyl group generated by the oxidation of the carbonyl group.</p>
参考文献:

[1]邱远舰. 地面水平井分段压裂诱发微震响应与防冲效果评价研究[D]. 徐州: 中国矿业大学, 2023.

[2]郁亚楠, 赵庆伟, 程明. 特厚煤层孤岛面“呼吸效应”影响下煤自燃防控技术[J]. 西安科技大学学报, 2022, 42(01): 76-82.

[3]T.Liu, B.Q.Lin, X.H.Fu, Modeling air leakage around gas extraction boreholes in mining-disturbed coal seams[J].Transactions of The Institution of Chemical Engineers. Process Safety and Environmental Protection, Part B, 2020, 141(1).

[4] 国家安全生产监督管理总局. 国家煤矿安全监察局. 煤矿安全技术专家会诊资料汇编, 206-209, 691-692.

[5] Y.Titilawo,W.L.Masudi,J.T.Olawale,et al.Coal-Degrading Bacteria Display Characteristics Typical of Plant Growth Promoting Rhizobacteria[J].Processes, 2020, 8(9):1111.DOI:10.3390/pr8091111.

[6]P. Xi, M.R. Ma, W.L.Liu, Research on the Effect of Carbon Defects on the Hydrophilicity of Coal Pyrite Surface from the Insight of Quantum Chemistry[J].Molecules, 2019, 24(12):2285.DOI:10.3390/molecules24122285.

[7]J. Deng, X.F. Ma, Y.T.Zhang, et al.Effects of pyrite on the spontaneous combustion of coal[J].国际煤炭科学技术学报:英文版, 2015, 2(4):6.DOI:10.1007/s40789-015-0085-y.

[8]Ma,Weiwei, Y,X,Han, C.Y.Xu, et al.Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies, 2018.

[9] J.P.Fillo.An Understanding of Phenolic Compound Production in Coal Gasification Processing[J]. 1979.

[10]F.J.Zhang, W.Liu, Y.P.Qin, et al. Numerical investigation of gas emission and extraction under the action of coal-oxygen recombination in longwall gobs. Gas Science and Engineering, 124 (2024): 205258.

[11]B.Danuta, M.Anna. Molecular Components of Coal Structure[J]. Fuel, 1981, 60(1): 47-51.

[12]Rezaee, Mohammad, F.Khalilian. Application of ultrasound-assisted extraction followed by solid-phase extraction followed by dispersive liquid-liquid microextraction for the determination of chloramphenicol in chicken meat.Food analytical methods 11 (2018): 759-767.

[13]Y.N.Zhang, l.Chen, J.Y.Zhao, et al. Evaluation of the spontaneous combustion characteristics of coal of different metamorphic degrees based on a temperature-programmed oil bath experimental system. Journal of Loss Prevention in the Process Industries 60 (2019): 17-27.

[14]Y.T.Zhang, C.P.Yang, Y.Q.Li, et al. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 242 (2019): 287-294.

[15]Z.L.Xi, L.Xue, K.Xi, Study on the reactivity of oxygen-containing functional groups in coal with and without adsorbed water in low-temperature oxidation.Fuel 304 (2021): 121454.

[16]B.Y.Jiang, J.S.Huang, C.F.Yu, et al. Experimental and theoretical study on molecular structure construction of Hongliulin coal. Fuel 349 (2023): 128708.

[17]J.ZJia, D.M.Wang, B.Li, (2024). Study on molecular structure characteristic and optimization of molecular model construction of coal with different metamorphic grade. Journal of Molecular Structure, 1295, 136655.

[18]张同浩, 陈明义, 田富超, 等. 褐煤中CH4/O2/N2气体竞争吸附特性的分子模拟研究[J]. 矿业科学学报, 2023, 8(06): 817-827.

[19]陈嘉亮, 朱文耀, 常梦洁, 等.煤油/油酸甲酯复配捕收剂浮选南梁煤矿煤泥的试验研究[J]. 矿产保护与利用, 2023, 43(02): 20-26.

[20]李伍, 杨文斌, 战星羽,等. 煤有机大分子碳结构石墨化机制[J]. 煤炭学报, 2023, 48(02): 855-868.

[21]贾进章, 邢迎欢, 李斌. 山西阳煤无烟煤分子结构特征分析[J]. 化学研究与应用, 2022, 34(10): 2311-2320.

[22]崔修强, 王玉敬, 李其浩, 火电厂1000 MW锅炉入炉煤分子模型构建及分析[J]. 能源与节能, 2020, (12): 114-116+182.

[23] C.G.Wang, F.G.Zeng, C.Y.Li, et al. Insight into the molecular structural evolution of a series of medium-rank coals from China by XRD, Raman and FTIR[J]. Journal of Molecular Structure, 2024, 1303: 137616.

