- 无标题文档
查看论文信息

题名:

     

作者:

 张宸毓    

学号:

 22220226076    

保密级别:

 1    

语种:

 chi    

学科代码:

 085700    

学科:

  -     

学生类型:

     

学位:

     

学位年度:

 2025    

学校:

 西    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

     

导师姓名:

 张京兆    

导师单位:

 西安科技大学    

提交日期:

 2025-06-18    

答辩日期:

 2025-05-30    

外文题名:

 Simulation Research on Emergency Evacuation of Special Groups at Metro Platforms    

关键词:

 应急疏散 ; 特殊人群 ; 扶梯开停策略 ; AnyLogic 仿真 ; 问卷调查 ; 地铁站台    

外文关键词:

 Emergency Evacuation ; Special Populations ; Escalator Operation Strategies ; AnyLogic Simulation ; Questionnaire Survey ; Subway Platform    

摘要:
<p>仿西</p> <p>129%60%~70%64.2%90.4%</p> <p>2AnyLogic仿10%29%8%510.2%//仿303.2 s295.6 s2.51%295 s3%仿</p> <p>3仿2使55.6%3.5 m40%3 m使67%使</p> <p></p>
外文摘要:
<p>With the acceleration of urbanization, the subway, as an efficient mode of transportation, is facing increasingly severe challenges in emergency evacuation. Special groups (such as the elderly, the disabled, pregnant women, and children) are at higher risk due to their limited mobility during evacuation. This paper focuses on the emergency evacuation scenarios at subway platforms, comprehensively applying literature analysis, questionnaire surveys, and simulation methods. Taking Xi&#39;an Dayanta subway station as the research object, a differentiated crowd evacuation model is constructed to explore the evacuation efficiency of special groups at different times, study the evacuation efficiency and bottleneck problems under different numbers of guides and different escalator operation strategies, and propose targeted optimization strategies. The main contents are as follows:</p> <p>(1) Based on multi-dimensional passenger flow surveys and behavioral analysis, the spatio-temporal distribution characteristics of special groups are quantified. On-site personnel surveys found that the proportion of special groups increased to 29% during holidays, and the movement speed of the elderly was only 60% to 70% of that of the normal population. Questionnaire surveys showed that 64.2% of passengers lacked awareness of the emergency functions of escalators, and 90.4% needed the help of guides. The basic characteristics, safety awareness, and emergency evacuation behaviors of special groups and their influencing factors were explored, providing key behavioral parameters for model construction.</p> <p>(2) A three-dimensional dynamic evacuation simulation model was constructed using the AnyLogic platform, revealing the differences in evacuation efficiency under different scenarios. The results showed that during off-peak hours, the evacuation efficiency was reduced by 10% due to the high proportion of the elderly; during holiday conditions, the proportion of special groups increased to 29%, and the total evacuation time was extended by 8%; when the number of guides increased to 5, the evacuation time was shortened by 10.2%, verifying the synergy of manual intervention and facility control. Among the four escalator operation strategies (upward operation/downward stop, both escalators stop, only stairs evacuation, and downward escalator reverse operation), the upward operation/downward stop strategy had the highest overall efficiency, with a simulation model evacuation time of 303.2 seconds and a mathematical model evacuation time of 295.6 seconds, with an error of only 2.51%, which can be used as a balanced solution for various scenarios. Although the reverse operation strategy had the highest evacuation efficiency, with an evacuation time of 295 seconds, it needed to solve the technical problem of reverse operation of the equipment. The error of all strategies was controlled within 3%, verifying the scientific consistency of the simulation model and the mathematical model and demonstrating the reliability of the model.</p> <p>(3) Based on the simulation data analysis of the guide setup and different escalator operation strategies, an emergency evacuation system optimization plan was proposed for the core bottleneck areas. Through multi-strategy comparison and bottleneck identification, key optimization plans were proposed: adding 2 wide-body gates reduced the exit retention time by 55.6%; increasing the stair width to 3.5 meters reduced the density peak by 40%; setting 3-meter diversion barriers reduced the path conflict frequency by 67%&nbsp;and through field verification, the feasibility and practicability of optimizing the diversion railing were proved. Each optimization plan played a certain role in improving the evacuation efficiency. The optimization of stair width was the core measure for systematically improving the evacuation efficiency; the optimization of diversion barriers had a significant protective effect on special groups and was recommended for priority adoption; the optimization of gates could be used as a low-cost supplementary solution but needed to be used in combination with other measures.</p> <p>This paper combines the guide setup strategy and escalator operation strategy with the evacuation behavior of special groups, proposes targeted optimization plans, provides theoretical basis and practical reference for the design of inclusive transportation systems, and offers practical suggestions for emergency evacuation management at subway stations. It has important practical significance for improving the safety and inclusiveness of urban public transportation.</p>
参考文献:

[1]曹向辉. 地铁火灾人员疏散影响因素分析及疏散策略 [J]. 中国人民警察大学学报, 2023, 39(8): 48-51+57.

