- 无标题文档
查看论文信息

论文中文题名:

 魏墙煤矿厚松散层下煤炭开采地表移动变形规律研究    

姓名:

 郑尧    

学号:

 21204228122    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 -土木水利    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 开采沉陷    

第一导师姓名:

 谷拴成    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Research on the surface movement and deformation law of coal mining under thick loose layer in WeiQiang coal mine    

论文中文关键词:

 厚松散层 ; 地表观测 ; 地表沉陷 ; 概率积分法 ; 地表移动变形规律    

论文外文关键词:

 Thick loose layer ; Surface observation ; Surface subsidence ; Probability integral method ; Surface movement and deformation law    

论文中文摘要:

在煤炭开采领域中,不同地质采矿条件下的矿体开采所引发的一系列开采沉陷问题复杂多变,其中厚松散层下煤炭开采产生的地表沉陷变形规律较为不同。其沉陷系数相较于松散层较薄或无松散层等一般开采条件更大,产生的沉降变形区域范围也更大。由于开采沉陷严重影响了煤矿的安全生产,造成了环境破坏等问题,因此对厚松散层下的煤炭开采研究具有重要意义。本文以魏墙煤矿1301工作面为研究对象,采用现场监测、理论分析、数值模拟相结合的方法对矿区厚松散层下煤炭开采地表移动变形规律进行研究,为厚松散层矿区开采沉陷工程实践提供依据与方法。论文主要研究内容如下:

(1)在魏墙煤矿1301工作面现场布置地表移动观测站,在工作面中心位置分别设置了走向和倾向两条互相垂直的地表移动观测线。走向线共布置测点20个,倾向线共布置测点33个,测点共计53个。并在之后展开全面观测和日常观测,实时获取地表移动观测数据,为分析地表变形规律提供支撑。

(2)以魏墙煤矿1301工作面为研究对象,基于实际矿区厚松散层下的煤炭开采情况,利用回归分析法,分析开采沉陷预计参数与对应工作面地质条件参数(包括开采深度、松散层厚度、基岩厚度、走向与倾向采动程度等)之间的关系,总结预计参数与厚松散层地质条件之间的规律。确定地表开采沉陷预计参数及移动角量参数的取值,分析厚松散层下开采的参数具体特征。

(3)进行魏墙矿区地表移动变形预计研究,基于地表移动变形预计方法,在概率积分法的基础上进行修正,得到在厚松散层下开采的概率积分预计公式,计算了观测线上所有测点的下沉、倾斜、曲率、水平变形等预计数据。同时也基于Boltzmann函数预计模型进行预计,并将概率积分法预计结果和Boltzmann函数模型预计结果共同拟合分析,研究厚松散层下的地表变形预计规律。

(4)通过运用FLAC3D数值模拟软件,根据魏墙煤矿厚松散层地质条件和岩石物理力学参数,充分考虑地表移动影响范围和矿区实际地质概况,建立厚松散层下煤层条带开采平面模型,对1301工作面重复采动条件下的地表下沉规律进行数值模拟,得到了位移和应力的变化特点。得出了魏墙地区厚松散层和黄土层等特殊地形地貌下的开采沉陷规律,发现地表移动破坏在沟壑或边缘范围内更为显著,且厚松散层的存在对地表变形范围有一定影响作用。这些研究结果为魏墙矿区厚松散层下的采矿活动规划、环境保护协调提供了科学依据。

关 键 词:厚松散层;地表观测;地表沉陷;概率积分法;地表移动变形规律

研究类型:应用研究

论文外文摘要:

In the field of coal mining, a series of mining subsidence problems caused by ore body mining under different geological mining conditions are complicated and changeable, among which the surface subsidence deformation laws caused by coal mining under thick loose layer are quite different. Compared with the general mining conditions such as thin or no loose layer, the subsidence coefficient is larger and the subsidence deformation area is larger. Because mining subsidence seriously affects the safety production of coal mines and causes environmental damage, it is of great significance to study coal mining under thick loose beds. In this paper, the 1301 working face of WeiQiang Coal Mine is taken as the research object, and the surface movement and deformation rule of coal mining under thick loose layer is studied by the method of field monitoring, theoretical analysis and numerical simulation, which provides the basis and method for mining subsidence engineering practice in thick loose layer mining area. The main research contents of this paper are as follows:

