- 无标题文档
查看论文信息

论文中文题名:

 基岩沟谷浅埋煤层采动覆岩运移规律及动载矿压显现机理研究    

姓名:

 马哲    

学号:

 19103077016    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085218    

学科名称:

 工学 - 工程 - 矿业工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 柴敬    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-26    

论文答辩日期:

 2024-06-08    

论文外文题名:

 Research on the movement law of overburden and the mechanism of dynamic pressure during shallow coal seam mining in bedrock valleys    

论文中文关键词:

 基岩沟谷地形 ; “多边块”结构 ; 分区破坏 ; 动载矿压 ; 采动裂缝    

论文外文关键词:

 Bedrock valley terrain ; Multilateral block sructure ; Partition destruction ; Dynamic pressure ; of mining induced cracks    

论文中文摘要:

我国西部矿区煤炭可采层数多、煤层厚且埋藏相对较浅,部分地表为基岩沟谷地貌,特点为地表峰谷高差悬殊且覆岩含有多个关键层。基岩沟谷地表以上采动坡体变形过程中水平移动特征显著,对矿井安全高效生产和地表环境保护造成不利影响。本文综合运用理论分析、模型实验、数值分析和现场实测等多种研究方法,以宁夏白芨沟煤矿为背景对基岩沟谷矿区浅埋厚煤层分层开采覆岩破坏及矿压显现规律进行了系统地分析。主要研究成果如下:

(1)建立了基本顶薄板和关键层中厚板破断力学模型。依据建立的模型给出了顶板挠度、弯矩、剪力和主应力计算公式,分析了基本顶裂隙发育演化特征、破断模式和破断距影响因素。地表地形起伏变化会改变基本顶的破断顺序、破断位置和破断距。随着岩层厚度的增加,岩层的破断力学机制表现出由拉破断向剪切破断模式转变的演化规律,厚岩层易剪切破断造成覆岩整体切落而发生动载矿压现象。

(2)研究了基岩沟谷地形采动覆岩变形运移规律。沟谷地表以下采动覆岩层状破断形成“砌体梁”结构,以垂向沉降运移为主;沟谷地表以上采动坡体以“多边块”结构形式回转运动,水平移动特征明显,主要破坏特征为沟谷地表开裂隆起、坡体产生地表下行裂缝以及坡脚岩层滑移。不同开采阶段采动坡体稳定性依次为:沟谷开采﹥出山开采﹥进山开采。此外,本文还通过离散元数值方法分析了不同沟谷参数和开采参数对坡体变形破坏规律的影响。

(3)研究了基岩沟谷采动覆岩裂隙发育演化规律。模型实验结果表明,首分层开采时地表下行裂缝和顶板上行裂隙同时发育;下分层开采时地裂缝不再产生,已有裂缝处于“扩张-闭合-再扩张-再闭合”的循环发展过程,新生裂隙以顶板上行垂向裂隙为主。现场实测结果表明,基岩沟谷地形坡体地裂缝以拉伸型为主,多发育于坡度陡然变化的地形过渡带且与等高线走向大致平行,空间分布受地形地貌和坡体回转运动影响大,相比沙土质沟谷发育演化速率更快且存在永久性开裂裂缝,产生时间和裂缝间距与工作面来压时间和来压步距有较好的对应性。

(4)提出了基岩沟谷地形关键层判别方法及采动覆岩垂向分带模型。层序完整性是基岩沟谷地形关键层承载能力和覆岩运移剧烈程度的主要影响因素,据此提出了沟谷地形强、弱关键层的定义并给出了判别方法。层序缺失关键层无法有效传递水平应力,为弱关键层,反之为强关键层。高位层序缺失关键层回转运动会限制裂隙发育,采动覆岩呈现“两带”或新“三带”,即垮落带、裂隙带和回转下沉带。

(5)研究了基岩沟谷地形浅埋工作面动载矿压显现机理。进山开采阶段,“多边块”随块度的增加和回转空间的减小易发生切落失稳,其下方基本顶“砌体梁”结构承压破坏,工作面发生动载矿压且危险性越来越强。工作面位于山体下时,按动、静载矿压显现危险程度划分为极度危险区、重度危险区、中度危险区和弱影响区。在分析基岩沟谷地形浅埋厚煤层工作面开采顶板破断特征、失稳运移形式的基础上,建立了工作面支架-围岩相互作用关系力学模型,给出了支架动、静载荷以及支护阻力的计算方法,为支架的合理选型及顶板控制提供理论依据。

(6)建立了沟谷地形工作面超前支承应力计算模型。沟谷地形下超前支承应力由地表以下覆岩自重应力、基本顶传递应力和坡体覆岩自重应力组成。进山开采阶段,超前支承应力峰值点距工作面煤壁 6 ~ 18 cm,应力峰值大小随采动范围的增加不断升高;出山开采阶段,应力升高区范围在 33 ~ 41 cm 之间,峰值点距工作面煤壁 6 ~16 cm。不同开采阶段,采空区覆岩应力依次呈“W”形、“V”形、“√”形和“波浪”形。

