- 无标题文档
查看论文信息

论文中文题名:

 基于时序InSAR技术的矿区地表沉陷监测及预测研究    

姓名:

 韩琪    

学号:

 20210226107    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 InSAR数据处理及应用    

第一导师姓名:

 原喜屯    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Monitoring and prediction of surface subsidence in mining areas based on time-series InSAR technology    

论文中文关键词:

 时序InSAR ; 矿区 ; 开采沉陷 ; 沉陷预测 ; SVR    

论文外文关键词:

 Time-series InSAR ; mine site ; mining subsidence ; subsidence prediction ; SVR    

论文中文摘要:

随着国民经济快速发展,煤炭资源需求不断增加,大面积煤炭开采导致地表发生沉陷,由此产生严重的地质灾害,加强对开采区的监测和治理显得尤为重要。煤炭的持续开采形成了采空区,对采空区上方地表沉降进行持续监测和预测,可为矿区合理开采煤炭和地质灾害防治提供决策依据。

本文以彬长矿区的孟村煤矿为研究区,基于时序InSAR技术获取研究区形变信息。建立改进支持向量机回归算法(SVR)模型预测最大沉陷量,与时序InSAR技术监测结果对比验证。主要研究内容及结果总结如下:

(1)对比不同时序InSAR技术在矿区地表沉陷监测结果。采用2018年1月至2020年12月近三年时间Sentinel-1A影像,分别利用PS-InSAR技术、SBAS-InSAR技术以及优化选取GCP的SBAS-InSAR技术获取了彬长矿区孟村煤矿时间序列沉降量结果,并结合GPS观测数据对比验证,结果表明优化选取GCP的SBAS-InSAR技术精度最高。

(2)对优化选取GCP的SBAS-InSAR技术监测结果进行分析,揭示研究区401101工作面地表沉陷规律。监测结果中存在明显沉陷,其中R1处沉降漏斗位于401101工作面正上方。为了分析开采过程中地表沉陷规律,利用观测点分别沿401101工作面走向和倾向提取形变信息,发现沉陷速度均表现为先增大后减少,工作面最大沉陷量达到326mm。

(3)针对开采沉陷量与开采因素之间复杂的非线性关系,分别采用遗传算法(GA)和粒子群算法(PSO)对支持向量机回归(SVR)预测模型进行优化。构建SVR、GA-SVR、PSO-SVR三种预测模型,选取绝对误差(AE)、相对误差(RE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)五个评价指标对预测结果进行评价。结果表明:SVR、GA-SVR、PSO-SVR三种预测模型均可用于矿区形变预测,PSO-SVR模型精度更高。通过与优化选取GCP的SBAS-InSAR技术监测结果进行比较,相对误差为8.6%。

论文外文摘要:

With the rapid development of national economy and increasing demand for coal resources, large coal mining has led to surface subsidence, resulting in serious geological disasters, and it is especially important to strengthen the monitoring and management of mining areas. The continuous mining of coal has formed the mining area, and the continuous monitoring and prediction of surface subsidence above the mining area can provide a decision basis for the reasonable mining of coal and geological disaster prevention and control in the mining area.

In this paper, Mengcun coal mine in Binchang mining area is used as the study area, and the deformation information of the study area is obtained based on the time-series InSAR technique. An improved support vector machine regression (SVR) model is developed to predict the maximum subsidence, and the results are compared with the monitoring results of the time-series InSAR technique for verification. The main research contents and results are summarized as follows:

(1) Comparison of surface subsidence monitoring results of different time-series InSAR techniques in mining areas. Using Sentinel-1A images for nearly three years from January 2018 to December 2020, the time series subsidence results of Mengcun coal mine in Binchang mine area were obtained using PS-InSAR technique, SBAS-InSAR technique and SBAS-InSAR technique with optimized selection of GCP, respectively, and were verified by comparing with GPS observation data, and the results showed that the optimized selection of The results show that the SBAS-InSAR technique with GCP has the highest accuracy.

(2) The monitoring results of SBAS-InSAR technology with optimized selection of GCP were analyzed to reveal the surface subsidence pattern of working face 401101 in the study area. There is obvious subsidence in the monitoring results, in which the subsidence funnel at R1 is located directly above the working face of 401101. In order to analyze the surface subsidence pattern during mining, the observation points were used to extract the deformation information along the direction and tendency of 401101 working face respectively, and it was found that the subsidence rate all showed an increase and then a decrease, and the maximum subsidence amount of the working face reached 326mm.

