论文中文题名: |
不同干旱类型传播特征及水分资源与植被双向依赖关系研究
|
姓名: |
单滏桢
|
学号: |
20210226099
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085215
|
学科名称: |
工学 - 工程 - 测绘工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘工程
|
研究方向: |
干旱监测与分析
|
第一导师姓名: |
刘英
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-14
|
论文答辩日期: |
2023-06-03
|
论文外文题名: |
Study on the propagation characteristics of different drought types and bidirectional dependence of water resources and vegetation
|
论文中文关键词: |
不同干旱类型 ; 传播时间 ; 地下水干旱 ; 植被 ; 双向依赖
|
论文外文关键词: |
Different types of drought ; Propagation time ; Groundwater drought ; Vegetation ; Bidirectional dependency
|
论文中文摘要: |
︿
干旱作为一个极端天气现象,对农业生产、水资源利用以及社会经济层面具有严重的破坏性,干旱通常分四个类型为气象干旱、农业干旱、水文干旱(地表水干旱和地下水干旱)和社会经济干旱,在一定条件下气象干旱会发展为其它类型干旱对生态环境,社会经济等造成巨大损害,因此研究不同干旱类型之间的相关性和传播时间有助于制定抗旱措施和理解水循环过程。植被在干旱的发展过程中也起到了重要作用,植被生长可能通过直接影响蒸散量和间接调节降水来反馈土壤水分,地表径流和地下水,水分资源的变化也同时会影响植被生长,研究多水分资源类型与植被双向依赖关系对于我们理解气候变化下陆地生态系统的碳-水相互作用,为制定碳封存(植被绿化)政策和水分资源管理提供理论支持。以往的干旱传播研究空间尺度较小且忽略了地下水干旱,并且研究水分资源对植被的影响往往是一种水分资源类型对植被的单向影响,为了弥补这一研究空白本文研究了全球尺度的多干旱类型传播规律和多水分资源类型和植被的双向依赖关系。
本研究使用CRU降水数据、MERR2再分析土壤水分数据、GLDAS和GRACE数据来计算SPI(标准化降水指数)、SSI(标准化土壤水分指数)、SRI(标准化径流指数)和GDI(地下水干旱指数),分别表征气象、农业、地表水和地下水干旱;采用Pearson相关系数研究了这四种类型干旱的传播时间;进一步运用格兰杰因果关系模型研究了降水、土壤水、地表水、地下水和植被的双向依赖关系。主要结论如下:
(1)地表以上干旱类型的平均传播时间分别为:气象干旱-地表水干旱(3.5个月)、气象干旱-农业干旱(5.7个月);不同干旱类型向地下水干旱传播中,时间从短到长依次为农业干旱到地下水干旱(12.97个月)、地表水干旱到地下水干旱(13.78个月)、气象干旱到地下水干旱(14.47个月)。气候条件对不同干旱类型的传播时间有显著影响。寒冷气候中的低温导致干旱传播时间最长,而温带气候中的干燥夏季气候减少了干旱传播时间。在干旱气候中,传播关系较弱。在热带气候中,降水可能不是干旱传播的主要驱动因素。
(2)不同的土地覆盖类型在地下水干旱的传播方面表现出显著差异,森林(5.9个月)从气象干旱到农业干旱或地表水干旱的传播时间比草地(5.5个月)和农田(4.8个月)长,而三种干旱向地下水干旱的传播时间中,森林最短(12.4个月),其次为耕地(13.8个月)和草地(14.0个月)。木本植物的根系比草本植物更深,可以吸收更深的地下水。与草原和农田相比,森林具有更强的蓄水能力和较弱的地下水补给,导致森林更能抵抗农业和地表水干旱,而当气象干旱发生后森林对地下水干旱的抵抗力较弱。
(3)在全球范围内,植被与水分资源以双向依赖关系为主。植被与水分资源双向依赖,植被单向依赖水分资源,水分资源单向依赖植被的占比分别为48.25%、39.5%和12.25%。这表明有48.25%植被覆盖区域的植被与水分资源相互影响,39.5%的植被覆盖区水分资源单向影响植被,12.25%的植被单向影响水分资源。降水与植被以单向依赖关系为主(65%),土壤水与植被以双向依赖关系为主(80%),地表径流和地下水与植被的双向依赖关系占比分别为44%和40%。森林植被与水分资源的双向依赖关系通常要高于耕地和草地,这表明森林与水分资源类型的相互影响能力要强于耕地和草地,这可能是森林的蒸腾能力和截取水分能力更强大导致的。
﹀
|
论文外文摘要: |
︿
As an extreme weather phenomenon, drought has serious destructive effects on agricultural production, water resources utilization and socio-economic. Drought is usually divided into four types: meteorological drought, agricultural drought, hydrological drought (surface water drought and groundwater drought) and socio-economic drought. Under certain conditions, meteorological drought will develop into other types of drought, which will cause great damage to ecological environment, social economy and so on. Therefore, it is helpful to study the correlation between different types of drought and the propagation time to make drought-resistance measures and understand the water cycle process. Vegetation also plays an important role in the process of drought development. Vegetation growth may directly affect evapotranspiration and indirectly regulate precipitation to feedback soil water, surface runoff and groundwater. Changes in water resources will also affect vegetation growth. The study of the bidirectional dependence between water resource types and vegetation provides theoretical support for our understanding of the carbon-water interaction in terrestrial ecosystems under climate change and for the formulation of carbon sequestration (vegetation greening) policies and water resource management. Previous studies on drought propagation have a small spatial scale and ignored groundwater drought, and the impact of water resources on vegetation is usually a unidirectional impact of water resource types on vegetation. In order to make up for this research gap, this paper studies the propagation law of multi-drought types and the bidirectional dependence between multi-water resource types and vegetation on a global scale.