[24]S.R.Vardhan,K.Santosh, M.Sudip, et al. A comparative study of molecular structure and combustion behavior of coal and its separated vitrains[J]. Journal of Molecular Structure, 2024, 1299: 137152.

[25]J.Z.Jia, D.Wang, B.Li, Study on molecular structure characteristic and optimization of molecular model construction of coal with different metamorphic grade[J]. Journal of Molecular Structure. 2024, 1295: 136655.

[26]李金雨, 李懿欣, 白刚, 等. 构造煤结构缺陷对硫化氢吸附及扩散特性的影响研究[J/OL]. 煤炭转化, 1-13[2024-03-21].

[27]焦锟鹏, 赵子涛, 犹成裔, 等. 五彩湾次烟煤醇解可溶物的组成特征与不溶物的快速热解产物分布[J/OL]. 化工进展, 1-15[2024-03-21].

[28]张晨, 张松航, 唐书恒, 等. 不同煤阶煤大分子模型构建及对比[J/OL]. 现代地质, 1-21[2024-03-21].

[29]李焕同, 邹晓艳, 张卫国, 等. 陕南地区中煤阶煤分子结构演化特征[J]. 西安科技大学学报, 2023, 43(06): 1118-1127.

[30]F.R.Wang, B.Tan , X.Y.Zan, et al. Molecular simulation study of microstructural evolution during low-temperature oxidation of coal[J]. Energy, 2024, 290130054-.

[31]J.Wu , D.Wu , G.Xia , et al. Evolutionary Analysis of Coal Molecular Structure under Different Metamorphism: An Attempt to Use Electron Paramagnetic Resonance[J]. ACS omega, 2023, 8(43): 40547-40560.

[32]T.Ge, M.T.Wu, J.Y.Xu, et al. Effect of 915‐MHz low‐temperature microwave irradiation on the molecular structure of coking coal[J]. Asia‐Pacific Journal of Chemical Engineering, 2023, 18(5):

[33]Z.B.Huang, W.J.Zhou, J.J.Wei, Study on the molecular structure model of tar-rich coal and its pyrolysis process[J]. Journal of Molecular Structure, 2023, 1286

[34]侯玉亭, 张英超, 孙计全, 等. 煤自然发火气体指标及其有机官能团响应特征研究[J]. 中国煤炭, 2024, 50(01): 67-74.

[35]田富超, 贾东旭, 陈明义, 等. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展[J/OL]. 煤炭学报, 1-17[2024-02-28].

[36]赵兴国, 戴广龙. 氧化煤自燃特性实验研究[J]. 中国安全生产科学技术, 2020, 16(6): 55-60.

[37]J.Li , W.Lu , Y.Liang , et al. Variation of CO2/CO ratio during pure-oxidation of feed coal[J]. Fuel, 2020, 262: 1-13.

[38]徐艳强. 基于多目标灰靶决策的煤自燃氧化状态判定与预测研究[D]. 江苏: 中国矿业大学, 2023

[39]梁仓船, 李颖, 桑明明. 煤自燃预测定量指标的数学统计分析[J]. 煤炭与化工, 2022, 45(06): 106-109.

[40]李青蔚, 任立峰, 任帅京. 煤低温贫氧氧化放热特性研究[J]. 煤矿安全. 2020, 51(11): 34-38.

[41]Y.T.Zhang, Y.B.Zhang, Y.Q.Li, et al. Low-temperature oxidation characteristics of coals at the methane-containing atmosphere[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(4): 3379-3389.

[42]张玉涛, 张园勃, 李亚清, 等. 低瓦斯气氛下煤氧化热效应和关键基团演变特性[J]. 中国矿业大学学报, 2021, 50(4): 776-783.

[43]H.Lv, J.Deng, D.Li , et al. Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process[J]. Energy, 2021, 227.

[44]X.Shi , Y.Zhang , X.Chen , et al. Effects of thermal boundary conditions on spontaneous combustion of coal under temperature-programmed conditions[J]. Fuel, 2021, 295.

[45]X.Shi, Y.Zhang, X.Chen , et al. Numerical study on the oxidation reaction characteristics of coal under temperature-programmed conditions[J]. Fuel Processing Technology, 2021, 213: 106671.

[46]X.Hu, Z.Yu ,J.Cai , et al. The influence of methane on the development of free radical during low-temperature oxidation of coal in gob[J]. Fuel, 2022, 330.

[47]杨锴. 热损伤作用对煤结构及其自燃氧化特性影响的研究[D]. 江苏: 中国矿业大学(徐州), 2021.

