论文中文题名: | 转轮除湿空调系统再生排风回收及利用研究 |
姓名: | |
学号: | 18203057014 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081404 |
学科名称: | 工学 - 土木工程 - 供热、供燃气、通风及空调工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 制冷、空调系统的节能技术 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-23 |
论文答辩日期: | 2021-06-03 |
论文外文题名: | Research on Recycling and Utilization of Regenerative exhaust air in Desiccant Wheel air Conditioning System |
论文中文关键词: | |
论文外文关键词: | Desiccant wheel ; Heat recovery ; Air water intake ; Air conditioning system ; Solar energy |
论文中文摘要: |
面对环保、节能及低碳的联合挑战,转轮除湿空调系统因能有效应用低品位能源,并采用水为制冷剂受到了广泛关注和研究。转轮除湿空调系统分为处理空气通道和再生空气通道,处理空气经除湿降温后直接送入空调房间;再生空气经完成对转轮除湿机的再生后直接排至室外。转轮除湿空调系统再生空气排风为高温高湿空气,具有很高的热量和湿量回收价值。因此,本文提出转轮除湿空调系统再生排风回收及利用方法,并分别对转轮除湿空调系统夏季排风热量和湿量进行回收研究及将冬季再生排风应用于干燥空气加湿进行研究。 提出转轮除湿空调系统再生排风回收及利用方法,应用热力学理论分析夏季再生排风热量和湿量的回收以及冬季再生排风加湿的可行性,对系统部件建立了热力学理论模型。 对转轮除湿空调系统夏季再生排风进行热湿回收实验研究,实验测试了再生排风温湿度与再生温度的关系,研究表明,再生排风温度随再生温度的增加而增加,当再生排风温度为120℃,排风空气温度为50.1℃;再生排风含湿量随再生温度的增加而增加,再生排风温度为120℃,再生排风空气含湿量高达39.1 g/kg,表明再生排风具有很高的热回收和湿回收价值。对热回收性能研究表明,热湿回收装置可回收排风空气的热量,制备出低温的生活热水;对排风空气进行湿回收,当再生温度为120℃时,可从排风空气中回收排风取水量4.2~5.6 kg/h;并对排风取水水质进行检测,水质检测结果为,pH为7.04,电导率为24.7 μs/cm;排风取水可作为冷水机组的补水或生活用水,取水后的排风空气温度较低,可对转轮除湿空调系统进行预冷。 对夏季再生排风回收性能进行动态模拟研究,利用TRNSYS建立仿真模型,对西安市典型年6月1日至9月30日进行动态小时模拟,结果表明,提出的系统能够在夏季提供舒适的环境,送风温度范围为18.1~23.3℃;整个制冷季节可从再生排风空气中回收再生排风取水29314 kg;太阳能作为转轮除湿机的再生能源,在81%的小时数内COP在1.0~2.73之间变化,提供大约81051.7 MJ能量,约节能39.8%,并且减少二氧化碳排放量20501 kg。 利用冬季再生排风加湿性能,提出转轮除湿空调系统冬季模式,应用太阳能进行加热,转轮除湿机排风进行加湿,以改善室内热舒适性。利用TRNSYS软件对西安市典型年11月15日至第二年3月15日进行动态模拟研究,模拟结果表明,系统送风温度为25.2~35.4℃,送风含湿量为8.0~12.1 g/kg,整个供暖季节中,太阳能可提供56.6%的供热量;存在最优的流量比0.57使得转轮除湿机的加湿效率最大。系统采用全排风形式时,加湿效率为1.4~1.6;当加入一定比例的新风时,加湿效率逐渐减小。 |
论文外文摘要: |
Facing the combined challenges of environmental protection, energy saving and low carbon, the desiccant wheel air conditioning system has been widely concerned and studied because it can effectively use low-grade energy and use water as refrigerant. The desiccant wheel air conditioning system is divided into treatment air channel and regeneration air channel. The treated air is directly sent to the air conditioning room after dehumidification and cooling; After the regeneration of the wheel dehumidifier, the regenerated air is directly discharged to the outdoor. The regenerative air of the wheel dehumidification air conditioning system is high temperature and humidity air, which has high value of heat and humidity recovery. Therefore, this paper puts forward the recycling and utilization methods of regenerative exhaust air in the rotary dehumidification air conditioning system, and studies the recycling of the heat and humidity of the exhaust air in summer and the application of the regenerative exhaust air in dry air humidification in winter. The recycling and utilization method of the regenerative exhaust air in the desiccant wheel air conditioning system is proposed. the feasibility of the recycling of the heat and humidity of the regenerative exhaust air in summer and the humidification of the regenerative exhaust air in winter is analyzed by using the thermodynamic theory, and the thermodynamic theoretical model of the system components is established. The heat and moisture recovery experiment of the regenerative exhaust air in summer is carried out. The relationship between the temperature and humidity of the regenerative exhaust air and the regenerative temperature is tested. the results show that the regenerative exhaust air temperature increases with the increase of the regenerative temperature. When the regenerative exhaust air temperature is 120℃, the exhaust air temperature is 50.1℃ the temperature of regeneration exhaust air is 120℃, and the moisture content of exhaust air is 39.1 g/kg, which