(7)提出了基岩沟谷浅埋煤层开采动载矿压防治对策。明确了关键层判定、采场稳定性评估、支架适应性评估以及矿压监测与预报等动载矿压预测手段;提出了合理布置工作面、合理布置采煤顺序、加强支架工作、强化围岩控制以及实时监测监控等防治措施。

论文外文摘要:

There are many coal seams that can be mined in the northwest of China, which are thick and buried shallowly, and some coal mine have a bedrock valley landform on the surface, characterized by significant differences in peak valley height and multiple critical strata in the overburden. The horizontal movement of the slope above the surface of the bedrock gully is more significant, which have adverse effects on the safe and efficient production of mines and surface environmental protection. The paper comprehensively applies various research methods such as theoretical analysis, physical simulation experiments, numerical simulation experiments, and on-site measurements to systematically analyze the failure law of overburden during layered mining of shallow and thick coal seams in bedrock valley, taking the Baijigou coal mine in Ningxia as the background. The main results were as follows:

(1) The fracture mechanics models of main roof thin plate and critical stratum medium thick plate were established. Based on the established model, formulas for calculating the deflection, bending moment, shear force, and principal stress of the roof were provided. The influence of surface undulation and the rotational of the slope on the main roof fracture was studied. And the evolution characteristics of main roof fractures, fracture modes, and factors affecting the weighting step distance were analyzed. Changes in terrain can alter the breaking sequence, position, and distance of main roof. As the thickness of the rock layer increases, the evolutionary of the fracture mechanics mechanism of the rock layer is from tensile to shear. Thick rock layers are prone to shear fracture resulting in the dynamic impact.

(2) The deformation and transportation laws of overburden caused by mining in bedrock valley terrain were studied. The layered fractures of the overburden caused by mining below the surface of the valley form the voussoir beam structure, mainly characterized by vertical settlement. The slope above the surface of the valley caused by mining rotates in a multilateral block sructure, with obvious horizontal movement characteristics. The main damage characteristics of the slope are surface cracking and uplift in the valley, the generation of downward cracks on the slope, and the sliding of the overburden at the foot of the slope. The stability of the mining slope in different mining stages is as follows: valley>away from mountain mining>close to mountain. In addition, the influence of different valley parameters and mining parameters on the deformation and failure law of slopes were also analyzed through discrete element numerical methods in the paper.

(3) The development and evolution law of overburden fractures caused by mining in bedrock valleys were studied. During the first layer mining, both the downward cracks on the surface and the upward cracks on the roof develop simultaneously. During the lower layer mining, ground fissures no longer occur, and existing fissures are in a cyclic development process of "expansion closure re expansion re closure". The newly formed fissures are mainly vertical fissures in the upward direction of the roof. The on-site measurement results show that the development of ground fissures in the bedrock valley terrain is mainly tensile, mostly in the terrain transition zone with sudden changes in slope and roughly parallel to the contour line trend. The spatial distribution is greatly affected by the terrain and slope rotation movement. Compared with sandy valleys, the development and evolution rate of these fissures is faster and there are permanent cracks. The generation time and crack spacing correspond well with the time and the step of roof weighting.

(4) A method for identifying critical strata in bedrock valley terrain and a vertical zoning model for mining overburden have been proposed. The integrity of the sequence is the main influencing factor on the carrying capacity of critical strata and the intensity of overburden migration in bedrock valley terrain. Based on this, the definition of strong and weak critical strata in valley terrain is proposed, and a discrimination method is provided. The critical stratum with incomplete sequence is weak critical stratum because it cannot effectively transmit horizontal stress. Conversely, it is a strong critical stratum. The critical strata with incomplete sequence in the high elevation will limit the development of fractures, and the overburden structure is the "two zones" or the new "three zones", namely the collapse zone, fracture zone, and rotary subsidence zone.

 (5) The mechanism of dynamic roof weighting occurrence in bedrock valley terrain were studied. During the mining stage of close to the mountain, the multilateral block sructure is prone to shear as the block size increases and the rotational space decreases, The main roof voussoir beam structure is easily crushed, and the working face undergoes dynamic load impact and the risk of impact is increasing. When the working face is located under the mountain, the danger level of strata behavior is divided into extremely dangerous zone, severe dangerous zone, moderate dangerous zone, and weakly affected zone. On the basis of analyzing the characteristics of roof fracture and instability movement in shallow buried thick coal seam mining in valley areas, a mechanical model of the interaction between support and roof rock in shallow buried thick coal seam mining in valley terrain was established. The calculation methods of support dynamic and static loads and support resistance were provided, providing a theoretical basis for the rational selection of support and roof control in shallow buried thick coal seam working faces in valley areas.