[48]B.Zhou, S.Yang, X.Jiang, et al. The reaction of free radicals and functional groups during coal oxidation at low temperature under different oxygen concentrations[J]. Process Safety and Environmental Protection, 2021, 150: 148-156.

[49]B.Zhou, S.Yang, C.Wang, et al. The characterization of free radical reaction in coal low-temperature oxidation with different oxygen concentration[J]. Fuel, 2020, 262: 116524.

[50]J.Cai, S.Yang, W.Zheng, et al. Dissect the capacity of low-temperature oxidation of coal with different metamorphic degrees[J]. Fuel, 2021, 292: 120256.

[51]李金虎, 黄珏洁, 陆伟, 等. 煤中高活性含碳固体自由基与煤自燃反应性的相关关系[J]. 煤炭科学技术, 1-20[2024-03-21].

[52]李蒙蒙. 脂肪烃诱发煤自燃的机理及抑制技术研究[D]. 天津: 天津理工大学, 2023.

[53]李尽辉, 杨胜强, 蒋孝元. 氧含量对煤体低温氧化过程中自由基的影响 [J]. 中国科技论文, 2022, 17(09): 1043-1048.

[54]吕志广, 徐永亮, 刘泽健, 等. 不同气体环境长焰煤氧化进程基团演化特性[J]. 煤矿安全, 2022, 53(2): 46-52.

[55]J.Zhao, T.Wang, J.Deng, et al. Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR[J]. Energy, 2020, 209: 118494.

[56]邓军, 周佳敏, 白祖锦, 等. 瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J]. 煤炭科学技术, 2023, 51(01): 304-312.

[57]袁迎春. 不同变质程度煤样自燃过程中微观结构变化特征及宏观表现研究[D]. 内蒙古: 内蒙古科技大学, 2022.

[58]侯钦元, 翟小伟, 宋波波, 等. 煤微观基团与自然发火危险性相关分析[J]. 煤矿安全, 2022, 53(04): 13-19.

[59]Y.C.Yin, Y.H.Zhang, Z.A.Huang, et al. A kinetic research method for coal oxidation based on the Kubelka-Munk equation and the Starink method[J]. Combustion Science and Technology, 2024, 196(2): 245-260.

[60]G.D.Miao, Z.H.Li, J.J.Yang, et al. Microstructure evolution and higher-molecular-weight gas emission during the low temperature oxidation of coal[J]. Energy, 2023, 282

[61]Z.X.Duan, Y.N.Zhang, Deng J, et al. Effect of molecular structure change on the properties of persistent free radicals during coal oxidation[J]. Fuel, 2023, 350

[62]王福生, 孙玮, 张渝, 等. 过渡金属离子促进煤自燃机理的量子化学计算[J/OL]. 煤炭学报, 1-14[2024-03-18].

[63]靳邦鑫. 基于量子化学方法的抗氧化剂抑制煤过氧自由基机理研究[D]. 天津: 天津理工大学, 2021.

[64]王怀伟, 梁忠秋. 煤自燃过程中-CH2-官能团量子化学反应机理研究[J]. 能源技术与管理, 2020, 45 (06): 136-138.

[65]黄声和. 基于量子化学和自由基温度煤自燃CO形成机理研究[J]. 电力科技与环保, 2018, 34(04): 18-21.

[66]高飞, 白企慧, 贾喆, 等. 基于量子化学计算的煤低温氧化放热强度[J]. 煤炭学报, 2023, 48(09): 3428-3440.

[67]Y.J.Huo, H.Q.Zhu, Experimental and quantum chemical study on the inhibition characteristics of glutathione to coal oxidation at low temperature[J]. ACS omega, 2022, 7(35): 31448-31465.

[68]H.Q.Zhu, L.H.Xie, Y.J.Huo, et al. Investigation of the physicochemical inhibitors on coal spontaneous combustion based experimental and quantum chemical methods[J]. Journal of Thermal Analysis and Calorimetry, 2023, 149(3): 935-951.

[69]X.Y.Qi, H.B.Xue, H.H.Xin, et al. Reaction pathways of hydroxyl groups during coal spontaneous combustion[J]. Canadian Journal of Chemistry, 2016, 94(5): 494-500.

[70]D.M.Wang, H.H.Xin, X.Y.Qi, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163: 447-460.

[71]王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系: 煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(08): 1667-1674.

[72]Z.Zhang, Q.Kang, T.Yun, et al. Density functional theory investigation of possible structures of radicals in coal undergoing O2 chemisorption at ambient temperature[J]. Energy & Fuels, 2017, 31(1): 953-958.

[73]孙庆雷, 李文, 陈皓侃, 等. 煤显微组分分子结构模型的量子化学研究[J]. 燃料化学学报, 2004(03): 282-286.