[2]张野, 单妥, 王晓磊, 等. 基于BIM的地铁车站火灾疏散应用研究 [J]. 消防界(电子版), 2023, 9(15): 96-98.

[3]齐若星. 地铁站突发火灾事故中乘客疏散行为决策的影响因素及提升策略研究 [D]. 西安: 西安建筑科技大学, 2024.

[4]刘鑫. 地铁站楼扶梯不同运行工况下乘客应急疏散模型及优化 [D]. 西安:西安科技大学, 2022.

[5]中华人民共和国住房和城乡建设部.地铁设计防火标准: GB 51298-2018 [S]. 中国计划出版社, 2018.

[6]赵艳. 建筑火灾应急疏散与救援技术研究 [C]//中国消防协会学术工作委员会消防科技论文集(2024)—建筑火灾防治技术. 河北省廊坊市安次区消防救援大队, 2024: 81-83.

[7]张克诚. 火灾场景下地铁站台乘客疏散时间的预测方法分析 [J]. 电工技术, 2024, (20): 175-177+181.

[8]董利辉, 周海竹, 邓云峰. 地铁火灾非适应性疏散的从众行为影响因素分析 [J]. 中国安全生产科学技术, 2024, 20(7): 108-113.

[9]付君窈. 地铁车站突发事件行人疏散行为研究 [J]. 交通科技与管理, 2024, 5(13): 14-17.

[10]金佳宁. 大型高铁站火灾人员安全疏散仿真与优化研究 [D]. 辽宁工程技术大学, 2023.

[11]王新宇. 不同起火位置下城市轨道交通地下站点火灾及人员疏散仿真研究 [D]. 重庆: 重庆交通大学, 2024.

[12]焦柳丹, 刘任可, 张羽, 等. 基于可用与必需安全疏散时间的地铁站火灾人员疏散仿真 [J]. 重庆交通大学学报(自然科学版), 2024, 43(10): 106-115.

[13]张蕊. 多场景下地铁站乘客疏散路径规划研究 [D]. 青岛: 青岛理工大学, 2023.

[14]田杰, 苏宇鹏, 吴桐, 等. 基于疏散引导的高峰时段地铁站应急疏散方案优化 [J]. 重庆交通大学学报(自然科学版), 2025, 44(1): 96-103+126.

[15]Xu H, Wei Y, Tan Y. Optimization of emergency evacuation in complex rail transit station [J]. Journal of Building Engineering, 2024, 95: 110321.

[16]Shan S, Guo X, Wei Z, et al. Simulation analysis of evacuation processes in a subway station based on multi-disaster coupling scenarios [J]. International journal of disaster risk reduction, 2023, 96: 103998.

[17]Feng J R, Gai W, Yan Y. Emergency evacuation risk assessment and mitigation strategy for a toxic gas leak in an underground space: The case of a subway station in Guangzhou, China [J]. Safety science, 2021, 134: 105039.

[18]王芳. 基于多智能体的地铁火灾和疏散仿真研究 [D]. 北京: 北京交通大学,2023.

[19]杨晓霞, 蒋海龙, 李永行, 等. 地铁站乘客沿楼梯上行疏散时间预测及安全性评估 [J]. 中国安全科学学报, 2023, 33(5): 168-173.

[20]惠阳, 余强, 王永岗, 等. 地铁站应急疏散效率影响因素分析及优化策略 [J]. 长安大学学报(自然科学版), 2024, 44(4): 130-138.

[21]王勇, 张锦彬, 朱军, 等. 基于改进社会力模型的地铁站火灾应急疏散VR模拟方法 [J]. 中国安全生产科学技术, 2023, 19(5): 194-201.

[22]曲磊. 基于机器学习的地铁站乘客出行时间预测方法研究 [D]. 青岛: 青岛理工大学, 2024.

[23]王杰. 地铁站火灾场景下乘客疏散时间预测与路径优化 [D]. 青岛: 青岛理工大学, 2024.

[24]刘萌. 地铁站火灾情景下人员疏散优化研究 [D]. 西安: 西安理工大学, 2024.

[25]杨大志, 田雨晗. 基于Dijkstra算法的地铁站客流应急疏散路径优化研究 [J]. 今日消防, 2024, 9(8): 4-6.

[26]徐枫. 地铁站安全疏散理论分析及应用 [J]. 中国消防, 2023, (10): 58-61.