(3) The support vector machine regression (SVR) prediction models were optimized using genetic algorithm (GA) and particle swarm algorithm (PSO), respectively, for the complex nonlinear relationship between mining subsidence volume and mining factors. Three prediction models of SVR, GA-SVR and PSO-SVR were constructed, and five evaluation indexes of absolute error (AE), relative error (RE), mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE) were selected to evaluate the prediction results. The results show that all three prediction models, SVR, GA-SVR and PSO-SVR, can be used for mine deformation prediction, and the PSO-SVR model has higher accuracy. The relative error is 8.6% by comparing with the monitoring results of SBAS-InSAR technique with optimized selection of GCP.

参考文献:

[1] 何国清, 杨伦, 凌赓娣,等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1994: 5.

[2] Chen P. Study on integrated classification system for Chinese coal[J]. Fuel processing technology, 2000, 62(2-3): 77-87.

[3] 亚库比. 中哈煤炭行业发展的比较分析与合作路径研究[D]. 西安科技大学, 2020.

[4] Liu N, Dai W, Santerre R, et al. High Spatio-Temporal Resolution Deformation Time Series With the Fusion of InSAR and GNSS Data Using Spatio-Temporal Random Effect Model [J]. Ieee Transactions on Geoscience and Remote Sensing, 2019, 57(1): 364-380.

[5] Su Z, Wang E-C, Hu J-C, et al. Quantifying the Termination Mechanism Along the North Tabriz-North Mishu Fault Zone of Northwestern Iran via Small Baseline PS-InSAR and GPS Decomposition[J]. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 130-144.

[6] Othman A A, Al-Maamar A F, Al-Manmi D a M, et al. Application of DInSAR-PSI Technology for Deformation Monitoring of the Mosul Dam, Iraq[J]. Remote Sensing, 2019, 11(22): 2632-2651.

[7] Zhang Z, Wang C, Wang M, et al. Surface Deformation Monitoring in Zhengzhou City from 2014 to 2016 Using Time-Series InSAR[J]. Remote Sensing, 2018, 10(11): 1731-1747.

[8] 杨泽发, 易辉伟, 朱建军等. 基于InSAR时序形变的矿区全盆地沉降时空演化规律分析[J]. 中国有色金属学报, 2016, 26(007): 1515-1522.

[9] 龚云, 姚顽强, 汤伏全. 西部矿区开采损害动态监测的新途径[J]. 西安科技大学学报, 2010, 30(06): 693-697.

[10] 刘沂轩, 耿智海, 杨俊凯, 杜珍应, 曹久立. 基于SBAS技术的概率积分法矿区沉降量提取模型[J]. 煤炭科学技术, 2017, 45(02): 156-161.

[11] 陈海燕, 戎晓力, 林阳. 矿区开采沉陷预计的改进BP神经网络模型[J]. 金属矿山, 2017(04): 119-122.

[12] 杨俊凯, 范洪冬, 赵伟颖, 冯军. 基于D-InSAR技术和灰色Verhulst模型的矿区沉降监测与预计[J]. 金属矿山, 2015(03): 143-147.

[13] Chapelle O, Haffner P, Vapnik V N.Support vector machines for histogram-based image class ification[J]. IEEE transactions on Neural Networks, 1999, 10(5): 1055-1064.

[14] 吴一戎, 朱敏慧. 合成孔径雷达技术的发展现状与趋势[J]. 遥感技术与应用, 2000, 15(2): 121-123.

[15] Rogers A E E, Ingalls R P. Venus: Mapping the surface reflectivity by radar interferometry[J]. Science, 1969, 165(3895): 797-799.

[16] Graham L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6): 763-768.

[17] Zebker H A, Goldstein R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4993-4999.

[18] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio science, 1988, 23(4): 713-720.

[19] Li F K, Goldstein R M. Studies of multibaseline spaceborne interferometric synthetic aperture radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(1): 88-97.

[20] 何秀凤, 何敏. InSAR对地观测数据处理方法与综合测量[M]. 科学出版社, 2012.

[21] 何琪. 时序InSAR技术监测北京市地表形变及其与地下水位变化关系分析[D]. 北京: 中国地质大学, 2020.

[22] 张景发, 李发祥, 张世民. InSAR处理算法及理论模型综合研究[J]. 地壳构造与地壳应力文集, 2000, (00): 192-211.

[23] 陈基炜. 新技术在城市地面沉降研究中的应用——遥感卫星雷达干涉测量(InSAR)[J]. 上海地质, 2001, (02): 45-50.