[74]X.Wei, Z.Zong, L.Wu. LC/MS analysis of CS2/NMP Soluble Fraction from Upper Freeport Coal[C], Prospects for coal science in the 21st century. Shanxi Science and Technology Press, 1998, 263-266.

[75]李艳, 宗志敏, 黄丽莉, 等. 灵武煤 CS2/NMP 萃取物的柱层析分离及其馏分的 GC/MS 分析[J]. 武汉科技大学学报, 2010, 33(1): 88-94.

[76]华宗琪, 秦志宏, 陈德仁, 等. 煤索氏萃取和超声萃取的 GC/MS 分析[J]. 广州化工, 2011, 39(10): 1-4.

[77]S.D.Barma. Ultrasonic-assisted coal beneficiation: A review[J]. UItrasonics Sonochemistry, 2018, 50: 15-35.

[78]吕波特, 陈娟, 王齐, 等. 基于嵌入式系统的中药提取软测量方法研究[J]. 北京化工大学学报(自然科学版), 2018, 45(03): 95-100.

[79]郭军, 金彦, 郑学召, 等. 基于萃取技术的煤自燃抑制机理研究及展望[J]. 煤炭科学技术, 2021, 49(03): 92-99.

[80]张曼. 胜利褐煤的溶剂萃取及小分子化合物的结构表征[D]. 江苏: 中国矿业大学, 2014.

[81]师浩, 王富强, 何一凡, 等. 低温煤焦油超声萃取物的组成分析[J]. 化工科技, 2022, 30(01): 22-24.

[82]黄遥. 煤自燃活性官能团萃取及其氧化放热特性研究[D]. 陕西: 西安科技大学, 2018.

[83]胡朝帅, 徐允良, 褚宏宇, 等. 中温沥青超声萃取物的热解特性与分子结构间关联性的FTIR解析[J]. 光谱学与光谱分析, 2022, 42 (03): 889-895.

[84]刘浩, 於舜尧, 李敬伟, 等. 正交法设计超声萃取新疆硫磺沟煤的最佳条件[J]. 现代盐化工, 2020, 47(01): 34-35.

[85]於舜尧, 刘浩, 李敬伟, 等. 超声萃取新疆皮里青煤及萃取物的红外光谱分析[J]. 现代盐化工, 2020, 47(02): 42-43.

[86]P.J.Arauzo, M.Lucian, L.Du, et al. Improving the recovery of phenolic compounds from spent coffee grounds by using hydrothermal delignification coupled with ultrasound assisted extraction[J]. Biomass and Bioenergy, 2020, 139: 105616.

[87]J.Zhou, X.H.Du, L.M.Dong. Separation and identification of esters from ultrasonic extraction of Shengli lignite in a toluene/ethanol mixed solvent[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(11):1097-1101.

[88]鞠彩霞. 枣庄烟煤中有机质的分离与分析[D]. 江苏: 中国矿业大学, 2021.

[89]陈国新, 韦成龙, 张宗尧, 等. 乙醇超声萃取新疆长焰煤及萃取物分析[J]. 现代盐化工, 2018, 45(01): 3-4+10.

[90]周俊. 胜利褐煤和新疆长焰煤中可溶有机物的分离与分析[D]. 中国矿业大学, 2014.

[91]姚婷, 宗志敏, 袁南华, 等. 徐州圣戈班高温煤焦油的分离和GC/MS分析[J]. 武汉科技大学学报, 2009, 32(06): 648-653.

[92]刘缠民, 宗志敏, 魏贤勇, 等. 东胜煤超声水处理对CS2/NMP萃取率的影响[J]. 西安科技大学学报, 2008(01): 32-35.

[93]马惊生. 超声萃取—快速分离煤液化产物的新法[J]. 煤炭分析及利用, 1990(02): 5-9.

[94]刘静. 昭通褐煤的超声辐射萃取和分级变温热溶[D]. 江苏: 中国矿业大学, 2016.

[95]杨妍. 三类有机溶剂对羊场湾煤不同显微组分的超声辅助萃取[D]. 宁夏:宁夏大学, 2020.

[96]高平强, 乔再立, 张岩, 等. 超声萃取中低温煤焦油轻质油中酚类化合物研究[J]. 洁净煤技术, 2016, 22(2): 54-58, 63.

[97]王德胥, 甄雪倩, 赵小康, 等. 丙酮/石油醚超声萃取新疆长焰煤及萃取物的分析[J]. 广州化工, 2016, 44(22): 71-72+86.

[98]王亚南. 皮里青次烟煤的超声辐射萃取和平行变温热溶[D]. 江苏: 中国矿业大学, 2018.