(6) A stress calculation model for advanced abutment stress in valley terrain has been established. It is composed of the self weight stress of the overburden below the surface, the main roof transfer stress, and the self weight stress of the slope. During the mining stage of close to the mountain, the distance between the peak location of advanced support stress and the coal wall is between 6 and 18 cm, and the peak value continuously increases with the increase of mining range. During the mining stage of away from the mountain, the distance between the peak location and the coal wall is between 6 and 16 cm, and the range of pressure rise zone is between 33 and 41 cm. At different mining stages, the stress in the goaf follows a "W" shape, "V" shape, checkmark shape, and "wave" shape in sequence.

(7) The control countermeasures for dynamic roof weighting in shallow buried coal seams in bedrock valleys were clarified. The dynamic load roof weighting prediction methods such as critical stratum determination, mining stability evaluation, support adaptability evaluation, and roof weighting monitoring and prediction, as well as prevention and control measures such as reasonable layout of working faces, reasonable arrangement of coal mining sequence, strengthening support work, strengthening surrounding rock control, and real-time monitoring and control were proposed.

参考文献:

[1] 中国矿产资源报告[M]. 中国矿产资源报告,2014.

[2] 袁亮.煤及共伴生资源精准开采科学问题与对策[J].煤炭学报,2019,44(01):1-9.

[3] 殷伟.充填协同垮落式综采矿压控制理论与应用研究[D].徐州:中国矿业大学,2017.

[4] 王旭锋.冲沟发育矿区浅埋煤层采动坡体运动机理及其控制研究[D].徐州:中国矿业大学,2009.

[5] 张亮.浅埋厚黄土层下综放工作面过沟谷强来压机理分析[J].煤炭技术,2021,40(09):26-28.

[6] 王方田,屠世浩,张艳伟等.冲沟地貌下浅埋煤层开采矿压规律及顶板控制技术[J].采矿与安全工程学报,2015,32(06):877-882.

[7] 肖国刚,姚文博.麻地梁煤矿沟谷地形浅埋煤层矿压显现规律[J].采矿与岩层控制工程学报,2021,3(04):96-103.

[8] 许家林,朱卫兵,王晓振等.沟谷地形对浅埋煤层开采矿压显现的影响机理[J].煤炭学报,2012,37(02):179-185.

[9] 张杰,龙晶晶,杨涛等.浅埋煤层沟谷下开采动载机理研究[J].采矿与安全工程学报,2019,36(06):1222-1227.

[10] 赵杰,刘长友,李建伟.沟谷区域浅埋厚煤层开采应力场分布及矿压显现特征[J].采矿与安全工程学报,2018,35(04):742-750.

[11] 黄庆享,钱鸣高,石平五.浅埋煤层采场基本顶周期来压的结构分析[J].煤炭学报,1999(06):581-585.

[12] 黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].西安:浅埋煤层长壁开采顶板结构及岩层控制研究,2000.

[13] 宋振骐.实用矿山压力控制[M].青岛:实用矿山压力控制,1988.

[14] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996(03):2-7.

[15] 钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:矿山压力与岩层控制,2010.

[16] 钱鸣高,朱德仁.基本顶岩层断裂型式及对工作面来压的影响[J].中国矿业大学学报,1986,(02):12-11.

[17] 张志强.沟谷地形对浅埋煤层工作面动载矿压的影响规律研究[D].徐州:中国矿业大学,2011.

[18] 陈杰.峰丛地貌下浅埋煤层工作面开采覆岩运动及裂隙演化规律研究[D].贵阳:贵州大学,2021.

[19] 李伟豪.沟谷产状对浅埋煤层工作面关键层破断影响规律研究[D].徐州:中国矿业大学,2016.

[20] 刘国磊.山地浅埋煤层开采覆岩运动规律与结构特征研究[D]. 青岛:山东科技大学,2010.

[21] 刘一龙,杨天鸿,叶强等.山区多煤层重复采动下地表变形特征[J].采矿与安全工程学报,2022,39(03):507-516.

[22] 王宏志,刘洪林,宋帅帅等.沟谷地形下近浅埋煤层工作面矿压显现规律研究[J].中国矿业,2020,29(09):116-120.

[23] 车晓阳,侯恩科,孙学阳等.沟谷区浅埋煤层覆岩破坏特征及地面裂隙发育规律[J].西安科技大学学报,2021,41(01):104-111+186.

[24] 刘长友,李建伟,赵杰,等.沟谷区域浅埋厚煤层开采动载矿压机理及覆岩导气裂缝分布特征[J].采矿与安全工程学报,2023,40(05):965-971.

[25] 孙学阳,张慧萱,卢明皎等.浅埋煤层过双沟地形开采地表裂隙发育规律[J].煤田地质与勘探,2021,49(06):212-120+229.

