论文中文题名: |
家电冰箱气调保鲜电化学控氧技术研究
|
姓名: |
刘佳琪
|
学号: |
19211203019
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085600
|
学科名称: |
工学 - 材料与化工
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料工程
|
研究方向: |
功能材料
|
第一导师姓名: |
杨庆浩
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
周志勇
|
论文提交日期: |
2022-06-16
|
论文答辩日期: |
2022-05-31
|
论文外文题名: |
Research on electrochemical oxygen control technology of controlled atmosphere preservation in household appliance refrigerator
|
论文中文关键词: |
气体扩散电极 ; 气调保鲜装置 ; 电化学 ; 氧还原反应 ; 催化剂
|
论文外文关键词: |
Gas diffusion electrode ; Device of controlled atmosphere preservation ; Electrochemistry ; Oxygen reduction reaction ; Catalyst
|
论文中文摘要: |
︿
气调保鲜技术因不使用防腐剂、健康、环保而备受市场青睐。电化学控氧技术利用氧还原反应控制密闭空间中的氧含量,无噪音、长效安全,是家电冰箱气调保鲜的首选技术之一。电化学控氧核心是用于支撑氧还原反应的气体扩散电极,但其存在低温催化效率低、电极极化大、长期使用易渗漏等问题,严重阻碍家电领域的实用化。针对这些问题,本文通过催化剂制备、电极材料选择与成型工艺调整等,对气体扩散电极的制备工艺进行了优化,结合控氧模块的工业化设计,有效提升电极的电化学性能和使用寿命,实现了模块的长期控氧保鲜效果。
采用热分解法制备Ag/C催化剂,结果表明金属态Ag负载在活性炭上,部分Ag原子通过O-C共价结合。17% Ag/C催化剂的粒子均匀性较好、导电性佳,具有最佳的氧还原催化性能。采用该催化剂制备的气体扩散电极,在催化层中的质量份数为45时,催化氧还原性能最佳。在优化催化剂及催化层的基础上,当防水透气层组成为100份聚四氟乙烯(PTFE)乳液#1、30 ~ 50份活性炭#1、10 ~ 20份乙炔黑#1时,以辊压-烧结工艺制备的膜层中PTFE呈纤维状,均匀包覆在活性炭表面。同时电极催化活性最高,可在1.078 V工作电压200 mA/cm2电流运行。
由前述工艺制得电极模块,装配电化学控氧单元、模拟果蔬盒,可在22.5 A(50 mA/cm2)的恒电流下,实现80.1 mL/min的氧气转换率,在23 min内将30 L果蔬盒内的氧气浓度控制在15%以下,符合商业化控氧保鲜的技术要求。经某大型家电企业产业化装配测试,控氧单元可实现恒流80 mA/cm2下2000 h以上的长效运行。
﹀
|
论文外文摘要: |
︿
Controlled atmosphere preservation technology is favored by the market because it does not use preservatives, health and environmentally friendly. Oxygen reduction reaction (ORR) is used in electrochemical oxygen control technology to control the oxygen content in confined space. The technology has no noise, long-term safety, and is one of the preferred technologies for controlled atmosphere preservation of household appliance refrigerators. Gas diffusion electrode (GDE), which is the core of electrochemical oxygen control, is used to support ORR. However it has some problems, such as low catalytic efficiency at low temperature, large electrode polarization, and easy leakage after long-term use, which seriously hinders the practical application in the field of household appliances. To solve thses problem, the preparation process of GDE is optimized through catalyst preparation, electrode material selection and molding process adjustment. Combined with the industrial design of oxygen control module, the electrochemical performance and service life of the electrode are effectively improved, and the long-term oxygen control and fresh-keeping effect of the module is realized.
Ag/C catalyst was prepared by thermal decomposition method. The results showed that metallic AG was supported on activated carbon, and some Ag atoms were covalently bound by O-C. 17% Ag/C catalyst has good dispersion and conductivity, and has the best catalytic performance for oxygen reduction. The GDE prepared with the catalyst has the best catalytic oxygen reduction performance when the mass fraction in the catalytic layer is 45. On the basis of optimizing the catalyst and catalyst layer, when the waterproof and breathable layer is made up of mass fraction of 100 polytetrafluoroethylene (PTFE) emulsion #1, 30 ~ 50 activated carbon #1 and 10 ~ 20 acetylene black #1, the PTFE in the film prepared by rolling sintering process is fibrous and uniformly coated on the surface of activated carbon. At the same time, the electrode has the highest catalytic activity and can operate at a working voltage of 1.078 V and a current of 200 mA/cm2.