[99]H.Zheng, Y.Li, W.He, et al. Study on the effect of organic sulfur on coal spontaneous combustion based on model compounds. Fuel 289 (2021): 119846.

[100]K.Wu, Q.Yao, Y.Chen, et al. Dependence evaluation of factors influencing coal spontaneous ignition. Energy Science & Engineering 11.10 (2023): 3738-3750.

[101]Y.D.Cao, J.R.Fontalvo, J.Olson, et al. Quantum chemistry in the age of quantum computing. Chemical reviews 119, no. 19 (2019): 10856-10915.

[102]T.Y.Chang, X.Y.Zhou, X.P.Deng, et al. Correction of sideband effects of nuclear magnetic resonance carbon spectrum in coal and its application in coal structure analysis. Energy Science & Engineering 11.8 (2023): 2763-2774.

[103]F.W.Dai, Q.Y.Zhuang, G.Huang, et al. Infrared spectrum characteristics and quantification of OH groups in coal. ACS omega 8.19 (2023): 17064-17076.

[104]J.X.Liu, Y.Z.Jiang, H.Zhang, et al. Solvent extraction of superfine pulverized Coal. Part 4. Carbon skeleton characteristics. Fuel, 351, 128909.

[105]J.K.Chong, X.Cheng, L.H.Xiao, et al. Fine characterization of the macromolecular structure of Shanxi low-rank coal. Journal of Molecular Structure 1273 (2023): 134359.

[106]Y.Xiao, Y.K.Huang, L.Yin, et al. Thermal behaviors and kinetic characteristics of coal spontaneous combustion at multiple airflow rates by TG− DSC. Journal of Thermal Analysis and Calorimetry (2024): 1-16.

[107]J.T.Margraf, P.O.Dral. What is semiempirical molecular orbital theory approximating?. Journal of Molecular Modeling 25.5 (2019): 119.

[108]E.H.Cho, L.C.Lin. Electrostatic potential optimized molecular models for molecular simulations: CO, CO2, COS, H2S, N2, N2O, and SO2[J]. Journal of Chemical Theory and Computation, 2019, 15(11): 6323-6332.

[109]P.Szarek, L.Komorowski, J.Lipiński. Fukui functions for atoms and ions: Polarizability justified approach[J]. International Journal of Quantum Chemistry, 2010, 110(12): 2315-2319.

[110]Z.Q.Zhang, Q.N.Kang, T.Yun, et al. Density functional theory investigation of possible structures of radicals in coal undergoing O2 chemisorption at ambient temperature[J]. Energy & Fuels, 2017, 31(1): 953-958.

[111]D.Yu, M.Chen, Y.Wei, et al. An assessment on co-combustion characteristics of Chinese lignite and eucalyptus bark with TG–MS technique. Powder technology 294 (2016): 463-471.

[112]A.Benhammada, D.Trache. Thermal decomposition of energetic materials using TG-FTIR and TG-MS: a state-of-the-art review[J]. Applied Spectroscopy Reviews, 2020, 55(8): 724-777.

[113]B.Zhu, X.Dong, Y.Fan, et al. Structural characterization and molecular model construction of high-ash coal from northern China. Molecules 28.14 (2023): 5593.

[114]R.Bhatta, N.Dash. Influence of particle size on maceral and mineral distribution in Lower Gondwana coals of India. Arabian Journal of Geosciences 16.3 (2023): 188.

[115]张继广. 煤转化过程中灰的熔融特性与煤中矿物质的变迁规律[D]. 重庆: 重庆大学, 2015.

[116]T.Chang, X.Zhou, X.Deng, et al. Correction of sideband effects of nuclear magnetic resonance carbon spectrum in coal and its application in coal structure analysis[J]. Energy Science & Engineering, 2023, 11(8): 2763-2774.

[117]秦红璐. 韩城矿区煤岩显微组分的大分子结构研究[D]. 山西: 太原理工大学, 2019.

[118]李焕同, 朱志蓉, 乔军伟, 等. 陕北侏罗纪富镜煤和富惰煤分子结构的FTIR, XPS和13CNMR表征[J]. 光谱学与光谱分析, 2022(008): 042.

[119]相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的碳结构特征及其演化机制[J]. 煤炭学报, 2016, 41(6): 1498-1506.

[120]F.W.Dai, Q.Y.Zhuang, G.Huang, et al. Infrared spectrum characteristics and quantification of OH groups in coal[J]. ACS omega, 2023, 8(19): 17064-17076.

[121]T.Ma, X.W.Zhai, Y.Xiao, et al. Study on the influence of key active groups on gas products in spontaneous combustion of coal. Fuel 344 (2023): 128020.

[122]王雪峰. 煤氧化自燃过程的红外光谱研究[D]. 辽宁工程技术大学, 2007.

