论文中文题名: | 基于ARM的压电换能器参数测量装置研究 |
姓名: | |
学号: | 19206107025 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0809 |
学科名称: | 工学 - 电子科学与技术(可授工学、理学学位) |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 超声波电源 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-25 |
论文答辩日期: | 2022-06-07 |
论文外文题名: | Research on piezoelectric transducer parameter measurement device based on ARM |
论文中文关键词: | |
论文外文关键词: | Piezoelectric transducer ; Equivalent parameters ; Impedance analyzer ; Impedance method ; Phase method |
论文中文摘要: |
压电换能器是超声技术的核心内容之一,在工业、农业、交通运输、医疗及军事等诸多领域发挥着相当重要的作用。换能器参数用于计算换能器的转换效率,是评价器件性能的标准参量,对于匹配网络参数的确定至关重要。然而,目前针对换能器参数的测量方法和技术在多频超声波电源的自适应匹配、集成度和测量效率等方面存在不足。根据对换能器工作机理及匹配网络的研究,结合软硬件设计技术,设计了两种直接对换能器参数进行测量的装置。 根据不同频率下换能器等效电路不同的特点,设计了基于阻抗法和相位法的测量方案,并分别进行仿真验证与误差分析。设计了基于ARM的压电换能器参数测量装置,主要包括硬件电路设计和软件程序设计。其中,信号发生电路用于产生四个特定频率的正弦波信号,并驱动换能器工作;采样电路的作用是采集换能器两端的电压值和电流值,并保持其值传输到下一个单元;峰值检波电路获得的峰值信号除了用于计算有效值以外,还可以作为相位检测电路的输入信号,利用模拟乘法器来求取两路正弦波的相位差值;A/D转换电路的目的是将连续的模拟输入信号转换为能够让STM32使用的数字化信号。设计稳定的电源模块用于保证芯片处于最佳的工作状态;DDS信号源模块采用电流极值法进行扫频,并从STM32向DDS芯片写入不同频率所需的频率控制字;数据采集与处理模块的作用是根据两种算法对换能器等效电路参数进行计算;显示控制模块根据迪文屏采用的通讯协议以及指令集完成了触摸屏和运行按键的设计。 为验证所提出的两种参数测量方法的准确性与实用性,搭建测试平台,分别对谐振频率为19kHz~40kHz的压电换能器进行多次测量。将测试结果与阻抗分析仪PV520A进行对比,发现两种方法的参数测量误差均小于2%,测量精度满足实际需求,稳定性较好,可以根据测量数据给出换能器性能匹配的依据,以此实现多频换能器的自动匹配。 |
论文外文摘要: |
Piezoelectric transducer is one of the core contents of ultrasonic technology. It plays a very important role in many fields, such as industry, agriculture, transportation, medical and military. Transducer parameters, which are used to calculate the conversion efficiency of transducers, are the standard parameters to evaluate the performance of devices, and are very important to determine the parameters of matching network. However, the current measurement methods and technologies for transducer parameters have shortcomings in the adaptive matching, integration and measurement efficiency of multi frequency ultrasonic power supply. According to the research on the working mechanism and matching network of the energy converter, combined with the software and hardware design technology, two devices for directly measuring the parameters of the energy converter are designed. According to the different characteristics of transducer equivalent circuit at different frequencies, the measurement schemes based on impedance method and phase method are designed, and the simulation verification and error analysis are carried out respectively. A piezoelectric transducer parameter measurement device based on arm is designed, including hardware circuit design and software program design. The signal generating circuit is used to generate sine wave signals of four specific frequencies and drive the transducer to work; The function of the sampling circuit is to collect the voltage and current values at both ends of the transducer, and keep their values transmitted to the next unit; In addition to calculating the effective value, the peak signal obtained by the peak detection circuit can also be used as the input signal of the phase detection circuit, and the analog multiplier is used to calculate the phase difference of two sine waves; The purpose of A/D conversion circuit is to convert continuous analog input signals into digital signals that can be used by STM32. A stable power module is designed to ensure that the chip is in