The electrode module is prepared by the above process, and an electrochemical oxygen control unit and a simulated fruit and vegetable box are assembled. The oxygen conversion rate of 80.1 mL/min can be achieved under the constant current of 22.5 A (50 mA/cm2), and the oxygen concentration in 30 L fruit and vegetable boxes can be controlled below 15% within 23 min, meeting the technical requirements for commercial oxygen control and preservation. After the industrial assembly test of a large household electrical appliance enterprise, the oxygen control unit can achieve long-term operation of more than 2000 h under the constant current of 80 mA/cm2.
﹀
|
参考文献: |
︿
[1] Sun X Y, Wang J, Dong M N, et al. Food Spoilage, Bioactive Food Fresh-Keeping Films and Functional Edible Coatings: Research Status, Existing Problems and Development Trend [J]. Trends in Food Science & Technology, 2022, 119: 122-132. [2] He G G. Development and Application of Vacuum Freeze-Drying Technology in China [C]// 第10届亚洲和澳大利亚真空与表面科学会议、中国真空学会2021学术年会、第十五届国际真空科学与工程应用学术会议论文集. 中国上海:2021: 198-199. [3] Widyaningrum, Purwanto Y A, Mardjan S. Design of Control and Monitoring System of Air Condition at Controlled Atmosphere Storage Based on Arduino Uno Microcontroller [J]. Jurnal Keteknikan Pertanian, 2018, 6(1): 1-8. [4] Fan Y L, Li H H. Research on Cold Chain Logistics Operation Mode Under Internet Technology [J]. Journal of Physics: Conference Series, 2021, 1972(1): 012039. [5] Leng D M, Zhang H N, Tian C Q, et al. Low Temperature Preservation Developed for Special Foods in East Asia: A Review [J]. Journal of Food Processing and Preservation, 2021, 46(1): 16176. [6] Hamilton A, Ruiz Llacsahuanga B, Mendoza M, et al. Persistence of Listeria Innocua on Fresh Apples During Long-Term Controlled Atmosphere Cold Storage with Postharvest Fungal Decay [J]. Journal of food protection, 2022, 85(1): 133-141. [7] Fang Y J, Wakisaka M. A Review on the Modified Atmosphere Preservation of Fruits and Vegetables with Cutting-Edge Technologies [J]. Agriculture, 2021, 11(10): 992. [8] 赵芳. 各种果蔬保鲜技术对比 [J]. 中国食品工业, 2019, (07): 128-129. [9] Giannakourou M C, Tsironi T N. Application of Processing and Packaging Hurdles for Fresh-Cut Fruits and Vegetables Preservation [J]. Foods, 2021, 10(4): 830. [10] Rao Y, Qian Y, She X, et al. Pellicle Formation, Microbial Succession and Lactic Acid Utilisation During The Aerobic Deteriorating Process of Sichuan Pickle [J]. International Journal of Food Science & Technology, 2018, 53(3): 767-775. [11] Ho P L, Tran D T, Hertog M L a T M, et al. Effect of Controlled Atmosphere Storage on the Quality Attributes and Volatile Organic Compounds Profile of Dragon Fruit (Hylocereus Undatus) [J]. Postharvest Biology and Technology, 2021, 173: 111406. [12] Paulauskienė A, Tarasevičienė Ž, Žebrauskienė A, et al. Effect of Controlled Atmosphere Storage Conditions on the Chemical Composition of Super Hardy Kiwifruit [J]. Agronomy, 2020, 10(6): 822. [13] 刘斌, 卢德君, 唐敬宇, 等. 