[26] 王双明,魏江波,宋世杰等.黄土沟谷区浅埋煤层开采覆岩破坏与地表损伤特征研究[J].煤炭科学技术,2022,50(05):1-9.

[27] 张广磊,鞠金峰,许家林.沟谷地形下煤炭开采对地表径流的影响[J].煤炭学报,2016,41(05):1219-1226.

[28] 于水.含水层下特厚煤层综放开采覆岩破坏规律研究[D].西安:西安科技大学,2012.

[29] 张有喜.厚表土层下富水顶板特厚煤层集约化开采关键技术与实践[D].徐州:中国矿业大学,2014.

[30] Minggao C. A study of the behaviour of overlying strata in longwall mining and its application to strata control[J]. Developments in Geotechnical Engineering, 1981, 32:13-17.

[31] Qian M G, Zhao G J. The behaviour of the main roof fracture in longwall mining and its effect on roof pressure[J]. 1987.

[32] 鲍里索夫,А.А.矿山压力原理与计算 [M].矿山压力原理与计算,1986.

[33] 贾喜荣.矿山岩层力学 [M].太原:矿山岩层力学,1997.

[34] 吴洪词.长壁工作面基础板结构模型及其来压规律[J].煤炭学报,1997(03):37-42.

[35] 陈忠辉,谢和平,李全生.长壁工作面采场围岩铰接薄板组力学模型研究[J].煤炭学报,2005(02):172-176.

[36] 姜福兴,张兴民,杨淑华等.长壁采场覆岩空间结构探讨[J].岩石力学与工程学报,2006(05):979-984.

[37] 黄庆享.采场基本顶初次来压的结构分析[J].岩石力学与工程学报,1998,17(5):6.

[38] 张向东,范学理,赵德深.覆岩运动的时空过程[J]. 岩石力学与工程学报,2002(01):56-59.

[39] 宋振骐,蒋宇静,杨增夫等.煤矿重大事故预测和控制的动力信息基础的研究[M].青岛:煤矿重大事故预测和控制的动力信息基础的研究, 2003.

[40] 钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995(02):97-106.

[41] 钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994(06):557-563.

[42] 许家林,钱鸣高.覆岩关键层位置的判别方法[J]. 中国矿业大学学报,2000(05):21-25.

[43] 许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000(02):122-126.

[44] Haramy K Y, Fejes A J.Characterization of overburden response to longwall mining in the Western United States[J]. 1992.

[45] Karmis M, Triplett T, Haycocks C, et al. Mining Subsidence And Its Prediction In The Appalachian Coalfield[J]. us. symposium on rock mechanics, 1983.

[46] Bai M , Elsworth D .Some aspects of mining under aquifers in China[J]. Mining Science and Technology, 1990, 10(1):81-91.

[47] Palchik,V.Influence of physical characteristics of weak rock mass on height of caved zone over abandoned subsurface coal mines[J]. Environmental Geology, 2002, 42(1):92-101.

[48] 许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000(02):122-126.

[49] 高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996(01):51-56.

[50] 姜福兴,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003(01):23-25.

[51] 黄庆享,赵萌烨,黄克军.浅埋煤层群开采顶板双关键层结构及支护阻力研究[J].中国矿业大学学报,2019,48(01):71-77+86.

[52] 黄庆享.浅埋煤层长壁开采顶板控制研究[J].岩石力学与工程学报,1999(03):290.

[53] 黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002(08):1174-1177.

[54] 黄庆享.浅埋采场初次来压顶板砂土层载荷传递研究[J].岩土力学,2005(06):881-883.

[55] 黄庆享.厚沙土层下采场顶板关键层上的载荷分布[J].中国矿业大学学报,2005(03):289-293.

[56] 周金龙,黄庆享.浅埋大采高工作面顶板关键层结构稳定性分析[J].岩石力学与工程学报,2019,38(07):1396-1407.

[57] 许家林,朱卫兵,鞠金峰.浅埋煤层开采压架类型[J].煤炭学报,2014,39(08):1625-1634.

[58] 许家林,朱卫兵,王晓振等.浅埋煤层覆岩关键层结构分类[J].煤炭学报,2009,34(07):865-870.

[59] 侯忠杰.浅埋煤层关键层研究 [J].煤炭学报,1999, 24(4): 5.

[60] 侯忠杰.组合关键层理论的应用研究及其参数确定[J].煤炭学报,2001(06):611-615.

[61] 石平五.西部煤矿岩层控制泛述[J].矿山压力与顶板管理,2002(01):6-8.

[62] 石平五,侯忠杰.神府浅埋煤层顶板破断运动规律[J].西安矿业学院学报,1996(03):7+9-11+19.

[63] 任艳芳.浅埋深工作面覆岩“悬臂梁-铰接岩梁”结构的提出与验证[J].煤炭学报,2019,44(S1):1-8.