This study used CRU precipitation data, MERR2 reanalysis soil moisture data, GLDAS and GRACE data to calculate SPI (Standardized Precipitation Index), SSI (Standardized Soil Moisture Index), SRI (Standardized Runoff Index),and GDI (Groundwater Drought Index), respectively, to characterize meteorological, agricultural, surface water, and groundwater drought; The Pearson correlation coefficient was used to study the propagation time of these four types of drought; Furthermore, the Granger causality model was used to study the bidirectional dependence of precipitation, soil water, surface water, groundwater, and SIF. The main conclusions are as follows:
(1) The average propagation time of drought above the surface was as follows: meteorological drought to surface water drought (3.5 months), meteorological drought to agricultural drought (5.7 months);The propagation time of different drought types to groundwater drought was from short to long: agricultural drought to groundwater drought (12.97 months), surface water drought to groundwater drought (13.78 months), and meteorological drought to groundwater drought (14.47 months). Climate conditions had a significant impact on the propagation time of different drought types. Low temperatures in cold climates resulted in the longest drought propagation time, while dry summer climates in temperate climates reduced drought propagation time. There were weaker propagation relationships in arid climates. In tropical climates, precipitation may not be the main driving factor for drought propagation.
(2) Different land cover types show significant differences in the propagation of groundwater droughts, with forests (5.9 months) having a longer propagation time from meteorological drought to agricultural drought or surface water drought than grassland (5.5 months) and cropland (4.8 months), and forests (12.4 months) having the shortest propagation time than grassland (14.0 months) and cropland (13.8 months) when meteorological drought, agricultural drought, and surface water drought is propagated to groundwater drought. Woody plants have deeper root systems than herbaceous plants and can draw up deeper groundwater. Forests have greater water storage capacity and weaker groundwater recharge than grasslands and croplands, resulting in forests being more resistant to agricultural and surface water droughts and less resistant to groundwater droughts during meteorological droughts.
(3) On a global scale, vegetation and water resources are mainly interdependent in both directions. The bidirectional dependence of vegetation and water resources accounted for 48.25%, the unidirectional impact of water resources on vegetation accounted for 39.5%, and the unidirectional impact of vegetation on water resources accounted for 12.25%. This indicates that 48.25% of vegetation interacts with water resources, 39.5% of vegetation is unidirectional influenced by water resources, 12.25% of water resources are unidirectional affected by vegetation. The relationship between precipitation and vegetation is mainly unidirectional (65%), soil water and vegetation is mainly bidirectional (80%), and the bidirectional dependence between surface runoff and vegetation is 44% and 40%, respectively. The bidirectional dependence between forest vegetation and water resources is usually higher than that between cultivated land and grassland, indicating that the mutual influence between forest and water resource types is stronger than that between cultivated land and grassland, which may be caused by the stronger transpiration and water interception capacity of forest.