金红苹果气调贮藏效应初报 [J]. 吉林农业科学, 1980, (02): 91-96. [14] 廖梓懿. ‘翠香’猕猴桃大帐动态气调保鲜技术研究 [D]. 杨凌: 西北农林科技大学, 2021. [15] Zhang X J, Zhang M, Chitrakar B, et al. Novel Combined Use of Red-White LED lllumination and Modified Atmosphere Packaging for Maintaining Storage Quality of Postharvest Pakchoi [J]. Food and Bioprocess Technology, 2022, 15(3): 590-605. [16] Khan T A, Kannan G M. Study of Controlled Atmosphere Cold Storage [J]. Invertis Journal of Renewable Energy, 2017, 7(1): 45-55. [17] 董同力嘎, 张靳, 胡健, 等. 硅橡胶材料、生物可降解材料和微孔材料在果蔬气调保鲜中的应用与进展 [J]. 内蒙古农业大学学报(自然科学版), 2020, 41(06): 96-100. [18] Lü E L, Lu H Z, Luo X W, et al. Design and Experiment of Fresh-Keeping Transportation Vehicle with Controlled Atmosphere for Fruits and Vegetables [J]. 农业工程学报, 2012, 28(19): 9-16. [19] 潘怡丹, 于曼, 过叶青, 等. 气调冷藏集装箱对蔬菜贮藏的保鲜效果 [J]. 食品工业科技, 2021, 42(12): 313-320. [20] Kim J Y, Han S J, Whang L, et al. Effects of Chlorine Water and Plasma Gas Treatments on the Quality and Microbial Control of Latuca Indica L. Baby Leaf Vegetable During MA Storage [J]. Protected Horticulture and Plant Factory, 2019, 28(3): 197-203. [21] Liu H, Li D L, Xu W C, et al. Application of Passive Modified Atmosphere Packaging in the Preservation of Sweet Corns at Ambient Temperature [J]. LWT, 2021, 136: 110295. [22] Karami N, Kamkar A, Shahbazi Y, et al. Effects of Active Chitosan‐Flaxseed Mucilage‐Based Films on the Preservation of Minced Trout Fillets: A Comparison Among Aerobic, Vacuum, and Modified Atmosphere Packaging [J]. Packaging Technology and Science, 2020, 33(11): 469-484. [23] Wyrwisz J, Karp S, Kurek M A, et al. Evaluation of Modified Atmosphere Packaging in Combination with Active Packaging to Increase Shelf Life of High-in Beta-Glucan Gluten Free Cake [J]. Foods, 2022, 11(6): 872. [24] Bahar A, Lichter A. Effect of Controlled Atmosphere on the Storage Potential of Ottomanit Fig Fruit [J]. Scientia Horticulturae, 2018, 227: 196-201. [25] 姚小玲, 潘嘹, 卢立新. 减压预处理对槟榔气调贮藏品质的影响及模型表征 [J]. 上海农业学报, 2019, 35(02): 75-81. [26] 周博, 南晓红. 果蔬气调库快速降氧时间的影响因素 [J]. 食品与生物技术学报, 2017, 36(12): 1298-1303. [27] Neuwald D A, Klein N, Thewes F R, et al. Dynamic Controlled Atmosphere (DCA): A Chance for Sustainable Storage of Fruit, Maintaining Quality and Better Volatile Profile [J]. Acta Horticulturae, 2021, 1325: 35-40. [28] Mditshwa A, Fawole O A, Opara U L. Recent Developments on Dynamic Controlled Atmosphere Storage of Apples—A Review [J]. Food Packaging and Shelf Life, 2018, 16: 59-68. [29] Wendt L M, Ludwig V, Rossato F P, et al. Combined Effects of Storage Temperature Variation and Dynamic Controlled Atmosphere after Long-Term Storage of ‘Maxi Gala’ Apples [J]. Food Packaging and Shelf Life, 2022, 31: 100770. [30] Anderson W, Daniel A N, Dominikus K, et al. Influence of Respiratory Quotient Dynamic Controlled Atmosphere (DCA – RQ) and Ethanol Application on Softening of Braeburn Apples [J]. Food Chemistry, 2020, 303(C): 