[64] 陈忠辉,张凌凡,杨登峰等.浅埋煤层开采顶板切落条件下支架动载效应[J].煤炭学报,2017,42(02):322-327.

[65] 杨登峰,陈忠辉,朱帝杰等.基于顶板切落的浅埋煤层开采支架工作阻力研究[J].岩土工程学报,2016,38(S2):286-292.

[66] 杨登峰,陈忠辉,洪钦锋等.浅埋煤层开采顶板切落压架灾害的突变分析[J].采矿与安全工程学报,2016,33(01):122-127+133.

[67] 汪北方,梁冰,孙可明等.典型浅埋煤层长壁开采覆岩采动响应与控制研究[J].岩土力学,2017,38(09):2693-2700.

[68] 霍丙杰,荆雪冬,范张磊等.浅埋房式采空区下长壁采场动载矿压发生机理[J].岩土工程学报,2019,41(06):1116-1123.

[69] 张杰,刘清洲,杨涛等.浅埋近距房柱式采空区上行综采的“箱梁桥”结构分析[J].采矿与安全工程学报,2019,36(05):867-872.

[70] 朱卫兵,许家林,陈璐等.浅埋近距离煤层开采房式煤柱群动态失稳致灾机理[J].煤炭学报,2019,44(02):358-366.

[71] 王双明,黄庆享,范立民等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(01):7-14.

[72] 曹健,黄庆享.厚土层下浅埋煤层开采覆岩倾向结构分区与下沉预计模型[J].采矿与安全工程学报,2022,39(02):264-272.

[73] 黄庆享,韩金博.浅埋近距离煤层开采裂隙演化机理研究[J].采矿与安全工程学报,2019,36(04):706-711.

[74] 黄庆享,曹健,杜君武等.浅埋近距煤层开采三场演化规律与合理煤柱错距研究[J].煤炭学报,2019,44(03):681-689.

[75] 黄庆享,杜君武.浅埋煤层群开采的区段煤柱应力与地表裂隙耦合控制研究[J].煤炭学报,2018,43(03):591-598.

[76] 黄庆享,杜君武,侯恩科等.浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J].采矿与安全工程学报,2019,36(01):7-15.

[77] 黄庆享.浅埋煤层保水开采岩层控制研究[J].煤炭学报,2017,42(01):50-55.

[78] 黄庆享.浅埋煤层保水开采隔水层稳定性的模拟研究[J].岩石力学与工程学报,2009,28(05):987-992.

[79] 黄庆享.浅埋煤层覆岩隔水性与保水开采分类[J].岩石力学与工程学报,2010,29(S2):3622-3627.

[80] 张杰,杨涛,索永录等.基于隔水土层失稳模型的顶板突水致灾预测研究[J].煤炭学报,2017,42(10):2718-2724.

[81] 赵兵朝,郭亚欣,孙浩等.基于主关键层位置的近浅埋煤层采动覆岩隔水层稳定性研究[J].采矿与安全工程学报,2022,39(04):653-662.

[82] 李涛,李文平,常金源等.陕北浅埋煤层开采隔水土层渗透性变化特征[J].采矿与安全工程学报,2011,28(01):127-131+137.

[83] 李涛,李文平,常金源等.陕北近浅埋煤层开采潜水位动态相似模型实验[J].煤炭学报,2011,36(05):722-726.

[84] 李涛,李文平,孙亚军.半干旱矿区近浅埋煤层开采潜水位恢复预测[J].中国矿业大学学报,2011,40(06):894-900.

[85] 马立强,孙海,王飞等.浅埋煤层长壁工作面保水开采地表水位变化分析[J].采矿与安全工程学报,2014,31(02):232-135.

[86] 靳德武,刘基,许峰等.榆神矿区浅埋煤层减水开采中预疏放标准确定方法[J].煤炭学报,2021,46(01):220-229.

[87] 靳德武,周振方,赵春虎等.西部浅埋煤层开采顶板含水层水量损失动力学过程特征[J].煤炭学报,2019,44(03):690-700.

[88] 耿耀强,王苏健,邓增社等.神府矿区大型水库周边浅埋煤层开采水害防治技术[J].煤炭学报,2018,43(07):1999-2006.

[89] 钟江城,周宏伟,赵宇峰等.浅埋煤层开采突水溃砂两相流的耦合数值研究[J].工程力学,2017,34(12):229-238.

[90] 柴敬,杜文刚,雷武林等.浅埋煤层隔水关键层失稳光纤传感检测实验研究[J].采矿与安全工程学报,2020,37(04):731-740.

[91] Du W, Chai J, Zhang D, et al. The study of water-resistant key strata stability detected by optic fiber sensing in shallow-buried coal seam[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 141(6):104604.