﹀
|
参考文献: |
︿
[1]Mishra A K, Singh V P. A review of drought concepts[J]. Journal of hydrology, 2010, 391(1-2): 202-216. [2]Sutanto S J, van der Weert M, Wanders N, et al. Moving from drought hazard to impact forecasts[J]. Nature Communications, 2019, 10(1): 4945. [3]Xu Y, Zhang X, Hao Z, et al. Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification[J]. Journal of Hydrology, 2021, 598: 126194. [4]Huang S, Huang Q, Chang J, et al. The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China[J]. Agricultural Water Management, 2015, 159: 45-54. [5]Leng G, Tang Q, Rayburg S. Climate change impacts on meteorological, agricultural and hydrological droughts in China[J]. Global and Planetary Change, 2015, 126: 23-34. [6]Pathak A A, Dodamani B M. Connection between meteorological and groundwater drought with copula-based bivariate frequency analysis[J]. Journal of Hydrologic Engineering, 2021, 26(7): 05021015. [7]Bloomfield J P, Marchant B P, Bricker S H, et al. Regional analysis of groundwater droughts using hydrograph classification[J]. Hydrology and Earth System Sciences, 2015, 19(10): 4327-4344. [8]Van Loon A F. Hydrological drought explained[J]. Wiley Interdisciplinary Reviews: Water, 2015, 2(4): 359-392. [9]Van Loon A F, Laaha G. Hydrological drought severity explained by climate and catchment characteristics[J]. Journal of hydrology, 2015, 526: 3-14. [10]Li B, Rodell M. Evaluation of a model-based groundwater drought indicator in the conterminous US[J]. Journal of Hydrology, 2015, 526: 78-88. [11]Han Z, Huang S, Huang Q, et al. Propagation dynamics from meteorological to groundwater drought and their possible influence factors[J]. Journal of Hydrology, 2019, 578: 124102. [12]Shi X, Ding H, Wu M, et al. A comprehensive drought monitoring method integrating multi-source data[J]. PeerJ, 2022, 10: e13560. [13]Lin Q, Wu Z, Zhang Y, et al. Propagation from meteorological to hydrological drought and its application to drought prediction in the Xijiang River basin, South China[J]. Journal of Hydrology, 2023, 617: 128889. [14]Behrang Manesh M, Khosravi H, Heydari Alamdarloo E, et al. Linkage of agricultural drought with meteorological drought in different climates of Iran[J]. Theoretical and Applied Climatology, 2019, 138: 1025-1033. [15]Li R, Chen N, Zhang X, et al. Quantitative analysis of agricultural drought propagation process in the Yangtze River Basin by using cross wavelet analysis and spatial autocorrelation[J]. Agricultural and Forest Meteorology, 2020, 280: 107809. [16]Huang S, Li P, Huang Q, et al. The propagation from meteorological to hydrological drought and its potential influence factors[J]. Journal of Hydrology, 2017, 547: 184-195. [17]Xu Y, Zhang X, Wang X, et al. Propagation from meteorological drought to hydrological drought under the impact of human activities: A case study in northern China[J]. Journal of Hydrology, 2019, 579: 124147. [18]Guo Y, Huang S, Huang Q, et al. Propagation thresholds of meteorological drought for triggering hydrological drought at various levels[J]. Science of the Total Environment, 2020, 712: 136502. [19]Ding Y, Xu J, Wang X, et al. Propagation of meteorological to hydrological drought for different climate regions in China[J]. Journal of Environmental Management, 2021, 283: 111980. [20]Soleimani Motlagh M, Ghasemieh H, Talebi A, et al. Identification and analysis of drought propagation of groundwater during past and future periods[J]. Water resources management, 2017, 31: 109-125. [21]Feng K, Su X, Zhang G, et al. Development of a new integrated hydrological drought index (SRGI) and its application in the Heihe River Basin, China[J]. Theoretical and Applied Climatology, 