[24] 刘毅. 地面沉降研究的新进展与面临的新问题[J]. 地学前缘, 2001, (02): 273-278.

[25] 焦明连, 高祥伟. 基于InSAR技术的煤矿区数字高程模型的建立[J]. 煤炭工程, 2008, (07): 112-114.

[26] 裴旭, 李岩, 王立娜, et al. 基于InSAR技术在山地区域DEM提取及精度评定[J]. 测绘与空间地理信息, 2018, 41(05): 33-36.

[27] Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382.

[28] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B7): 9183-9191.

[29] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142.

[30] Carnec C, Massonnet D, King C. Two examples of the use of SAR interferometry on displacement fields of small spatial extent[J]. Geophysical research letters, 1996, 23(24): 3579-3582.

[31] Wright, P. A. Detection and measurement of mining subsidence by SAR interferometry; proceedings of the Radar Interferometry, USA, F, 1997[C]. IEEE Xplore.

[32] Perski Z. Applicability of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian coal mining region, Poland[J]. International Archives of Photogrammetry and Remote Sensing, 1998, 32: 555-558.

[33] Wegmuller U, Strozzi T, Bitelli G. Validation of ERS differential SAR interferometry for land subsidence mapping: the Bologna case study[M]. USA: IEEE Xplore, 1999.

[34] Delacourt C C. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France[J]. Journal of Applied Geophysics, 2000, 43(1): 43-54.

[35] Eneva M, Baker E, Xu H. Application of Differential InSAR to Mining[C]// AGU Fall Meeting Abstracts. 2001: G31A-0138.

[36] Przyłucka M, Herrera G, Graniczny M, et al. Combination of conventional and advanced DInSAR to monitor very fast mining subsidence with Terra SAR-X data: Bytom City (Poland)[J]. Remote Sensing, 2015, 7(5): 5300-5328.

[37] Herrera G, Tomás R, López-Sánchez J M, et al. Advanced D-InSAR analysis on mining areas: La Union case study(Murcia, SE Spain)[J]. Engineering Geology, 2007, 90(3-4): 148-159.

[38] Przyłucka M, Herrera G, Graniczny M, et al. Combination of conventional and advanced D-InSAR to monitor very fast mining subsidence with Terra SAR-X data: Bytom City (Poland)[J]. Remote Sensing, 2015, 7(5): 5300-5328.

[39] Simmons B S, Wempen J M. Quantifying relationships between subsidence and longwall face advance using D-InSAR[J]. International Journal of Mining Science and Technology, 2021, 31(1): 91-94.

[40] Cherian J. Determining the amount of earthquake displacement using differential synthetic aperture radar interferometry (D-InSAR) and satellite images of Sentinel-1 A: A case study of Sarpol-e Zahab city[J]. Advances in Engineering and Intelligence Systems, 2022, 1(01).

[41] 王超, 杨清友. 干涉雷达在地学研究中的应用[J]. 遥感技术与应用, 1997, (04): 37-46.

[42] 吴立新,高均海,葛大庆, et al.基于D-InSAR的煤矿区开采沉陷遥感监测技术析[J].地理与地理信息科学, 2004, (02): 22-25+37.

[43] 吴立新, 高均海, 葛大庆, et al. 工矿区地表沉陷D-InSAR监测试验研究[J].东北大学学报, 2005, (08): 778-782.

[44] 薛跃明, 郭华东, 王长林, et al. 基于D-InSAR技术的矿区地表形变监测研究[J]. 遥感信息, 2008, (05): 33-36.

[45] 刘慕溪, 刘冬. D-InSAR技术应用于矿区开采沉陷的监测分析[J]. 江西测绘, 2014, (02): 18-21.

[46] 娄明明, 巩华刚, 徐子兴, et al. 基于D-InSAR技术的鄂尔多斯市矿区形变监测与分析[J]. 测绘地理信息, 2021, 1-6.

[47] 彭鹏, 许静, 刘乐. 基于D-InSAR技术的皖北地区采煤沉陷早期识别方法研究[J]. 安徽地质, 2022, 32(02): 150-153.

[48] Bürgmann R, Rosen P A, Fielding E J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation[J]. Annual review of earth and planetary sciences, 2000, 28(1): 169-209.

[49] Tymofyeyeva E, Fialko Y. Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(8): 5952-5963.

[50] Aslan G, Cakır Z, Ergintav S, et al. Analysis of secular ground motions in Istanbul from a long-term InSAR time-series (1992–2017)[J]. Remote sensing, 2018, 10(3): 408.