[92] 杜文刚,柴敬,张丁丁等.采动覆岩导水裂隙发育光纤感测与表征模型实验研究[J].煤炭学报,2021,46(05):1565-1575.

[93] Holla L. Ground movement due to longwall mining in high relief areas in New South Wales, Australia[J]. International Journal of Rock Mechanics and Mining Sciences, 1997.

[94] D F, M T, et al. Gravity-induced stresses near axisymmetric topography of small slope[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1987.

[95] Savage A. Gravitational stresses in long symmetric ridges and valleys in anisotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994.

[96] Pan E, Amadei B, Savage W Z. Gravitational and tectonic stresses in anisotropic rock with irregular topography[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1995, 32(3):201-214.

[97] Savage A, Swolfs H, Powers P. Gravitational stresses in long symmetric ridges and valleys[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(5):291-302.

[98] Swolfs H, Savage A. Topographic modification of in situ stress in extensional and compressional tectonic environments: Proc International Symposium on rock stress and rock stress measurement [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1986, 24(3):85-85.

[99] Jianwei Li, Changyou Liu, Tong Zhao. Effects of gully terrain on stress field distribution and ground pressure behavior in shallow seam mining[J]. International Journal of Mining Science and Technology, 2016.

[100] 李建伟,刘长友,赵杰等.沟谷区域浅埋煤层采动矿压发生机理及控制研究[J].煤炭科学技术,2018,46(09):104-110.

[101] Wang X, Zhang D, Zhai D, et al. Analysis of activity characteristics of mining-induced slope and key area of roof controlling under bedrock gully slope in shallow coal seam[C]. International conference on mine hazards prevention and control, Mining engineering, China University of Mining and Technology, Xuzhou, 221116 State Key Laboratory of Coal Res, 2010.

[102] Xu Feng W, Dong Sheng Z, Cheng Guo Z, et al. Mechanism of Mining induced Slope Movement for Gullies Overlaying Shallow Coal Seams[J]. Journal of Mountain Science, 2013(3):388-397.

[103] 赵杰,刘长友,李建伟.沟谷区域浅埋煤层工作面覆岩破断及矿压显现特征[J].煤炭科学技术,2017,45(01):34-40.

[104] Wang Z, Li J, Wu C, et al. Study on Influence Laws of Strata Behaviors for Shallow Coal Seam Mining beneath Gully Terrain[J]. Shock and Vibration, 2021.

[105] Shan Z. Simulation research on the influence of eroded primary key strata on dynamic strata pressure of shallow coal seams in gully terrain[J].矿业科学技术学报:英文版, 2012, 22(1):5.

[106] 张志强,许家林,刘洪林等.沟深对浅埋煤层工作面矿压的影响规律研究[J].采矿与安全工程学报,2013,30(04):501-505+511.

[107] 张志强,许家林,王露等.沟谷坡角对浅埋煤层工作面矿压影响的研究[J].采矿与安全工程学报,2011,28(04):560-565.

[108] 朱德福,屠世浩,屠洪盛等.冲沟地貌间隔式煤柱下采动应力传播规律研究[J].采矿与安全工程学报,2018,35(04):701-707.

[109] 卜永强,魏坤,郝定溢.冲沟地貌间隔式开采顶板破断机理分析[J].煤炭技术,2017,36(03):75-77.

[110] 胡殿科,康侯应,王鹏举等.毛家庄冲沟近距离煤层开采矿压显现规律研究[J].煤炭技术,2014,33(11):316-319.

[111] Xufeng W, Dongsheng Z, Gangwei F, et al. Underground pressure characteristics analysis in back-gully mining of shallow coal seam under a bedrock gully slope[J]. Mining Science & Technology, 2011, 21(1):23-27.

[112] 王旭锋,张东升,张炜等.沙土质型冲沟发育区浅埋煤层长壁开采支护阻力的确定[J].煤炭学报,2013,38(02):194-198.

[113] 张杰,李宏儒,杨森等.极近距离沟谷地形下工作面矿压规律及支架适应性研究[J].矿业研究与开发,2021,41(12):48-51.

[114] 郭靖.综采工作面过沟谷地貌的覆岩结构演化规律及协同控制[J].矿业安全与环保,2020,47(01):75-79.

[115] 张随喜.山浪矿浅埋煤层开采围岩力学变化特征与控制技术研究[D].北京:中国矿业大学(北京),2023.

[116] 黄庆享,王小军,胡俭等.峁梁区浅埋采空区下开采顶板活化结构与支架动载研究[J].采矿与安全工程学报,2023,40(05):983-990.

[117] 范立民,马雄德,李永红等.西部高强度采煤区矿山地质灾害现状与防控技术[J].煤炭学报,2017,42(02):276-285.

[118] 侯恩科,冯栋,谢晓深等.浅埋煤层沟道采动裂缝发育特征及治理方法[J].煤炭学报,2021,46(04):1297-1308.