(1) The ground movement observation station is set up on the site of 1301 working face in WeiQiang Coal Mine, and two vertical ground movement observation lines are set up respectively in the center of the working face. There are a total of 20 measuring points in the strike line and 33 measuring points in the dip line, totaling 53 measuring points. After that, comprehensive observation and daily observation were carried out to obtain real-time observation data of surface movement, providing support for the analysis of surface deformation laws.

(2) Taking the 1301 working face of WeiQiang Coal Mine as the research object, based on the coal mining situation under the thick loose layer in the actual mining area, regression analysis is used to analyze the relationship between the predicted mining subsidence parameters and the geological conditions of the corresponding working face (including mining depth, loose layer thickness, bedrock thickness, trend and inclined mining degree, etc). The relationship between the predicted parameters and the geological conditions of thick loose beds is summarized. The values of subsidence prediction parameters and movement Angle parameters of surface mining are determined, and the specific characteristics of mining parameters under thick loose layer are analyzed.

(3) Based on the prediction method of surface movement and deformation in WeiQiang Mining area, the probability integral prediction formula for mining under the thick loose layer is obtained by modifying the probability integral method. The predicted data of subsidence, inclination, curvature and horizontal deformation of all measurement points on the observation line are calculated. At the same time, the prediction is also made based on the Boltzmann function prediction model, and the prediction results of probability integral method and Boltzmann function model are fitted together to analyze, and the prediction law of surface deformation under the thick loose layer is studied.

(4) By using the FLAC3D numerical simulation software, according to the geological conditions and rock physical and mechanical parameters of the thick loose layer in WeiQiang Coal Mine, and fully considering the influence range of surface movement and the actual geological situation of the mining area, the strip mining plane model of the coal seam under the thick loose layer is established, and the surface subsidence rule under the repeated mining condition of the working face of 1301 is numerically simulated. The variation characteristics of displacement and stress are obtained. The mining subsidence rules under special landforms such as thick loose layer and yellow soil layer in WeiQiang area are obtained. It is found that the surface movement failure is more significant in the gully or edge range, and the existence of thick loose layer has a certain effect on the surface deformation range. These research results provide a scientific basis for mining activity planning and environmental protection coordination under the thick loose layer in WeiQiang mining area.

Key words: Thick loose layer; Surface observation; Surface subsidence; Probability integral method;Surface movement and deformation law

Thesis: Application Researc

参考文献:

[1]王正帅, 邓喀中. 老采空区地表残余变形分析与建筑地基稳定性评价[J]. 煤炭科学技术, 2015, 43(10):133-137+102.

[2]Whittaker B.N. Surface subsidence aspects of room and pillar mining[J]. Mining Department Magazine, University of Nottingham, 1985, 37:59~67.

[3]韩煊, 李宁, J.R.Standing. Peck公式在我国隧道施工地面变形预测中的适用性分析[J]. 岩土力学, 2007, (01):23-28+35.

[4]C. J. F. P. Jones and W. J. Spencer. The Implication of Mining Subsidence for Modern Highway Structure. Large Greunel Movements and structures Proceedings, University of Wales Cardiff, 1977:515-526.

[5]Knothe S. Observations of surface movements and their theoretical interpretation[J]. Colliery Engineering, 1959, 36(1):34-37.

[6]Litiwiniszy. J.Application of the equation of stochastic probodies[M]. Archium Mechaniki Stosowanej, 1956.

[7]Y.Erie.e. Mechanism of Subsidence Induced Damage and Technique for Analysis[J], Mis. 1985, (10):168-190.

[8]C. J. F. P. Jonce, T. D. Rourke. Mining Subsidence Effects on Transportation Facitilies. Geotechnical Special Publication, 1988, (19):107-126.

[9]Litwiniszyn. Statistical methods in the mechanics of granular bodies[J]. Springer Journal. RheologicaActa, 1958, Vol.1 (2-3), pp. 146-150.