[123]张卫, 王路, 苏立红. 低变质程度煤中含氧官能团的红外光谱分析[J]. 内蒙古煤炭经济, 2023(16): 10-12.

[124]R.Delgado. Misuse of Beer–Lambert Law and other calibration curves. Royal Society open science 9.2 (2022): 211103.

[125]L.Song, S.J.Liu, W.W.Li. Quantitative inversion of fixed carbon content in coal gangue by thermal infrared spectral data. Energies 12.9 (2019): 1659.

[126]M.J.Frisch, G.W.Trucks, H.B.Schlegel, et al. Gaussian 09 (Revision D.01), [I]. Gaussian, Wallingford, CT, 2013.

[127]S.Grimme, J.Antony, S.Ehrlich, et.al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, [J]. Chem. Phys., 132 (2010) 154104.

[128]C.Gonzalez, H.B.Schlegel. An improved algorithm for reaction path following, [J]. Chem. Phys., 90 (1989) 2154-2161.

[129]徐春明, 殷梦凡, 童浩, 等. 离子液体萃取分离石脑油中芳烃的理论计算与试验验证[J]. 中国石油大学学报(自然科学版), 2023, 47(05): 138-145.

[130]王智瑶. 基于密度泛函理论团簇ConMoS(n=1-5)性质分析[D]. 辽宁: 辽宁科技大学, 2023.

[131]Q.Luo, Wen.L.Liu, and Qi.M.Zhuo. The Mechanism of Ozone Oxidation of Coal and the Revelation of Coal Macromolecular Structure by Oxidation Products. ACS omega 9.1 (2023): 753-770.

[132]X.M.Ma, X.S.Dong, Y.P.Fan. Prediction and characterization of the microcrystal structures of coal with molecular simulation. Energy & fuels, 32(3), pp.3097-3107.

[133]S.Kato, S.Kuwako, N.Takahashi, et.al Benzo-and naphthopentalenes: syntheses, structures, and properties. The Journal of Organic Chemistry, 81(17), 7700-7710.

[134]C.Chen, M.Kacarab, P.Tang et al. SOA formation from naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene photooxidation. Atmospheric environment 131 (2016): 424-433.

[135]T.Shiga, R.Kumamaru, G.N.Newton, et al. Heteroleptic iron (ii) complexes with naphthoquinone-type ligands. Dalton Transactions 49, no. .

[136]王继仁, 金智新, 邓存宝. 煤自燃量子化学理论[M]. 北京: 科学出版社, 2007.

[137]T.Sangeetha, Sahana.R, Mounica.P et al. Atoms in molecules theory, electrostatic potential surface and frontier molecular orbital analyses on water multimers and pyridine–Water hydrogen bonded complexes. Computational and Theoretical Chemistry 1219 (2023): 113960.

[138]X.Z.Liu, Z.Z.Hu, D.W.Hu, et al. Degradative solvent extraction of low rank coal: Structural evolution of extraction products. Journal of Analytical and Applied Pyrolysis, 177, 106290.

[139]G.H.Çağlayan, U.Ipek. Desulfurization of coal with oak ash extraction[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021: 1-10.

[140]Y.Lu, E.Z.Li, H.G.Cheng, et al. Effect of oxygen functional groups on the surface properties and flotation response of fine coal, comparison of rank with oxidation. International Journal of Coal Preparation and Utilization (2018).

[141]周步壮. 多元气体竞争吸附对煤低温氧化特性影响机制研究[D]. 徐州: 中国矿业大学, 2022.

[142]张亚超, 郝朝瑜, 何文浩, 等. NH3对煤物理吸氧影响规律的量子化学研究[J]. 煤炭转化, 2021, 44(06): 16-25.

[143]高正阳, 杨维结. 不同煤阶煤分子表面吸附水分子的机理[J]. 煤炭学报, 2017, 42(03): 753-759.

[144]张子豪, 肖前, 林海, 等. 基于离子交换固相萃取-高效液相色谱-串联质谱技术测定消毒液中阳离子表面活性杀菌剂[J]. 分析科学学报, 2023, 39(05): 537-542.

[145]陈捷锋. 基于芴基张力格材料的合成及其性质研究[D]. 江苏: 南京邮电大学, 2023.

[146]姜昱忻. 烯丙基/酯基功能化离子液体与DMSO的氢键作用研究[D]. 青岛大学, 2023.

[147]叶玉玺, 丁晓茜, 池华睿, 等. 疏水性低共熔溶剂氢键交互作用调控及萃取铜性能[J]. 化工进展, 2022, 41(S1): 397-406.