[119] 刘辉,邓喀中,雷少刚等.采动地裂缝动态发育规律及治理标准探讨[J].采矿与安全工程学报,2017,34(05):884-890.

[120] Bai Q S, Tu S H, Zhang C, et al. Discrete element modeling of progressive failure in a wide coal roadway from water-rich roofs[J]. International Journal of Coal Geology, 2016, 167:215-229.

[121] 张杰,杨涛,王斌等.浅埋煤层沟谷径流下开采顶板突水预测分析[J].采矿与安全工程学报,2017,34(05):868-875.

[122] Wang F, Tu S, et al. Evolution mechanism of water-flowing zones and control technology for longwall mining in shallow coal seams beneath gully topography[J]. Environmental Earth Sciences, 2016, 75(19):1309.

[123] 李鹏.沟谷地形厚煤层开采覆岩裂隙发育特征与径流水害防治机理研究[D].徐州:中国矿业大学,2020.

[124] 康建荣.山区采动裂隙对地表移动变形的影响分析[J].岩石力学与工程学报,2008(01):59-64.

[125] 侯恩科,冯栋,谢晓深等.浅埋煤层沟道采动裂隙发育特征及治理方法[J].煤炭学报,2021,46(04):1297-1308.

[126] 侯恩科,谢晓深,冯栋等.浅埋煤层开采地面塌陷裂隙规律及防治方法[J].煤田地质与勘探,2022,50(12):30-40.

[127] 谢党虎.沟谷地形下开采覆岩裂隙发育特征研究[J].煤炭工程,2021,53(04):99-104.

[128] 戎虎仁,王大路,顾静宇等.沟谷及坡角对浅埋特厚煤层顶板导水断裂发育规律影响研究[J].煤矿安全,2018,49(11):63-68.

[129] Ju J, Xu J. Surface stepped subsidence related to top-coal caving longwall mining of extremely thick coal seam under shallow cover[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 78:27-35.

[130] Li J, Liu C. Formation Mechanism and Reduction Technology of Mining Induced Fissures in Shallow Thick Coal Seam Mining[J]. Shock and Vibration, 2017, 2017(pt.3):1-14.

[131] 代张音.采动顺层岩质斜坡变形破坏机理与相似模拟实验研究[D].重庆:重庆大学,2019.

[132] 朱川曲,黄友金,芮国相等.采动作用下煤矿区地表裂缝发育机理与特征分析[J].中国地质灾害与防治学报,2017,28(04):47-52.

[133] 王云广,郭文兵.采空塌陷区地表裂缝发育规律分析[J].中国地质灾害与防治学报,2017,28(01):89-95.

[134] 史文兵.山区缓倾煤层地下开采诱发斜坡变形破坏机理研究[D].成都:成都理工大学,2016.

[135] 陈超,胡振琪.我国采动地裂缝形成机理研究进展[J].煤炭学报,2018,43(03):810-823.

[136] 李敏.山区重复采动下地表移动变形规律研究[D].太原:太原理工大学,2012.

[137] 朱恒忠.西南山区浅埋煤层采动地裂隙发育规律及减损控制[D].北京:中国矿业大学(北京),2020.

[138] Jing C, Zhe M, Dingding Z, et al. Multi-method joint monitoring study on strata behavior in shallow seam mining under bedrock gully[J]. Scientific Reports,2023,13(1).

[139] 张景辉.弹性矩形板动静力问题解析求解[D].大连:大连理工大学,2020.

[140] 胡文锋.含固支边或自由边矩形叠层厚板的状态空间解法研究[D].合肥:合肥工业大学,2017.

[141] 杨胜利,王家臣,李良晖.基于中厚板理论的关键岩层变形及破断特征研究[J].煤炭学报,2020,45(08):2718-2727.

[142] 窦礼同.厚煤层坚硬顶板结构失稳诱发强矿压机制与防控技术[D].淮南:安徽理工大学,2022.

[143] 高俊,党发宁,李海斌等.静水荷载作用下矩形薄板力学特性研究及其应用[J].应用力学学报,2018,35(05):1029-1036+1185.

[144] 孙建,胡洋.均布和静水压力作用下固支矩形薄板力学特性[J].应用力学学报,2015,32(06):908-914+1096-1097.

[145] 程选生,杜修力.三边固支一边自由混凝土矩形薄板的热弯曲[J].工程力学,2013,30(04):97-106.

[146] 程选生,杜修力,张贵文等.三边简支一边自由混凝土矩形薄板的热弯曲[J].应用力学学报,2013,30(01):37-42+144.

[147] 邰阳.坚硬顶板采场定向造缝覆岩三维破断特征及应力场演化规律[D].徐州:中国矿业大学,2021.

[148] 龙军.路堤下双向增强体复合地基受力变形分析[D].长沙:湖南大学,2018.