[51] Neelmeijer J, Schöne T, Dill R, et al. Ground deformations around the Toktogul Reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 data—a case study about the impact of atmospheric corrections on InSAR time series[J]. Remote Sensing, 2018, 10(3): 462.

[52] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on geoscience and remote sensing, 2002, 40(11): 2375-2383.

[53] Mora O, Mallorqui J J, Broquetas A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2243-2253.

[54] Usai S. A least squares database approach for SAR interferometric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 753-760.

[55] Dong S, Samsonov S, Yin H, et al. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method[J]. Environmental earth sciences, 2014, 72(3): 677-691.

[56] Ferretti A, Prati C, Rocca F. Permanent scatterers inSAR interferometry[J]. IEEE Transactions on geoscience and remote sensing, 2001, 39(1): 8-20.

[57] Colesanti C, Ferretti A, Ferrucci F, et al. Monitoring known seismic faults using the Permanent Scatterers (PS) technique[C]// IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120). IEEE, 2000, 5: 2221-2223.

[58] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on geoscience and remote sensing, 2000, 38(5): 2202-2212.

[59] Werner C, Wegmuller U, Strozzi T, et al. Interferometric point target analysis for deformation mapping[C]// IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477). IEEE, 2003, 7: 4362-4364.

[60] Bürgmann R, Hilley G, Ferretti A, et al. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis[J]. Geology, 2006, 34(3): 221-224.

[61] Perissin D, Wang T. Time-series InSAR applications over urban areas in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 4(1): 92-100.

[62] Solari L, Ciampalini A, Raspini F, et al. PSInSAR analysis in the Pisa urban area(Italy): A case study of subsidence related to stratigraphical factors and urbanization[J]. Remote Sensing, 2016, 8(2): 120.

[63] Foroughnia F, Nemati S, Maghsoudi Y, et al. An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 74: 248-258.

[64] Wit K, Lexmond B R, Stouthamer E, et al. Identifying Causes of Urban Differential Subsidence in the Vietnamese Mekong Delta by Combining InSAR and Field Observations[J]. Remote Sensing, 2021, 13(2): 189.

[65] Naddaf M, Hosseinzadeh S R, Martin J, et al. Investigation of surface deformation of open cast mines using radar interferometry of PS algorithm-Case study: Sangan khof iron ore mine[J]. Scientific-Research Quarterly of Geographical Data (SEPEHR), 2022, 30(120): 65-76.

[66] 罗海滨, 赵显富. 基于PS-DInSAR技术监测盐城地面沉降的结果与分析[J]. 测绘通报, 2012, (11): 35-37+46.

[67] 刘向铜, 曹秋香, 熊助国, et al. 一种优化的公共主影像选取方法[J]. 测绘科学, 2016, 41(11): 114-117+188.

[68] 马飞虎, 姜珊珊, 孙翠羽. PS-InSAR在铅山县矿区地表沉降监测中的应用[J]. 应用科学学报, 2018, 36(06): 969-977.

[69] 冯小蔓, 张蓓, 任鸿瑞. 基于PS-DInSAR的太原市城市地表形变监测[J]. 陕西师范大学学报(自然科学版), 2020, 48(01): 50-57.

[70] 孔祥如, 罗勇, 刘贺, et al. PS-InSAR技术在北京通州区地面沉降监测中的应用[J]. 城市地质, 2021, 16(01): 25-31.

[71] 张志华, 胡长涛, 张镇, 杨树文. 基于PS-InSAR上海地区地表沉降监测与分析[J]. 自然资源遥感, 2022,34(03): 106-111.

[72] 陶威, 贾洪果, 亢邈迒等. 基于时序合并的PS-InSAR方法在雄县及周边区域地表形变监测中的应用[J]. 测绘通报, 2023, No.550(01): 101-106.

[73] Casu F, Manzo M, Lanari R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data[J]. Remote Sensing of Environment, 2006, 102(3-4): 195-210.

[74] Tizzani P, Berardino P, Casu F, et al. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach[J]. Remote Sensing of Environment, 2007, 108(3): 277-289.

[75] Guzzetti F, Manunta M, Ardizzone F, et al. Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Italy[J]. Pure and Applied Geophysics, 2009, 166(8): 1425-1459.

[76] Chaussard E, Wdowinski S, Cabral-Cano E, et al. Land subsidence in central Mexico detected by ALOS InSAR time-series[J]. Remote sensing of environment, 2014, 140: 94-106.

[77] Yastika P E, Shimizu N, Abidin H Z. Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data[J]. Advances in Space Research, 2019, 63(5): 1719-1736.