[148]刘宸. 二甲基亚砜萃取分离中低温煤焦油机理研究[D]. 北京: 中国矿业大学(北京), 2022.

[149]李春晖, 何辉, 何明键, 等. 离子液体萃取硝酸中Ce(Ⅳ)的动力学研究[J]. 化工学报, 2022, 73(04): 1606-1614.

[150]毛凯敏, 莫文龙, 马凤云, 等. 淖毛湖褐煤分级萃取可溶有机质的组成结构特征及萃余残渣的热转化性能[J]. 燃料化学学报, 2021, 49(10): 1389-1401.

[151]王文涛, 苏哲, 谢书宝, 等. 乏燃料后处理液-液萃取中第三相微观结构研究进展[J]. 核化学与放射化学, 2021, 43(01): 39-49.

[152]Z.Li, Z.D.Zheng, X.H.Li, et al. Enhancing metal separations using hydrophilic ionic liquids and analogues as complexing agents in the more polar phase of liquid–liquid extraction systems. Industrial & Engineering Chemistry Research 58.34 (2019): 15628-15636.

[153]郭柱, 李显, 李致煜, 等. 低阶煤的热溶萃取提质研究进展[J]. 煤炭科学技术, 2023, 51(06): 286-303.

[154]薛文海, 杜美利, 刘忠诚, 等. 萃取方式对黄陵煤分子结构特征影响[J]. 洁净煤技术, 2022, 28(07): 96-102.

[155]代春旺, 李慧宁, 王敬敬, 等. 系列有机溶剂对灵武烟煤萃取行为的影响与评价[J]. 宁夏工程技术, 2022, 21(02): 127-132.

[156]刘庆军. 多场耦合强化高硫煤脱硫研究[D]. 重庆: 重庆大学, 2022.

[157]郭舜. 切换溶剂萃取煤焦油渣及对CO2吸收的研究[D]. 山西: 太原理工大学, 2022.

[158]Schmallegger, Max, G.Gescheidt. Antioxidant activity of beer: an EPR experiment for an undergraduate physical-chemistry laboratory. Journal of Chemical Education 95.11 (2018): 2013-2016.

[159]傅翔宇, 李亚峰, 刘奕含, 等. 磷酸三丁酯改性生物炭活化过硫酸盐降解双酚A的效能研究[J]. 工业水处理, 1-14[2024-04-11].

[160]Y.J.Liu, C.Nan, P.L.Jia, et al. "In-Situ FT-IR Spectroscopy Investigation of CH4 and CO2 Reaction." Catalysts 10, no. 1 (2020): 131.

[161]L.Li, H.J.Fan, H.Q.Hu. Distribution of hydroxyl group in coal structure: A theoretical investigation. Fuel 189 (2017): 195-202.

[162]X.Lu, J.W.Wang. Reaction mechanisms involving the hydroxyl radical in the low-temperature oxidation of coal. Fuel 314 (2022): 122732.

[163]X.Qi, L.Chen, Y.Ji, et al. Reaction mechanism and thermodynamic properties of aliphatic hydrocarbon groups during coal self-heating. Energy & fuels 32.10 (2018): 10469-10477.

[164]K.G.Menon, V.S.Patnaikuni. CFD simulation of fuel reactor for chemical looping combustion of Indian coal. Fuel 203 (2017): 90-101.

[165]Y.Yang, J.Fei, Z.Luo. Experimental study on characteristic temperature of coal spontaneous combustion. Journal of Thermal Analysis and Calorimetry 148.19 (2023): 10011-10019.

[166]J.J.Song, J.Deng, J.Y.Zhao. Comparative analysis of exothermic behaviour of fresh and weathered coal during low-temperature oxidation. Fuel 289 (2021): 119942.

[167]P.Shu, Y.Zhang, J.Deng, et al. Study on the effect of mixed particle size on coal heat release characteristics [J]. International Journal of Coal Preparation and Utilization, 2023, 43(5): 831-846.

[168]J.Deng, Q.W.Li, C.M.Shu, et al. Experimental study on the thermal properties of coal during pyrolysis, oxidation, and re-oxidation. Applied Thermal Engineering 110 (2017): 1137-1152.

[169]贾廷贵, 张智超, 郝长胜. 不同变质程度烟煤的自燃特性研究[J]. 煤矿安全, 2024, 55(02): 87-98.

[170]郝长胜, 袁迎春, 贾廷贵, 等. 不同变质程度煤的化学结构红外光谱研究[J]. 煤矿安全, 2022, 53(11): 15-22.

[171]王凯. 陕北侏罗纪煤低温氧化反应性及动力学研究[D]: 西安科技大学, 2015.

[172]王威. 利用热重分析研究煤的氧化反应过程及特征温度[D]: 西安科技大学, 2005.