[149] 屠洪盛,屠世浩,陈芳等.基于薄板理论的急倾斜工作面顶板初次变形破断特征研究[J].采矿与安全工程学报,2014,31(01):49-54+59.

[150] 谢生荣,陈冬冬,曾俊超等.考虑两侧煤柱与弹性煤体基础的基本顶板初次破断特征[J].煤炭学报,2019,44(01):115-126.

[151] 张嘉凡,石平五,张慧梅.急斜煤层初次破断后基本顶稳定性分析[J].煤炭学报,2009,34(09):1160-1164.

[152] 李金华.浅埋煤层采场覆岩破坏及地表移动规律研究[D].西安:西安科技大学,2017.

[153] 王新丰,高明中.变长工作面采场顶板破断机理的力学模型分析[J].中国矿业大学学报,2015,44(01):36-45.

[154] 丁自伟,李小菲,张杰等.掘进巷道空顶板壳理论分析与超越函数的数值解算及其验证[J].采矿与安全工程学报,2021,38(03):507-517.

[155] 杨胜利.基于中厚板理论的坚硬厚顶板破断致灾机制与控制研究[D]. 徐州:中国矿业大学,2019.

[156] 范家让.强厚度叠层板壳的精确理论[M].北京:科学出版社,1996.

[157] 胡文锋.含固支边或自由边矩形叠层厚板的状态空间解法研究[D].合肥:合肥工业大学,2017.

[158] 王金安,张基伟,高小明等.大倾角厚煤层长壁综放开采基本顶破断模式及演化过程[J].煤炭学报,2015,40(08):1737-1745.

[159] 左建平,于美鲁,孙运江等.不同厚度岩层破断模式转变机理及力学模型分析[J].煤炭学报,2023,48(04):1449-1463.

[160] 柴敬,雷武林,杜文刚等.分布式光纤监测的采场巨厚复合关键层变形实验研究[J].煤炭学报,2020,45(01):44-53.

[161] 柴敬,刘永亮,袁强,张丁丁等.矿山围岩变形与破坏光纤感测理论技术及应用[J].煤炭科学技术,2021,49(01):208-217.

[162] Jing C, Zhe M, Wengang D, et al. Dynamic evolution law analysis of overburden separation and water flowing fracture under mining based on distributed optical fiber and information entropy theory[J]. Optical Fiber Technology,2023,80.

[163] Chai J, Ma Z, Zhang D, et al. Experimental study on PPP-BOTDA distributed measurement and analysis of mining overburden key movement characteristics[J]. Optical Fiber Technology,2020,56.

[164] Cundall, P.A., Strack, O.D.L. A discrete numerical model for granular assemblies[J]. Geo-technique, 1979, 29(1): 47-65.

[165] 吴琼,唐辉明,王亮清.基于三维离散元仿真实验的复杂节理岩体力学参数尺寸效应及空间各向异性研究[J].岩石力学与工程学报,2014,33(12):2419-2432.

[166] 陈涛,吴旭敏,陈晓江.锦屏二级上游调压室洞室群开挖支护动态设计与研究[J].岩石力学与工程学报,2014,33(增1):2593-2600.

[167] Bell F G, Stacey T R, Genske D D. Mining subsidence and its effect on the environment: some differing examples[J]. Environmental Geology,2000,1:135-152.

[168] Itasca Consulting Group. 3DEC:3D distinct element code[R]. Itasca Consulting Group, 2002.

[169] 窦礼同.厚煤层坚硬顶板结构失稳诱发强矿压机制与防控技术[D].淮南:安徽理工大学,2021.

[170] 布雷迪,布朗.地下采矿岩石力学[M].北京:煤炭工业出版社,1990.

[171] 夏方迁.多层厚硬岩层工作面冲击地压发生机理及监测技术研究[D]. 北京:中国矿业大学(北京),2021.

[172] 朱斯陶.特厚煤层开采冲击地压机理与防治研究[D]. 北京:北京科技大学,2017.

[173] 刘懿.采场覆岩载荷三带结构模型及其在冲击危险辨识中的应用[D]. 北京:北京科技大学,2017.

[174] 周超.梯度载荷下煤层开采压转耦合诱冲机理与防治研究[D].北京:北京科技大学,2023.

[175] 史文兵,黄润秋,赵建军等.山区平缓采动斜坡裂缝成因机制研究[J].工程地质学报,2016,24(05):768-774.

[176] 王朋飞,牛一帆,陈可夯等.浅埋薄表土层特厚煤层强制放顶条件下主要地裂缝演化规律实测[J].煤炭学报,2023,48(10):3674-3687.

[177] 许家林.岩层采动裂隙演化规律与应用[M].徐州:中国矿业大学出版社,2016.

中图分类号:

 TD325    

开放日期:

 2024-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式