125346. [31] Kawhena T G, Fawole O A, Opara U L. Application of Dynamic Controlled Atmosphere Technologies to Reduce Incidence of Physiological Disorders and Maintain Quality of ‘Granny Smith’ Apples [J]. Agriculture, 2021, 11(6): 491. [32] Feng L, Zhang M, Adhikari B, et al. Effect of Ultrasound Combined with Controlled Atmosphere on Postharvest Storage Quality of Cucumbers (Cucumis Sativus L.) [J]. Food and Bioprocess Technology, 2018, 11(7): 1328-1338. [33] 姬翔, 刘港帅, 李泓利, 等. 家用冰箱保鲜技术研究进展 [J]. 家电科技, 2021, (05): 26-30. [34] Santos J L P D, Samapundo S, Djunaidi S, et al. Effect of Storage Temperature, Water Activity, Oxygen Headspace Concentration and Pasteurization Intensity on the Time to Growth of Aspergillus Fischerianus (Teleomorph Neosartorya Fischeri) [J]. Food Microbiology, 2020, 88(C): 103406. [35] 张鸿媛. 冰箱市场观察:保鲜、除菌功能成主要卖点,升级脚步不停 [J]. 电器, 2022, (01): 25-27. [36] De Lima A L, Guerra C A, Costa L M, et al. A Natural Technology for Vacuum-Packaged Cooked Sausage Preservation with Potentially Postbiotic-Containing Preservative [J]. Fermentation, 2022, 8(3): 106. [37] 卡萨帝发布F+控氧冰箱 [J]. 电器, 2018, (02): 67. [38] 业明坤, 陈龙, 谭发刚, 等. 冰箱控氧保鲜的技术研究及对比分析 [J]. 家电科技, 2021, (04): 102-105. [39] 薛谊, 马坚, 李晓峰, 等. 保鲜冰箱间室氧分压对果蔬的保鲜效果研究 [J]. 家电科技, 2021, (04): 106-109. [40] Zhu X Q, Liu Y S, Yang X, et al. Study of a Novel Rapid Vacuum Pressure Swing Adsorption Process with Intermediate Gas Pressurization for Producing Oxygen [J]. Adsorption, 2017, 23(1): 175-184. [41] Deng M L, Zhang Q W, Huang Y K, et al. Integration and Optimization for a PEMFC and PSA Oxygen Production Combined System [J]. Energy Conversion and Management, 2021, 236: 114062. [42] 张勇, 胡旭, 杨中贵, 等. 探究变压吸附气体分离的技术及应用 [J]. 当代化工研究, 2022, (04): 48-50. [43] 郭慧媛, 吴广枫, 曹建康, 等. 气调贮藏对不同种类蔬菜保鲜效果的影响 [J]. 农产品加工, 2020, (23): 10-13. [44] 郭慧媛, 吴广枫, 曹建康, 等. 冰箱气调贮藏对水果的保鲜效果 [J]. 食品工业科技, 2021, 42(02): 290-294+332. [45] ExxonMobil Research and Engineering Company. Patent Issued for Pressure Swing Adsorption For Oxygen Production [P]. USPTO: 10259711, 2019-4-16. [46] Qingdao Haier Joint Stock Co., Ltd. Freshness Preservation Unit, Storage Box, and Refrigerator [P]. USPTO: 20170267426, 2017-8-21. [47] Qingdao Haier Co. Ltd. Oxygen-Control Freshness Preservation Refrigerator [P]. USPTO: 20200284501, 2020-8-10. [48] 张世杰. 改性碳纤维纸负载Pt电极的设计及电催化性能研究 [D]. 天津: 天津大学, 2020. [49] Ambarish K, Samira S, Anjli P, et al. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction [J]. Chemical reviews, 2018, 118(5): 2302-2312. [50] So K, Ozawa H, Onizuka M, et al. Highly Permeable Gas Diffusion Electrodes with Hollow Carbon Nanotubes for Bilirubin Oxidase-Catalyzed Dioxygen Reduction [J]. Electrochimica Acta, 2017, 246: 794-799. [51] Schmies H, Zierdt T, Mueller-Huelstede J, et al. Reduction of Platinum Loading in Gas Diffusion Electrodes for High Temperature Proton Exchange Membrane Fuel Cell Application: Characterization and Effect on Oxygen Reduction Reaction Performance [J]. Journal