[173]白刚, 周西华, 宋东平, 等. 不同变质程度煤燃烧特性及动力学参数研究[J]. 中国安全科学学报, 2017, 27(09): 63-8.

[174]娄和壮, 贾廷贵. TG-DSC联用研究瓦斯气氛对煤自燃热特性的影响[J]. 中国安全科学学报, 2019, 29(11): 77-82.

[175]毕皓东, 汪影, 赵旭, 等. 异双活性基染料-纤维素化合物碱性水解的理论计算[J]. 丝绸, 2024, 61(04): 9-17.

[176]栾添, 匡学衡, 王维, 等. 量子计算模拟物理系统进展[J]. 计算机科学与探索, 1-11[2024-04-11].

[177]福井谦一. 化学反应与电子轨道[M]. 科学出版社, 1985.

[178]李慧玲, 杨敏, 孙金, 等. 一例含阴离子水簇的钴配合物的合成、结构及理论研究[J]. 人工晶体学报, 2021, 50(12): 2293-2299.

[179]赵高录, 李婉婷, 蔺荣, 等. 3种微塑料与头孢拉定吸附作用的理论研究[J]. 海洋环境科学, 2024, 43(02): 227-234.

[180]王欣, 张海, 王凯, 等. 差异化电子密度特征基团对煤氮迁移转化的影响机理研究[J]. 洁净煤技术: 1-10[2024-04-12].

[181]张卫, 臧立岩, 李靖. 量子化学方法在煤自燃机理方面的应用及进展[J]. 科技导报, 2024, 42(04): 73-83.

[182]孙伟, 姜春旭, 梁晴晴, 等. 水液相下依达拉奉与过氧化氢自由基反应的DFT研究[J]. 南开大学学报(自然科学版), 2023, 56(06): 94-104.

[183]李艳梅. 高等有机化学反应、机理与结构[M]. 化学工业出版社, 2018.

[184]邓军, 李亚清, 张玉涛, 等. 羟基(OH)对煤自燃侧链活性基团氧化反应特性的影响[J]. 煤炭学报, 2020, 45(1): 232-240.

[185]李雪. 煤低温氧化羟基自由基反应路径及抑制机理研究[D]. 天津: 天津理工大学, 2022.

[186]张嬿妮. 煤氧化自燃微观特征及其宏观表征研究[D]. 陕西: 西安科技大学, 2012.

[187]徐精彩. 煤自燃危险区域判定理论[M]. 煤炭工业出版社, 2001.

[188]葛岭梅, 李建伟.神府煤低温氧化过程中官能团结构演变[J]. 西安科技大学学报, 2003, 23(2): 187-190.

[189]王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系: 煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(8): 1667-1674.

[190]钱悦月, 张树鹏, 高娟娟, 等. 石墨烯非共价功能化及其应用[J]. 化学通报, 2015, 78(06): 497-504.

[191]夏品. 复合材料催化CO2还原、CH4部分氧化反应的密度泛函理论研究[D]. 湖北: 武汉工程大学, 2023.

[192]张红, 唐留. p型掺杂剂Cp2Mg在MOCVD气相中的反应机理研究[J]. 化工学报, 2020, 71(07): 3000-3008.

[193]赵妍, 李响, 黄金凯, 等. 石墨炭负载单原子铁催化剂非均相还原NO的微观作用机理: DFT研究[J]. 燃料化学学报(中英文): 1-8[2024-04-12].

[194]陆卫东, 王继仁, 邓存宝, 等. 基于活化能指标的煤自燃阻化剂实验研究[J]. 矿业快报, 2007, (10): 45-47+89.

[195]李亚清, 欧霖峰, 李星, 等. 煤自燃热失重特征规律及关键官能团研究[J]. 中国安全生产科学技术, 2024, 20(02): 118-124.

[196]赵梦繁. 临界温度区域内低变质煤的阻化特性实验研究[D]. 辽宁: 辽宁工程技术大学, 2023.

[197]郭志国, 张俊, 郑彪华, 等. 预氧化煤复燃行为演化特征及微观动力学机制[J]. 安全与环境学报, 2023, 23(08): 2644-2652.

[198]张日. 温和条件下甲烷部分氧化催化剂的制备及其性能研究[D]. 北京: 北京化工大学, 2024.

[199]田垚. 煤-聚氨酯双元体系自燃动力学特征及产物生成规律研究[D]. 北京: 中国矿业大学(北京), 2023.

[200]张园勃, 张玉涛, 邓军, 等. 贫氧作用下煤氧化放热关键基团演变特征及其热效应研究[J]. 煤炭学报: 1-13[2024-04-12].

中图分类号:

 X936    

开放日期:

 2025-03-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式