indicates that the regeneration exhaust air has high value of heat recovery and moisture recovery. The research on heat recovery performance shows that the heat and humidity recovery device can recover the heat of the exhaust air to prepare low-temperature domestic hot water; when the regeneration temperature is 120℃, the condensate water can be recovered from the exhaust air by 4.2~5.6 kg/h; and the condensate water quality is detected, and the water quality detection results are: pH is 7.04, conductivity is 24.7 μs/cm. the exhaust air intake can be used as make-up water or domestic water for chillers, and the temperature of exhaust air after intake is lower, which can precooling the runner dehumidification air conditioning system. The performance of regenerative exhaust air recovery in summer is studied by dynamic simulation. The simulation model is established by TRNSYS, and the dynamic hourly simulation is carried out from June 1 to September 30 in typical year of Xi'an. The results show that the proposed system can provide a comfortable environment in summer, with the supply air temperature range of 18.1~23.3℃; 29314 kg of condensate water can be recovered from the regenerative exhaust air in the whole refrigeration season; the COP of solar energy as the regenerative energy of the rotary dehumidifier varies from 1.0 to 2.73 in 81% of the hours, providing about 81051.7 MJ energy, saving about 39.8%, and reducing CO2 emissions by 20501 kg. The winter mode of the dehumidification air conditioning system is proposed by using the humidification performance of the regeneration air exhaust in winter. The solar energy is used for heating and the exhaust air of the desiccant wheel is humidified to improve the indoor thermal comfort. TRNSYS is used to simulate Xi'an from November 15 of the typical year to March 15 of the next year. The simulation results show that the supply air temperature of the system is 25.2~35.4℃, and the humidity content of the supply air is 8.0~12.1 g/kg. In the whole heating season, the solar energy can provide 56.6% of the heat supply; there is an optimal flow ratio of 0.57, which makes the humidification efficiency of the desiccant wheel maximum. The humidification efficiency is 1.4~1.6 when the system adopts full exhaust mode, and decreases gradually when a certain proportion of fresh air is added. In practical application, all the exhaust air should be used in the air conditioning system. When the air volume is insufficient, fresh air can be introduced to supplement. |
参考文献: |
[4] 周克元.综合评价温度高度及湿度对人体舒适度的影响分析—以徐州市为例[J].保山学院学报,2019,38(2):19-22. [5] 王倩. 空调系统中的除湿技术[J]. 广东石油化工学院学报, 2013(4):63-67. [6] 杨长明, 李平. 转轮除湿技术的应用与研究进展[J]. 浙江建筑, 2012(06):69-72. [8] 方祥建, 陈焕新, 邓智等. 预防四通阀液击损坏的控制模式研究[J]. 制冷与空调, 2015,15(009):16-20. [9] 陈思豪,陈柳,高帅帅.转轮除湿复合式空调系统节能措施研究[J].低温与超导,2018,46(08):58-65. [11] 曹旦, 邹钺. 半导体制冷空气取水系统的优化研究[J]. 建筑热能通风空调, 2016(9):71-73. [12] 耿建新, 李志坚, 吕晓敏,等. 我国水资源审计的现状与未来探讨[J]. 审计研究, 2018, No.201(01):38-45. [18] 郝红, 张于峰, 邓娜,等. 转轮热泵耦合式空调系统的节能性研究[J]. 太阳能学报, 2009, 30(001):45-50. [20] 葛凤华, 王剑, 郭兴龙,等. 热泵废热再生转轮除湿空调系统的性能研究[J]. 太阳能学报, 2016, 37(9):2326-2331. [29] 陈华, 周楚, 史德福. 不同冷凝热回收方式下热泵空调动态特性的实验研究[J]. 太阳能学报, 2015, 36(05):1239-1246. [42] 牛润萍, 孟富强, 王紫叶,等. 溶液调湿空调冬季加湿特性实验[J]. 沈阳建筑大学学报(自然科学版), 2018, v.34;No.174(03):164-171. [43] 柯瑞, 黄志甲, 罗良,等. 热泵型溶液调湿新风机组冬季性能试验研究[J]. 制冷与空调, 2018, 18(09):48-52. [49] 何海斌, 李勇, 代彦军,等. 太阳能空气集热及转轮除湿/加湿混合系统冬季供暖分析[J]. 太阳能学报, 2015, 36(7):1690-1696. [55] Qiang L , Hao X . A review on extracting water from air. Shanxi Architecture, 2016. [59] Parker, Andrew, R, et al. Water capture by a desert beetle.[J]. Nature, 2001, 414(6859):33-33. [60] 姜海凤, 侯立安, 张林. 空气取水非常规技术及材料、装备研究进展[J]. 高校化学工程学报, 2018. |
中图分类号: | TU834 |
开放日期: | 2021-06-23 |