[10]Cundall, P. A. A computer model for simulating progressive large-scale movements in blocky rock system[J]. Proceedings Symposium Society, 1971, (1):128-132.

[11]J. Palaski[POland]. The experiment of using filled method and effect[J]. The thesis collect ion of the 14th Canadain rock strenth discussion, 1989.

[12]董灿灿, 吕义清, 刘志辉, 等. 复杂地貌下行式开采地表移动变形规律[J]. 煤矿安全, 2020, 51(11):237-242.

[13]谷拴成, 洪兴. 概率积分法在山区浅埋煤层地表移动预计中的应用[J]. 西安科技大学学报, 2012, 32(01):45-50+69.

[14]陈盼, 谷拴成, 张幼振. 浅埋煤层垂向重复采动下地表移动规律实测研究[J]. 煤炭科学技术, 2016, 44(11):173-177.

[15]刘宝琛, 廖国华. 煤矿地表移动的基本规律[M]. 北京:中国工业出版社, 1965.

[16]何国清, 马伟民, 王金庄. 威布尔分布型影响函数在地表移动计算中的应用—用碎块体理论研究岩移基本规律的探讨[J]. 中国矿业学院学报, 1982, (01):4-23.

[17]康建荣. 采动覆岩动态移动破坏规律及开采沉陷预计系统(MSPS)研究[D]. 中国矿业大学, 1999.

[18]郭广礼. 老采空区上方建筑地基变形机理及其控制[M]. 徐州:中国矿业大学出版社.

[19]马占国, 郭广礼, 陈荣华, 等. 饱和破碎岩石压实变形特性的试验研究[J]. 岩石力学与工程学报, 2005(07):1139-1144.

[20]谭志祥, 刘玮璞, 邓喀中. 建筑物下煤层群条带上行开采判定分析[J]. 煤炭技术, 2014, 33(07):157-159.

[21]宋常胜, 赵忠明, 李洪波, 等. 巨厚松散层下条带开采地表沉陷机理及岩层移动模型的探讨[J]. 焦作工学院学报(自然科学版), 2003, (03):161-164.

[22]沈惠群, 刘宝琛. 开采倾斜煤层地表移动与变形值的计算[J]. 煤炭学报, 1987, (04):44-50.

[23]郝延锦, 吴立新, 胡金星. 厚松散层条件下地表移动变形预计理论研究[J]. 矿山测量, 2000, (02):24-26.

[24]郭增长, 王金庄, 戴华阳. 极不充分开采地表移动与变形预计方法[J]. 矿山测量, 2000, (03):35-37.

[25]王金庄, 常占强, 陈勇. 厚松散层条件下开采程度及地表下沉模式的研究[J]. 煤炭学报, 2003, 03:230-234.

[26]郝长胜, 马占一, 乔大良. 基于GIS的煤矿开采沉陷预测分析系统研究[J]. 煤炭技术, 2010, 29(06):85-87.

[27]李春意. 覆岩与地表移动变形演化规律的预测理论及实验研究[D]. 北京: 中国矿业大学, 2010.

[28]滕超群, 王磊, 魏鹏, 等. 基于混合蛙跳算法的概率积分模型参数反演[J]. 采矿与岩层控制工程学报, 2020, 2(04):106-112.

[29]高明中. 急倾斜煤层开采岩移基本规律的模型试验[J]. 岩石力学与工程学报, 2004, (03):441-445.

[30]计宏, 余学义, 高志兴, 等. 彬长生产服务区下采空区稳定性评价研究[J]. 西安科技大学学报, 2011, 31(5):544-548.

[31]吕文玉, 潘仁飞, 李杨, 等. 采空区地表沉陷规律的研究[J]. 露天采矿技术, 2007, (04):3-5.

[32]孙传平, 吴志杰. 大采深厚基岩厚冲积层下地表移动规律研究[J]. 内蒙古煤炭经济, 2017(13):144-145.