of Power Sources, 2022, 529: 231276. [52] Marini E, De Souza D O, Aquilanti G, et al. Operando XAS of a Bifunctional Gas Diffusion Electrode for Zn-Air Batteries under Realistic Application Conditions [J]. Applied Sciences, 2021, 11(24): 11672. [53] Wang J W, Li C L, Rauf M, et al. Gas Diffusion Electrodes for H2O2 Production and Their Applications for Electrochemical Degradation of Organic Pollutants in Water: A Review [J]. Science of The Total Environment, 2020, 759: 143459. [54] Guo Y, Wang Y W, Huang Z F, et al. Size Effect of Rhodium Nanoparticles Supported on Carbon Black on the Performance of Hydrogen Evolution Reaction [J]. Carbon, 2022, 194: 303-309. [55] Sheelam A, Sankar R. Carbon-Supported Cobalt (III) Complex for Direct Reduction of Oxygen in Alkaline Medium [J]. International Journal of Hydrogen Energy, 2020, 45(46): 24738-24748. [56] Chen J W, Wu S Y, Chen H T. Unraveling Electrochemical Oxygen Reduction Mechanism on Single‐Atom Catalysts by a Computational Investigation [J]. International Journal of Energy Research, 2021, 46(2): 1032-1042. [57] 雷静, 陈子茜, 李怡招, 等. 用于电催化氧还原制备双氧水的催化剂的研究进展 [J]. 材料导报, 2021, 35(09): 9140-9149. [58] Zhong L J, He D Q, Xie J X, et al. Surface Ion Isolated Platinum-Thiocyanate Catalysts for Hydrogen Peroxide Production Via 2-Electron Oxygen Reduction in Acidic Media [J]. Chemical Engineering Journal, 2022, 435(P3): 135105. [59] Labata M F, Li G F, Ocon J, et al. Insights on Platinum-Carbon Catalyst Degradation Mechanism for Oxygen Reduction Reaction in Acidic and Alkaline Media [J]. Journal of Power Sources, 2021, 487: 299356. [60] 张睿. Fe-N-C催化气体扩散电极电解制备高铁酸钠的研究 [D]. 北京: 北京化工大学, 2020. [61] 王欣奇. 原位H2O2气体扩散电极的制备、性能及结构表征研究 [D]. 北京: 中国石油大学(北京), 2020. [62] Walker W S, Cavalcanti E B, Atrashkevich A, et al. Mass Transfer and Residence Time Distribution in An Electrochemical Cell with An Air-Diffusion Electrode: Effect of Air Pressure and Mesh Promoters [J]. Electrochimica Acta, 2021, 378: 138131. [63] Wang Y, Wang D S, Li Y D. A Fundamental Comprehension and Recent Progress in Advanced Pt‐Based ORR Nanocatalysts [J]. SmartMat, 2021, 2(1): 56-75. [64] 王元荪. 一种利用废旧轮胎制备电催化气体扩散电极的方法 [P]. 中国专利:CN112875811A, 2022-6-1. [65] Tian W W, Ren J T, Lv X W, et al. A “Gas-Breathing” Integrated Air Diffusion Electrode Design with Improved Oxygen Utilization Efficiency for High-Performance Zn-Air Batteries [J]. Chemical Engineering Journal, 2022, 431: 133210. [66] Ehelebe K, Ashraf T, Hager S, et al. Fuel Cell Catalyst Layer Evaluation Using a Gas Diffusion Electrode Half-Cell: Oxygen Reduction Reaction on Fe-N-C in Alkaline Media [J]. Electrochemistry Communications, 2020, 116: 106761. [67] Franzen D, Krause C, Turek T. Experimental and Model-Based Analysis of Electrolyte Intrusion Depth in Silver-Based Gas Diffusion Electrodes [J]. ChemElectroChem, 2021, 8(12): 2186-2192. [68] Or K, Yair E-E, Yaron A, et al. Insights Into the Surface and Stress Behavior of Manganese-Oxide Catalyst During Oxygen Reduction Reaction [J]. Journal of Power Sources, 2020, 450(C): 227545. [69] Chen M, Zheng X B, Liu Z W, et al. The Role of Hot Extrusion in Improving Electrochemical Properties of Low-Cost Commercial Al Alloy as Anode for Al-Air BAattery [J]. Journal of Electroanalytical Chemistry, 2022, 909: 116127. [70] 孙宗煜. 