2020, 141: 43-59. [22]Hellwig J, de Graaf I E M, Weiler M, et al. Large‐scale assessment of delayed groundwater responses to drought[J]. Water Resources Research, 2020, 56(2): e2019WR025441. [23]Liu B, Zhou X, Li W, et al. Spatiotemporal characteristics of groundwater drought and its response to meteorological drought in Jiangsu Province, China[J]. Water, 2016, 8(11): 480. [24]Han Z, Huang S, Huang Q, et al. Propagation dynamics from meteorological to groundwater drought and their possible influence factors[J]. Journal of Hydrology, 2019, 578: 124102. [25]Han Z, Huang S, Huang Q, et al. GRACE-based high-resolution propagation threshold from meteorological to groundwater drought[J]. Agricultural and Forest Meteorology, 2021, 307: 108476. [26]Wossenyeleh B K, Worku K A, Verbeiren B, et al. Drought propagation and its impact on groundwater hydrology of wetlands: a case study on the Doode Bemde nature reserve (Belgium)[J]. Natural Hazards and Earth System Sciences, 2021, 21(1): 39-51. [27]Apurv T, Sivapalan M, Cai X. Understanding the role of climate characteristics in drought propagation[J]. Water Resources Research, 2017, 53(11): 9304-9329. [28]Zhang H, Ding J, Wang Y, et al. Investigation about the correlation and propagation among meteorological, agricultural and groundwater droughts over humid and arid/semi-arid basins in China[J]. Journal of Hydrology, 2021, 603: 127007. [29]Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7318): 951-954. [30]Aragão L E O C. The rainforest's water pump[J]. Nature, 2012, 489(7415): 217-218. [31]Jasechko S, Sharp Z D, Gibson J J, et al. Terrestrial water fluxes dominated by transpiration[J]. Nature, 2013, 496(7445): 347-350. [32]Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture–climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 2010, 99(3-4): 125-161. [33]Li Y, Piao S, Li L Z X, et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China[J]. Science Advances, 2018, 4(5): eaar4182. [34]Deng Y, Wang S, Bai X, et al. Vegetation greening intensified soil drying in some semi-arid and arid areas of the world[J]. Agricultural and Forest Meteorology, 2020, 292: 108103. [35]Feng X, Fu B, Piao S, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11): 1019-1022. [36]Tong X, Brandt M, Yue Y, et al. Increased vegetation growth and carbon stock in China karst via ecological engineering[J]. Nature sustainability, 2018, 1(1): 44-50. [37]Zhao M, Zhang J, Velicogna I, et al. Ecological restoration impact on total terrestrial water storage[J]. Nature Sustainability, 2021, 4(1): 56-62. [38]Tapley B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: Mission overview and early results[J]. Geophysical research letters, 2004, 31(9). [39]Thomas B F, Famiglietti J S, Landerer F W, et al. GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought[J]. Remote Sensing of Environment, 2017, 198: 384-392. [40]Wang F, Lai H, Li Y, et al. Dynamic variation of meteorological drought and its relationships with agricultural drought across China[J]. Agricultural Water Management, 2022, 261: 107301. [41]Wang F, Lai H, Li Y, et al. Identifying the status of groundwater drought from a GRACE mascon model perspective across China during 2003–2018[J]. Agricultural Water Management, 2022, 260: 107251. [42]Li X, Li Y, Chen A, et al. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China[J]. Agricultural and Forest Meteorology, 2019, 269: 239-248. [43]Wang Y, Chen X, Gao M, et al. The use of random forest to identify climate and human interference on vegetation coverage changes in southwest China[J]. Ecological Indicators, 2022, 144: 109463. [44]Zhang W, Wei F, Horion S, et al. Global quantification of the bidirectional dependency between soil moisture and vegetation productivity[J]. Agricultural and Forest Meteorology, 2022, 313: 108735. [45]王劲松, 李耀辉, 王润元,等.