[33]崔希民, 邓喀中. 煤矿开采沉陷预计理论与方法研究评述[J]. 煤炭科学技术, 2017, 45(01):160-169.

[34]吴侃. 开采沉陷预计一体化方法[M]. 徐州:中国矿业大学出版社, 1998.

[35]郭文彬, 余学义, 赵兵朝, 等. 厚黄土层煤层开采沉陷规律研究[J]. 煤炭科学技术2015, 43(7):6-10.

[36]周国铨. 矿山测量技术现状及发展[J]. 矿山测量, 1984, (03):35-39.

[37]崔希民, 杨硕. 开采沉陷的流变模型探讨[J]. 中国矿业, 1996, (02):52-55.

[38]许国胜, 李德海, 侯得峰, 等. 厚松散层下开采地表动态移动变形规律实测及预测研究[J]. 岩土力学, 2016, 37(07):2056-2062.

[39]史卫平. 基于覆岩移动的厚松散层下煤层开采地表移动规律研究[D]. 青岛: 山东科技大学, 2019.

[40]余学义, 穆驰, 张冬冬. 厚松散层大采高开采地表移动变形规律研究[J]. 煤矿安全, 2020, 5l(04):235-239+243.

[41]徐良骥, 王少华, 马荣振, 等, 厚松散层开采条件下覆岩运动与地表移动规律研究[J]. 测绘通报, 2015(10):52·56.

[42]常占强, 王金庄. 厚松散层弯曲下沉空间问题研究[J]. 矿山测量, 2003, (03):36-38+17.

[43]闫根旺, 李德海. 巨厚松散层下条带开采地表移动特征[J]. 中州煤炭, 2002, (05):1-3.

[44]郝延锦, 吴立新, 胡金星. 厚松散层条件下地表移动变形预计理论研究[J]. 矿山测量, 2000, (02):24-26.

[45]李青海, 张存智, 李开鑫, 等. 巨厚松散层下开采地表下沉的影响因素分析[J]. 煤炭科学技术, 2021, 49(11):191-199.

[46]邹友峰, 马伟民. 条带开采地表沉陷的主控因素[J]. 矿山压力与顶板管理, 1996, (01):27-31.

[47]李德海, 王文华. 地表移动过程时间影响参数与覆岩岩性关系[J]. 矿山压力与顶板管理, 2001, (02):64-66+82-87.

[48]刘玉成, 曹树刚, 刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. 岩土力学, 2010, 31(03):925-931.

[49]谭志祥, 邓喀中, 白振明, 等. 综放开采地表移动变形规律实测研究[J]. 测绘通报, 2003, (09):20-22.

[50]张宏贞, 邓喀中, 谭志祥. 老采空区残余移动变形分区研究[J]. 矿山压力与顶板管理, 2005, (02):32-34+118.

[51]Audrey Lebo. Modelling Plant Compensatory Effects in Plant-Insects Dynamics[A]. IEEE Beijing Section.Proceedings of 2012 IEEE 4th International Symposium on Plant Growth Modeling,Simulation, Visualization and Applications(PMA 2012)[C]. IEEE Beijing Section, 2012:8.

[52]Xu P, Mao X, Zhang M. Safety analysis of building foundations over old goaf under additional stress from building load and seismic actions[J]. International Journal of Mining Science and Technology, 2014, 24(5):713-718.

[53]Y. Guéguen, B. Deffontaines, B. Fruneau, et al. Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France)[J]. Journal of Applied Geophysics, 2009, 69(01):24-34.

[54]Bell FG,Donnelly LJ, Genske DD, Ojeda J. Unusual cases of mining subsidence from Great Britain, Germany and Colombia[J]. Environ Geol, 2005, 47(05):620-631.

[55]Zhang Xingyu, Gao Yubing. Field experiment on directional roof presplitting for pressure relief of retained roadways[J]. Intenational Joumal of Rock Mechanics and Miningsciences, 2020, 134:434-436.

[56]郭旭炜, 杨晓琴, 柴双武. 分段Knothe函数优化及其动态求参[J]. 岩土力学, 2020, 41(06):2091-2097+2109.