铝空气电池空气电极结构及寿命的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020. [71] 钟家强. Glc-Fe-Nx催化剂的制备、氧还原性能研究及在气体扩散电极中的基准测试 [D]. 厦门: 华侨大学, 2020. [72] 齐敏杰, 阙奕鹏, 雷少帆, 等. 制备工艺对铝空气电池氧电极放电性能的影响 [J]. 电池工业, 2021, 25(02): 59-63. [73] Wang W, Tian Y, Liu Y, et al. Tailored Sr-Co-Free Perovskite Oxide as An Air Electrode for High-Performance Reversible Solid Oxide Cells [J]. Science China Materials, 2021, 64(07): 1621-1631. [74] Emily M, Negin K, Spencer L, et al. Decreased Gas-Diffusion Electrode Porosity due to Increased Electrocatalyst Loading Leads to Diffusional Limitations in Cathodic H2O2 Electrosynthesis [J]. Journal of Power Sources, 2021, 481: 228992. [75] 季晖, 祝建中, 张迪, 等. 介孔炭空气扩散电极电催化氧化产过氧化氢的影响 [J]. 科学技术与工程, 2018, 18(29): 127-132. [76] 兰电, 马正青, 罗双. 银掺杂对二氧化锰空气电极性能的影响 [J]. 电源技术, 2018, 42(12): 1850-1853. [77] Spectrum Brands, INC. Patent Issued for Metal Air Cathode Manganese Oxide Contained in Octahedral Molecular Sieve [P]. USPTO: 9136540, 2015-8-15. [78] 胡铭昌, 周雪晴, 黄雪妍, 等. 无溶剂制备锌空气电极及电池性能 [J]. 储能科学与技术, 2021, 10(06): 2090-2096. [79] Paulisch M C, Gebhard M, Franzen D, et al. Operando Laboratory X-Ray Imaging of Silver-Based Gas Diffusion Electrodes during Oxygen Reduction Reaction in Highly Alkaline Media [J]. Materials, 2019, 12(17): 2686. [80] 王妍. 活性焦基气体扩散电极制备及H2O2电化学合成特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019. [81] 张辉, 梁广川, 蒋巍, 等. 空气电极金属氧化物催化材料的研究 [J]. 河北工业大学学报, 2005, (01): 16-20. [82] 李玉杰, 韩代朝, 赵建君. 活性炭粒度分布对空气扩散电极性能的影响 [C]// 2008全国功能材料科技与产业高层论坛. 中国天津:功能材料, 2008: 447-448. [83] 许志远. 银基氧还原电催化材料反应机理及性能研究 [D]. 北京: 北京化工大学, 2021. [84] Sievers G, Vidakovic Koch T, Walter C, et al. Ultra-Low Loading Pt-Sputtered Gas Diffusion Electrodes for Oxygen Reduction Reaction [J]. Journal of Applied Electrochemistry, 2018, 48(2): 221-232. [85] Mortazavi M, Tajiri K. Effect of the PTFE Content in the Gas Diffusion Layer on Water Transport in Polymer Electrolyte Fuel Cells (PEFCs) [J]. Journal of Power Sources, 2014, 245: 236-244. [86] 夏俊, 王学军, 王维东. 聚四氟乙烯材料相关标准现状与趋势 [J]. 塑料工业, 2014, 42(04): 124-129. [87] 吴迪, 李天文, 孙烈刚, 等. 变压吸附制氧吸附剂的发展状况 [J]. 现代化工, 2014, 34(01): 23-25+27. [88] 张建强. 试论变压吸附制氧吸附剂的工艺研究进展 [J]. 智富时代, 2018, (06): 193. [89] Satria D, Kurniawan T, Rosyadi I, et al. The Effect of Air Flow Rate on Oxygen Purity Level in Pressure Swing Adsorption Equipment with Zeolite 13x and Natural Zeolite Bayah [C]// Proceedings of the Conference on Broad Exposure to Science and Technology 2021 (BEST 2021). Cilegon Indonesia: Atlantis Press, 2022: 396-401. [90] 业明坤, 陈龙, 杨伸其, 等. 小型变压吸附模块在冰箱控氧保鲜中的应用 [J]. 保鲜与加工, 2021, 21(06): 34-37.
﹀
|
中图分类号: |
TQ151.4
|
开放日期: |
2023-06-16
|