[27]Huang L, Li W, Gong J. Simulation of the emergency evacuation about social groups in a complex subway station [J]. Physica A: Statistical Mechanics and its Applications, 2024, 637: 129535.

[28]Cai Z, Zhou R, Cui Y, et al. Influencing factors for exit selection in subway station evacuation [J]. Tunnelling and Underground Space Technology, 2022, 125: 104498.

[29]Zhou R, Cui Y, Wang Y, et al. A modified social force model with different categories of pedestrians for subway station evacuation [J]. Tunnelling and Underground Space Technology, 2021, 110: 103837.

[30]Xu H, Tian C, Li Y. Emergency evacuation simulation and optimization for a complex rail transit station: a perspective of promoting transportation safety [J]. Journal of advanced transportation, 2020, 2020(1): 8791503.

[31]Qin J, Liu C, Huang Q. Simulation on fire emergency evacuation in special subway station based on Pathfinder [J]. Case Studies in Thermal Engineering, 2020, 21: 100677.

[32]张皓. 地铁站内行人异质性应急疏散建模与仿真研究 [D]. 西安: 长安大学, 2024.

[33]从琳. 地铁站应急情况下疏散路径研究 [D]. 石家庄: 石家庄铁道大学, 2023.

[34]袁欣. 基于仿真优化的地铁站行人踩踏风险控制研究 [D]. 武汉: 中南财经政法大学, 2023.

[35]Zhang J, Huang D, You Q, et al. Evaluation of emergency evacuation capacity of urban metro stations based on combined weights and TOPSIS-GRA method in intuitive fuzzy environment [J]. International journal of disaster risk reduction, 2023, 95: 103864.

[36]Tang Y, Xia N, Lu Y, et al. BIM-based safety design for emergency evacuation of metro stations [J]. Automation in Construction, 2021, 123: 103511.

[37]Wang J, Guo J, Wu X M, et al. Study on intelligent algorithm of guide partition for emergency evacuation of a subway station [J]. IET Intelligent Transport Systems, 2020, 14(11): 1440-1446.

[38]陈晨. 基于元胞自动机的低行动力人群疏散仿真研究 [D]. 宁波: 宁波大学, 2021.

[39]任祥霞. 典型场景内老年人多模式疏散特性实验和模型研究 [D]. 合肥: 中国科学技术大学, 2022.

[40]蔡佳良. 多层建筑特殊人群疏散时间及疏散特征研究 [D]. 西安: 长安大学, 2023.

[41]霍非舟, 吕紫含, 李超, 等. 考虑结伴行为的养老场所多群体人员疏散研究 [J]. 灾害学, 2024, 39(3): 153-159.

[42]Murakami H, Feliciani C, Nishinari K. Adaptive Formation by Pedestrian Small Groups During Egresses [J]. Journal of Disaster Research, 2024, 19(2): 379-385.

[43]Takahashi A, Yasufuku K. Evaluation of Tsunami Evacuation Plans for an Underground Mall Using an Agent-Based Model [J]. Journal of Disaster Research, 2024, 19(2): 268-278.

[44]郑杰. 基于元胞自动机的盲人疏散行为建模与仿真研究 [D]. 太原: 太原科技大学, 2022.

[45]王曦晨. 老年人照料设施防火疏散楼梯设计研究 [D]. 大庆: 东北石油大学, 2020.

[46]韩桂荣. 浅谈老年人照料设施的消防疏散 [J]. 中国新技术新产品, 2021, (6): 144-148.

[47]顾正军, 沙鑫烨, 纪勇军, 等. 关于老年人照料设施消防设计相关问题的探讨 [J]. 安装, 2022, (6): 66-69.

[48]曾自立, 陈志艺. 老年公寓建筑火灾危险性辨识及安全疏散分析 [C]//2020中国消防协会科学技术年会论文集. 温州市消防救援支队, 2020: 794-800.

[49]白雪岑. 特殊人群紧急疏散动力学建模与分析 [D]. 太原: 太原科技大学, 2019.

[50]Yazdani M, Haghani M. Elderly people evacuation planning in response to extreme flood events using optimisation-based decision-making systems: A case study in western Sydney, Australia [J]. Knowledge-Based Systems, 2023, 274: 110629.

[51]Sugiyama T, Yamori K. Consideration of evacuation drills utilizing the capabilities of people with special needs [J]. Journal of Disaster Research, 2020, 15(6): 794-801.

[52]V. D S ,G. R S .Peculiarities of calculation of the estimated time of evacuation of people using internal open stairs[J].XXI century. Technosphere Safety,2019,4(2):227-235.

[53]董智龙. 建筑物智能化火灾检测研究 [D]. 大庆: 东北石油大学, 2022.