the best working state; DDS signal source module uses current extremum method to sweep frequency, and writes frequency control words required by different frequencies from STM32 to DDS chip; The function of the data acquisition and processing module is to calculate the equivalent circuit parameters of the converter according to the two algorithms; The display control module completes the design of touch screen and operation keys according to the communication protocol and instruction set adopted by Devon screen. In order to verify the accuracy and practicability of the proposed two parameter measurement methods, a test platform was built to measure the piezoelectric transducers with resonant frequencies of 19kHz~40kHz for many times. Comparing the test results with the impedance analyzer PV520A, it is found that the parameter measurement error of the two methods is less than 2%, the measurement accuracy meets the actual needs, and the stability is good. The basis for the performance matching of the transducer can be given according to the measurement data, so as to realize the automatic matching of the multi frequency transducer. |
参考文献: |
[1] 莫远东,于兆勤,莫德云,等.基于FPGA的超声电源设计[J].新技术新工艺,2017(02):28-32. [2] 李夏林,刘雅娟,朱武.超声电源频率自动跟踪的模糊控制算法研究[J].应用声学,2017,36(02):135-141. [3] 曾兴斌,张青波,翁正国,等.国内超声波技术的新进展[C]//.2017年西安-上海声学学会第五届声学学术交流会议论文集.西安:《声学技术》编辑部,2017:36-42. [6] 陈鹏,覃庆良,冯宇平.频率自动跟踪超声波电源设计[J].应用声学,2017,36(06):533-539. [7] 原艺博,李琳,刘海龙.一种频率可调超声波发生器设计[J].太赫兹科学与电子信息学报,2020,18(02):339-344. [8] 刘丽晨,杨明,李世阳,庄晓奇,李奇磊.超声换能器并联谐振频率的复合式跟踪方法研究[J].应用声学,2015,34(01):45-50. [9] 彭呈祥,段发阶,蒋佳佳,等.基于频率跟踪的超声驱动电源研制[J].电力电子技术,2019,53(05):1-5. [11] 裴建德,屈百达,屈环宇.超声波电源新型频率功率自跟踪系统的研究[J].电声技术,2016,40(04):22-25. [12] 王露,杨靖,王登攀,等.大功率超声换能器匹配技术研究[J].压电与声光,2015,37(02):254-257. [13] 侯光华,杜贵平,罗杰.超声波电源的改进频率跟踪方法[J].电源学报,2019,17(01):152-158. [14] 李洋洋.多功能超声波清洗电源的设计[J].实验室科学,2019,22(03):186-189. [17] 赫亮,刘晓光,蒋晓明,等.基于DSP的超声波电源硬件电路设计[J].自动化与信息工程,2015,36(03):24-27. [18] 李洋洋.基于ATMEGA的超声波电源设计与仿真[J].辽宁工业大学学报(自然科学版),2019,39(01):21-24. [19] 张加岭,李善波,侯颖钊,等.基于STM32的超声波发生器扫频信号源的实现[J].电气传动自动化,2017,39(05):20-23. [20] 邓孝祥,葛飞.超声波电源匹配网络和频率跟踪系统的研究[J].通信电源技术,2019,36(11):8-11. [23] 李洋洋.频率自动跟踪超声清洗装置的设计[J].辽宁工业大学学报(自然科学版),2019,39(06):356-358. [24] 秦佳才,韩翔,肖光宗,等.超声波换能器驱动电源的研究综述[J].电子设计工程,2020,28(09):135-139. [25] 侯光华,杜贵平,罗杰.超声波电源的改进频率跟踪方法[J].电源学报,2019,17(01):152-158. [26] 李夏林,朱武.基于DDS技术的超声电源系统的设计[J].上海电力学院学报,2017,33(01):81-85. [27] 赵娜,赵旭超,赵炎,等.FPGA超声波换能器测试平台的设计[J].辽东学院学报(自然科学版),2020,27(01):37-44. [28] 耿海云.基于PWM功率控制的超声波电源研究与设计[J].科技资讯,2019,17(19):51-53. [35] 陈亚波,张洋洋,邵坤.基于数字正交的压电材料参数测试系统研究[J].压电与声光,2011,33(5):804-806. [36] 李海峰,曾娟,高天赋.采用系统函数分析换能器阻抗测量方法的性能[J].声学学报,2012(3):294-300. [37] 张鹏飞,殷国富,赵秀粉.数字化超声波探头性能检测系统研究[J].机械设计与制造,2014(3):151-154. [38] 孙景峰,刘慧英,舒蓉.超声换能器时频域特性校准系统研究与实现[J].电子测量技术,2016,39(9):158-164. [39] 沈建国,李山生,辛鹏来.声波测井压电换能器的一致性问题[J].石油仪器,2002,16(6):33-35. [40] 李祖胜,李艺,赵明.压电换能器谐振频率动态检测的研究[J].自动化仪表,2011,32(5):53-55. [41] 刘云,隆志力,李华.压电器件阻抗测试系统的研制[J].压电与声光,2015,37(6):1061-1065. [42] 许丰灵,赵秋明,李勇昌.基于 FPGA+ARM 的压电换能器阻抗测量系统设计[J].压电与声光,2016,38(2):337-340. [47] 金亮. 超声波埋线器电源的设计与实现[D].杭州:杭州电子科技大学,2016. [51] 马金鹏. 高性能压电单晶材料的性能调控及其医用高频超声换能器研究[D].上海:上海师范大学,2019. [54] 高炳东,潘云华,张丛巨,等.基于等效电路模型的超声波电动机匹配电路研究[J].微特电机,2019,47(07):32-36. [63] 田晔非.高频杂波信号真有效值测量技术[J]. 自动化与仪器仪表, 2017(01): 72-73. [64] 侯月,高雪岩,尹振红.智能交流电流真有效值数字测量装置开发[J].产业与科技论坛, 2018, 17(18): 59-60. |
中图分类号: | TP274+.53 |
开放日期: | 2022-06-27 |