[78] Grebby S, Sowter A, Gluyas J, et al. Advanced analysis of satellite data reveals ground deformation precursors to the Brumadinho Tailings Dam collapse[J]. Communications Earth & Environment, 2021, 2(1): 1-9.

[79] Raju A, Mehdi K. SBAS-InSAR analysis of regional ground deformation accompanying coal fires in Jharia Coalfield, India[J]. Geocarto International, 2023 (just-accepted): 1-23.

[80] 张静, 张勤, 曲菲霏. 运城市地面沉降SBAS-InSAR监测和敏感性GIS分析[J]. 上海国土资源, 2012, 33(01): 58-61.

[81] 刘志敏, 李永生, 张景发, et al. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 国土资源遥感, 2014, 26(03): 37-42.

[82] 张艳梅, 王萍, 罗想, et al. 利用Sentinel-1数据和SBAS-InSAR技术监测西安地表沉降[J]. 测绘通报, 2017, (04): 93-97.

[83] 阎跃观, 代文晨, 赵传武, et al. 基于SBAS-InSAR技术的矿区地表移动规律研究[J]. 中国矿业, 2019, 28(S2): 177-180.

[84] 栾元重, 梁耀东, 纪赵磊, et al. 基于SBAS-InSAR技术采动地表沉降监测与分析[J]. 煤炭科学技术, 2020, 48(10): 198-204.

[85] 石固林, 徐浪, 张璇钰, et al. 西山村滑坡时序形变的SBAS-InSAR监测[J]. 测绘科学, 2021, 46(02): 93-98+105.

[86] 麻学飞, 张双成, 惠文华, 许强. 山西省临汾市矿区地表形变InSAR大范围探测与监测[J]. 自然资源遥感, 2022, 34(03): 146-153.

[87] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(01): 171-179.

[88] 周小龙, 石鹏卿. 基于SBAS-InSAR技术的甘肃华亭市地表形变监测与分析[J]. 测绘与空间地理信息, 2023, 46(02): 30-33+38.

[89] 张蓬郁, 王煜, 江旻宇, 邵嘉琳, 张洪滨. 基于K-D树和机器学习的时空数据检索-预测系统[J]. 软件, 2018, 39(08): 215-218.

[90] 马飞, 隋立春, 姚顽强, 汤伏全. 基于InSAR技术和GS-SVR算法的矿区地表开采沉陷预计[J]. 测绘工程, 2018, 27(07): 10-14.

[91] 李金超, 高飞, 鲁加国, 方睿. 基于SBAS-InSAR和GM-SVR的居民区形变监测与预测[J]. 大地测量与地球动力学, 2019, 39(08): 837-842.

[92] 张予东, 马春艳. 基于InSAR技术和SA-SVR算法的矿区沉降预测模型[J]. 金属矿山, 2020(11): 197-202.

[93] 张童康, 师芸, 王剑辉, 刘丽霞, 闫倩倩. InSAR和改进支持向量机的沉陷预测模型分析[J]. 测绘科学, 2021,46(11): 63-70.

[94] 师芸, 李杰, 吕杰, 马东晖. 结合SBAS-InSAR与支持向量回归的开采沉陷监测与预测[J]. 遥感信息, 2021, 36(02): 6-12.

[95] Alex Hay-Man Ng, Linlin Ge, et al·Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the southern coalfield New South Wales[J]. Engineering Geology, 2010, 1(15): 115-118.

[96] D.Massonnet, K.L.Feigl. Radar interferometry and its application to changes in the earth’s surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500.

[97] 吕冰圭, 姜志翱, 宁春玉. 基于PSO和GA混合优化的FCM算法[J]. 长春理工大学学报(自然科学版), 2021, 44(06): 125-130.

[98] 周晓勇. 地铁车载ATC设备故障诊断与预警系统研究[D]. 北京交通大学, 2021.

[99] 许浩然, 陈中举, 杨兆前, 房梦婷, 詹炜. 基于Prophet模型的湖北省月降水量预测[J]. 节水灌溉, 2022(02): 7-12+20.

[100] 王夏冰. 神东深部开采沉陷规律的DInSAR时序分析[D].河南理工大学,2019.

[101] 余学义.开采速度对地表建筑物损害影响分析[J].西安科技学院学报,2001(02):97-101.

[102] 邢垒. 基于SBAS-InSAR技术的综放工作面地表沉陷监测及预测研究[D]. 西安科技大学, 2021.

中图分类号:

 P237    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式