[54]郭红英. 考虑个体—火场环境因素的养老院人员疏散策略研究 [D]. 赣州: 江西理工大学, 2024.

[55]马辉, 朱红杰, 姚雨婷, 等. 老年人照料设施中失能老人疏散策略研究 [J]. 中国安全生产科学技术, 2020, 16(10): 127-132.

[56]马鑫悦. 养老机构火灾风险评估及保险研究 [D]. 沈阳: 沈阳航空航天大学, 2023.

[57]曹莎莎, 王勤林. 公共交通视角下老年人疏散策略研究—以青岛无棣路历史文化街区为例 [J]. 城市建筑, 2021, 18(33): 185-187.

[58]李昌宇, 曹忠伟, 张若楠. 基于AnyLogic的地铁换乘站客流组织仿真与优化 [J]. 现代城市轨道交通, 2025, (2): 123-129.

[59]房萍萍. 西安大雁塔地铁站集散能力建模仿真分析 [D]. 西安: 西安科技大学, 2020.

[60]全国公共安全基础标准化技术委员会(SAC/TC 351). 地铁安全疏散规范: GB/T 33668-2017 [S]. 中国标准出版社, 2017.

[61]王雷, 霍福民, 王孝坤. 基于Anylogic仿真模型的王府庄站客流组织仿真与优化 [J]. 交通与运输, 2025, 41(1): 20-24.

[62]张思瑶, 杜晨阳, 薛智蒙, 等. 基于Anylogic的地铁站厅客流组织优化研究—以西安地铁小寨站为例 [J]. 河南科技, 2025, 52(2): 62-67.

[63]张龙财, 刘明辉, 刘晨宇, 等. 机场航站楼火灾人员疏散路径研究 [J]. 舰船电子工程, 2025, 45(1): 101-105.

[64]蒋慧灵, 方伟, 徐天锋, 等. 基于Dijkstra算法的室内疏散最优路径规划模型 [J/OL]. 清华大学学报(自然科学版), 1-8[2025-03-18].

[65]刘潇, 王勤勤, 钟导峰. 基于AnyLogic机场安检排队系统仿真优化研究 [J]. 交通科技与管理, 2025, 6(1): 11-13.

[66]刘晓静, 张晨熙. 基于AnyLogic的地铁车站可预见性大客流组织优化方案 [J]. 黑龙江交通科技, 2024, 47(12): 167-170+176.

[67]李慧. 改进蚁群算法的城市地铁应急疏散路径优化 [J]. 中国储运, 2024, (12): 119-120.

[68]牛聚粉, 林雅琳, 楚馨悦, 等. 国内外应急疏散研究进展综述 [J]. 安全与环境学报, 2025, 25(1): 184-195.

[69]Guo C, Huo F, Deng S, et al. An evacuation model considering pedestrian group behavior under violent attacks [J]. Physica A: Statistical Mechanics and its Applications, 2024, 656: 130229.

[70]Li K, Chen Z. Emergency evacuation dynamics based on evolutionary game theory [J]. Physics Letters A, 2024, 528: 130059.

[71]Yang W, Yan X, Hu D, et al. A novel emergency evacuation route optimization model in flood disasters using hydrodynamic model and intelligent algorithm [J]. Safety Science, 2025, 182: 106709.

[72]寻天祥. 地铁换乘站火灾烟气移动与人员疏散研究 [D]. 西安: 西安建筑科技大学, 2024.

[73]张家严. 地铁站火灾事故人员疏散仿真研究 [D]. 长春: 吉林建筑大学, 2024.

[74]倪艳. 基于突发事故的城市地下车站安全疏散能力评价 [D]. 合肥: 安徽建筑大学, 2024.

[75]苗甜甜. 地铁站吊顶对烟气运移的影响及疏散优化研究 [D]. 辽宁工程技术大学, 2022.

[76]朱孔金, 朱军, 王小艳, 等. 考虑换乘通道利用的地铁换乘站行人疏散引导策略研究 [J]. 安全与环境学报, 2024, 24(9): 3548-3555.

[77]吴甜甜, 蒲琪. 地铁车站站台楼扶梯设置参数对行人疏散时间影响 [J]. 城市轨道交通研究, 2024, 27(2): 170-174.

[78]刘意, 王顺利, 胡宏杰, 等. 地铁车站乘客疏散虚拟仿真实验教学设计 [J]. 实验室研究与探索, 2023, 42(12): 79-83.

[79]罗曼, 穆娜娜, 钱小东, 等. 某地铁换乘站火灾人员疏散能力影响分析 [J]. 中国安全生产科学技术, 2023, 19(S1): 177-181.

中图分类号:

 U298.2    

开放日期:

 2026-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式