我国气象干旱研究进展评述[J]. 干旱气象, 2012, 3(4): 497-508. [46]韦开, 王全九, 周蓓蓓,等.基于降水距平百分率的陕西省干旱时空分布特征[J]. 水土保持学报, 2017, 31(1): 318-322. [47]王文静, 延军平, 刘永林, 等. 基于综合气象干旱指数的海河流域干旱特征分析[J].干旱区地理, 2016, 39 (2): 336-344. [48]Palmer W C. Meteorological drought[M]. US Department of Commerce, Weather Bureau, 1965. [49]Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]. Anaheim, California: Eighth Conference on Applied Climatology, 1993, 17-22. [50]Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate, 2010, 23: 1696-1718. [51]Guo H, Bao A M, Liu T, et al. Spatial and temporal characteristics of droughts in Central Asia during 1966-2015[J]. Science of the Total Environment, 2018, 624: 1523-1538. [52]Wells N, Goddard S, Hayes M J. A Self-Calibrating Palmer Drought Severity Index[J]. Journal of Climate, 2004, 17: 2335-2351. [53]Zarch M A, Sivakumar B, Sharma A. Droughts in a warming climate: a global assessment of standardized precipitation index (SPI) and reconnaissance drought index (RDI)[J]. Journal of Hydrology, 2015, 526: 183-195. [54]张利利, 周俊菊, 张恒玮, 等. 基于SPI的石羊河流域气候干湿变化及干旱事件的时空格局特征研究[J]. 生态学报, 2017, 37(3): 996-1007. [55]Dorjsuren M, Liou Y A, Cheng C H. Time series MODIS and in situ data analysis for Mongolia drought[J]. Remote Sensing, 2016, 8: 509. [56]Winkler K, Gessner U, Hochschild V. Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000-2016: rainfall anomalies and vegetation condition in the context of ENSO[J]. Remote Sensing, 2017, 9: 831. [57]陈斌, 张学霞, 华开, 等. 温度植被干旱指数(TVDI)在草原干旱监测中的应用研究[J]. 干旱区地理, 2013, 36(5): 930-937. [58]刘宪锋, 朱秀芳, 潘耀忠, 等. 农业干旱监测研究进展与展望[J]. 地理学报, 2015, 70(11): 1835-1848. [59]陈修治,苏泳娴,李勇,等.基于被动微波遥感的中国干旱动态监测[J].农业工程学报,2013,29(16): 151-158. [60]Cong D M, Zhao S H, Chen C, et al. Characterization of droughts during 2001-2014 based on remote sensing: A case study of Northeast China[J]. Ecological Informatics, 2017, 39: 56-67. [61]杨文静, 李建柱, 冯平.基于标准化土壤湿度指数的滦河流域农业干旱评价[J]. 应用生态学报, 2022, 33(03): 801-807. [62]Shukla S, Wood A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters, 2008, 35: 41-46. [63]任怡, 王义民, 畅建霞, 等.陕西省水分资源供求指数和综合干旱指数及其时空分布[J]. 自然资源学报, 2017, 32(1): 137-151. [64]Kar l T R. The sensitivity of the Palmer drought severity index and Palmer ’s Z index to their calibration coefficients including potential evapotranspiration[J]. Journal of Climate and Applied Meteorology, 1986, 25: 77-86. [65]贾建伟, 王栋, 徐伟峰,等. 2022年鄱阳湖流域干旱综合评估及成因分析[J]. 人民长江, 2023, 54(02): 36-42. [66]武慧敏, 吕爱锋, 张文翔. 巴音河流域水文干旱对气象干旱的响应[J]. 南水北调与水利科技(中英文), 2022, 20(03): 459-467. [67]石朋, 詹慧婕, 瞿思敏, 等.黄河源区气象干旱与水文干旱关联性分析[J]. 水分资源保护, 2022, 38(03): 80-86. [68]Shukla S, Wood A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical research letters, 2008, 35(2). [69]Rivera J A, Penalba O C, Villalba R, et al. Spatio-temporal patterns of the 2010-2015 extreme hydrological drought across the Central Andes, Argentina[J]. Water, 2017, 9: 652. [70]艾启阳, 粟晓玲, 张更喜,等.标准化地下水指数法分析黑河中游地下水时空演变规律[J]. 水科学进展, 2019, 35(10): 69-74. [71]周玉良, 袁潇晨, 周平, 等. 基于地下水埋深的区域干旱频率分析研究[J].水利学报, 2012, 43(9): 1075-1083. [72]Marchant B P, Bloomfield J P. Spatio-temporal modelling of the status of groundwater droughts[J]. Journal of Hydrology, 2018, 564: 397-413. [73]Rodell M, Velicogna I, Famiglietti J S, et al. Satellite-based estimates of groundwater depletion in India[J]. Nature, 2009, 460: 999-1002. [74]Li B, Rodell M, Kumar S, et al. Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges[J]. Water Resources Research, 2019, 55: 7564-7586. [75]Han Z, Huang S Z, Huang Q, et al. Propagation dynamics from meteorological to groundwater drought and their possible influence factors[J]. Journal of Hydrology, 2019, 578: 124102. [76]Hosseini-Moghar i S M, Araghinejad S, Ebrahimi K, et al. Introducing modified total storage deficit index (MTSDI) for drought monitoring using GRACE observations[J]. Ecological Indicators, 2019, 101: 465-475. [77]王文, 王鹏, 崔巍. 长江流域陆地水储量与多源水文数据对比分析[J].水科学进展, 2015, 26(6):759-768. [78]贺敏, 宋立生, 王展鹏,等.基于多源数据的干旱监测指数对比研究-以西南地区为例[J]. 自然资源学报, 2018, 33(7):1257-1269. [79]曹艳萍, 南卓铜, 程国栋. GRACE 重力卫星监测新疆干旱特征[J]. 干旱区资源与环境, 2015, 29(8): 87-92. [80]顾磊, 陈杰, 尹家波, 郭强, 等. 气候变化下中国主要流域气象水文干旱潜在风险传播[J]. 水科学进展, 2021, 32(03): 321-333. [81]刘永佳, 黄生志, 方伟,等. 不同季节气象干旱向水文干旱的传播及其动态变化[J]. 水利学报, 2021, 52(1): 93-102. [82]华悦. 嫩江下游水文, 农业干旱对气象干旱响应关系[D]. 大连理工大学,2021. [83]王飞. 多干旱类型视角下的黄河流域干旱时空演变特征研究[D]. 郑州大学,2020. [84]Li X, Li Y, Chen A, et al. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China[J]. Agricultural and Forest Meteorology, 2019, 269: 239-248. [85]Donohue R J, Roderick M L, McVicar T R. On the importance of including vegetation dynamics in Budyko's hydrological model[J]. Hydrology and Earth System Sciences, 2007, 11(2): 983-995. [86]Boulain N, Cappelaere B, Séguis L, et al. Hydrologic and land use impacts on vegetation growth and NPP at the watershed scale in a semi-arid environment[J]. Regional Environmental Change, 2006, 6(3): 147-156. [87]Cooper D J, Sanderson J S, Stannard D I, et al. Effects of long-term water table drawdown on evapotranspiration and vegetation in an arid region phreatophyte community[J]. Journal of Hydrology, 2006, 325(1-4): 21-34. [88]秦大河. 中国气候与环境演变[J]. 文明, 2005(12): 10-11. [89]New M, Hulme M, Jones P. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate[J]. Journal of climate, 2000, 13(13): 2217-2238. [90]Mitchell T D, Jones P D. An improved method of constructing a database of monthly climate observations and associated high‐resolution grids[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2005, 25(6): 693-712. [91]Wang X, Piao S, Ciais P, et al. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006[J]. Proceedings of the National Academy of Sciences, 2011, 108(4): 1240-1245. [92]Jones P D, Moberg A. Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001[J]. Journal of climate, 2003, 16(2): 206-223. [93]de Jong R, Schaepman M E, Furrer R, et al. Spatial relationship between climatologies and changes in global vegetation activity[J]. Global change biology, 2013, 19(6): 1953-1964. [94]Peng S, Piao S, Ciais P, et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation[J]. Nature, 2013, 501(7465): 88-92. [95]Hersbach H, Bell B, Berrisford P, et al. ERA5 monthly averaged data on single levels from 1979 to present[J]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019, 10: 252-266. [96]Rodell M, Houser P R, Jambor U E A, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological society, 2004, 85(3): 381-394. [97]Yao N, Zhao H, Li Y, et al. National-scale variation and propagation characteristics of meteorological, agricultural, and hydrological droughts in China[J]. Remote Sensing, 2020, 12(20): 3407. [98]宁津生, 王正涛, 超能芳. 国际新一代卫星重力探测计划研究现状与进展[J]. 武汉大学学报·信息科学版, 2016,41(1): 1-8. [99]Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229. [100]Swenson S, Wahr J. Post‐processing removal of correlated errors in GRACE data[J]. Geophysical research letters, 2006, 33(8). [101]Sakumura C, Bettadpur S, Bruinsma S. Ensemble prediction and intercomparison analysis of GRACE time‐variable gravity field models[J]. Geophysical Research Letters, 2014, 41(5): 1389-1397. [102]钟玉龙, 钟敏, 冯伟, 等. 联合GRACE重力卫星与实测资料估计西辽河流域蒸散发量[J]. 武汉大学学报(信息科学版), 2020, 45(02): 173-178. [103]Li X, Xiao J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data[J]. Remote Sensing, 2019, 11(5): 517. [104]Liu Y, Dang C, Yue H, et al. Enhanced drought detection and monitoring using sun-nduced chlorophyll fluorescence over Hulun Buir Grassland, China[J]. Science of the Total Environment, 2021, 770: 145271. [105]Beck H E, Zimmermann N E, McVicar T R, et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution[J]. Scientific data, 2018, 5(1): 1-12. [106]Karger D N, Conrad O, Böhner J, et al. Climatologies at high resolution for the earth’s and surface areas[J]. Scientific data, 2017, 4(1): 1-20. [107]Kottek M, Grieser J, Beck C, et al. World map of the Köppen-Geiger climate classification updated[J]. 2006. [108]Ceglar A, Zampieri M, Toreti A, et al. Observed northward migration of agro‐climate zones in Europe will further accelerate under climate change[J]. Earth's Future, 2019, 7(9): 1088-1101. [109]Gao X, Liang S, He B. Detected global agricultural greening from satellite data[J]. Agricultural and Forest Meteorology, 2019, 276: 107652. [110]Röck M, Saade M R M, Balouktsi M, et al. Embodied GHG emissions of buildings–The hidden challenge for effective climate change mitigation[J]. Applied Energy, 2020, 258: 114107. [111]Hansen M C, DeFries R S, Townshend J R G, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International journal of remote sensing, 2000, 21(6-7): 1331-1364. [112]Street, G.M., McNickle, G.G., 2019. A global estimate of terrestrial net secondary production of primary consumers. Gloal. Ecol. Biogeogr. 28 (12), 1763–1773. [113]Fisher A, Hesse P P. The response of vegetation cover and dune activity to rainfall, drought and fire observed by multitemporal satellite imagery[J]. Earth Surface Processes and Landforms, 2019, 44(15): 2957-2967. [114]Hayes M J, Svoboda M D, Wiihite D A, et al. Monitoring the 1996 drought using the standardized precipitation index[J]. Bulletin of the American meteorological society, 1999, 80(3): 429-438. [115]Farahmand A, AghaKouchak A. A generalized framework for deriving nonparametric standardized drought indicators[J]. Advances in Water Resources, 2015, 76: 140-145. [116]Rad A M, Ghahraman B, Khalili D, et al. Integrated meteorological and hydrological drought model: a management tool for proactive water resources planning of semi-arid regions[J]. Advances in water resources, 2017, 107: 336-353. [117]Sugihara G, May R, Ye H, et al. Detecting causality in complex ecosystems[J]. science, 2012, 338(6106): 496-500. [118]Green J K, Konings A G, Alemohammad S H, et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere[J]. Nature geoscience, 2017, 10(6): 410-414. [119]Papagiannopoulou C, Miralles D G, Decubber S, et al. A non-linear Granger-causality framework to investigate climate–vegetation dynamics[J]. Geoscientific Model Development, 2017, 10(5): 1945-1960. [120]Box G E P, Jenkins G M, Reinsel G C, et al. Time series analysis: forecasting and control[M]. John Wiley & Sons, 2015. [121]Yao N, Zhao H, Li Y, et al. National-scale variation and propagation characteristics of meteorological, agricultural, and hydrological droughts in China[J]. Remote Sensing, 2020, 12(20): 3407. [122]Forootan E, Khaki M, Schumacher M, et al. Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections[J]. Science of the Total Environment, 2019, 650: 2587-2604. [123]粟晓玲, 褚江东, 张特, 等. 西北地区地下水干旱时空演变趋势及对气象干旱的动态响应[J].水分资源保护, 2022, 38(1). [124]于淼, 戴长雷, 张晓红, 等. 西伯利亚布鲁斯地下水溢流积冰影响因素分析[J]. 黑龙江大学工程学报, 2019, 10(4): 21-27. [125]Aeschbach-Hertig W, Gleeson T. Regional strategies for the accelerating global problem of groundwater depletion[J]. Nature Geoscience, 2012, 5(12): 853-861. [126]Xu C, McDowell N G, Fisher R A, et al. Increasing impacts of extreme droughts on vegetation productivity under climate change[J]. Nature Climate Change, 2019, 9(12): 948-953. [127]Shi X, Ding H, Wu M, et al. Effects of different types of drought on vegetation in Huang-Huai-Hai River Basin, China[J]. Ecological Indicators, 2022, 144: 109428. [128]Oliveira P T S, Leite M B, Mattos T, et al. Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado[J]. Ecohydrology, 2017, 10(1): e1759. [129]Le Maitre D C, Scott D F, Colvin C. Review of information on interactions between vegetation and groundwater[J]. 1999. 25:137–52. [130]Bell R W, Schofield N J, Loh I C, et al. Groundwater response to reforestation in the Darling Range of Western Australia[J]. Journal of Hydrology, 1990, 119(1-4): 179-200. [131]Ranjan S P, Kazama S, Sawamoto M. Effects of climate and land use changes on groundwater resources in coastal aquifers[J]. Journal of Environmental Management, 2006, 80(1): 25-35. [132]Jayawickreme D H. Exploring the influence of land-use and climate on regional hydrology and groundwater recharge[M]. Michigan State University, 2008. [133]Adane Z A, Nasta P, Zlotnik V, et al. Impact of grassland conversion to forest on groundwater recharge in the Nebraska Sand Hills[J]. Journal of Hydrology: Regional Studies, 2018, 15: 171-183. [134]Skiadaresis G. Effects of groundwater extraction and extreme drought events on vitality and growth of pedunculate oak (Quercus robur L.) trees[D]. Dissertation, Universität Freiburg, 2020, 2020. [135]Yin L, Zhou Y, Huang J, et al. Interaction between groundwater and trees in an arid site: Potential impacts of climate variation and groundwater abstraction on trees[J]. Journal of Hydrology, 2015, 528: 435-448. [136]Shao R, Zhang B, Su T, et al. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 11783-11802. [137]Shah J, Hari V, Rakovec O, et al. Increasing footprint of climate warming on flash droughts occurrence in Europe[J]. Environmental Research Letters, 2022, 17(6): 064017. [138]Yang W, Long D, Scanlon B R, et al. Human intervention will stabilize groundwater storage across the North China Plain[J]. Water Resources Research, 2022, 58(2): e2021WR030884. [139]Molina R D, Salazar J F, Martínez J A, et al. Forest‐induced exponential growth of precipitation along climatological wind streamlines over the Amazon[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(5): 2589-2599. [140]Langenbrunner B, Pritchard M S, Kooperman G J, et al. Why does Amazon precipitation decrease when tropical forests respond to increasing CO2?[J]. Earth's future, 2019, 7(4): 450-468. [141]Staal A, Flores B M, Aguiar A P D, et al. Feedback between drought and deforestation in the Amazon[J]. Environmental Research Letters, 2020, 15(4): 044024. [142]Lucas-Borja M E, Carrà B G, Nunes J P, et al. Impacts of land-use and climate changes on surface runoff in a tropical forest watershed (Brazil)[J]. Hydrological Sciences Journal, 2020, 65(11): 1956-1973. [143]易琦, 王瑞芳, 窦小东, 等. 盘龙江流域植被覆盖变化对径流过程的影响[J]. 中国农村水利水电, 2022(09): 126-131. [144]Wang D, Yu X, Jia G, et al. Sensitivity analysis of runoff to climate variability and land-use changes in the Haihe Basin mountainous area of north China[J]. Agriculture, Ecosystems & Environment, 2019, 269: 193-203. [145]Wei X, Li Q, Zhang M, et al. Vegetation cover—another dominant factor in determining global water resources in forested regions[J]. Global change biology, 2018, 24(2): 786-795. Dang C, Shao Z, Huang X, et al. Assessment of the importance of increasing temperature and decreasing soil moisture on global ecosystem productivity using solar‐induced chlorophyll fluorescence[J]. Global change biology, 2022, 28(6): 2066-2080
﹀
|
中图分类号: |
P237
|
开放日期: |
2024-06-16
|