[57]魏朋, 危威, 张清鸾. 矿井工作面地表移动观测站设计与研究[J]. 价值工程, 2014, 33(24):32-33.

[58]柴华彬, 刘瑞斌, 张育民. 基于航摄影像的地表移动观测站设计[J]. 河南理工大学学报(自然科学版), 2014, 33(03):291-294.

[59]赵娜娜, 武枝. 地质采矿地表移动观测站设计[J]. 北京测绘, 2014, (02):104-108.

[60]朱黎明, 吴捷, 于雪涛, 等. 矿山开采沉陷地表移动观测站的设计与实现[J]. 测绘与空间地理信息, 2014, 37(03):96-99.

[61]魏鹏. 利用地表移动观测站确定地表移动的主要参数[J]. 科技风, 2013, (19):140.

[62]韩继颖. 综采地表移动观测站的移动参数算例[J]. 内蒙古科技与经济, 2012, (08):99.

[63]赵建红, 郭志磊. 地表移动观测站设计[J]. 煤炭技术, 2010, 29(04):156-158.

[64]余学祥, 秦永洋, 孙兴平, 等. 相邻工作面综合地表移动观测站的设计与连接测量[J]. 大连大学学报, 2008, 29(06):74-79.

[65]原东方. 山区地表移动观测站数据处理方法[J]. 焦作工学院学报, 1996, (02):14-19.

[66]祖大明, 李宝建, 韩冰, 等. 基于概率积分法的采空区地表变形预测分析[J]. 安徽建筑, 2023, 30(08):99-100.

[67]李鹏, 马秋红, 李鑫, 等. 基于概率积分法的采空区残余变形对杜庄隧道的影响分析[J]. 工程技术研究, 2022, 7(01):17-19.

[68]韩永斌. 概率积分法预计参数求取及应用研究[J]. 矿山测量, 2021, 49(04):15-19.

[69]魏宗海, 熊伟. 概率积分法开采沉陷预测的数值计算与分析[J]. 测绘工程, 2019, 28(03):35-40.

[70]Wilson A H. An hypothesis concerning pillar stability[J]. The Mining Engineer, 1972, 131(1): 409-417.

[71]J.Kwiakek. Ochrona obiektow budowlanych na terenach gorniczych[J]. Katowice GIG. 1997, 18(6):56~69.

[72]Yoshida, R.T. : Stability of a flood diversion channel constructed throughmine spoil[J]. Canadian Geot echnical Soc. 1993:503~504.

[73]Speck,R.C. : Large-scale slope movements and their affect on spoil-pilestability in Interior Alaska[J]. International Journal of Surface Mining &Reclamation, 1993, 7(4):15~17.

[74]孙家庆. 基于空间时序的概率积分法开采沉陷预测分析[J]. 科技创新与生产力, 2018, (12):54-56.

[75]胡顺强, 王攀. 一种高精度的概率积分法参数预计方法[J]. 科学技术与工程, 2018, 18(33):166-177.

[76]李培现, 万昊明, 许月, 等. 基于地表移动矢量的概率积分法参数反演方法[J]. 岩土工程学报, 2018, 40(04):767-776.

[77]薄怀志, 宋炳忠, 李川建, 等. 概率积分法沉陷预计与参数反演优化算法及实现[J]. 山东国土资源, 2018, 34(04):73-77+83.

[78]杨玉龙. 概率积分法在老采空区地表残余沉降预计中的应用研究[J]. 水力采煤与管道运输, 2018, (01):23-26.

[79]刘欣, 吴昊, 贾勇帅, 等. 基于概率积分法的矿区地表沉陷预计分析[J]. 北京测绘, 2017, (01):123-126.

[80]靳利军, 王欣欣, 张艳朋, 等. 基于FLAC 3D煤层底板采动破坏规律的数值模拟[J]. 山西大同大学学报(自然科学版), 2023, 39(04):133-136.

[81]李一凡, 刘成洲, 崔腾飞, 等. 煤矿开采沉陷预计过程的FLAC 3D数值模拟研究[J]. 北京测绘, 2018, 32(10):1156-1160.

苏仲杰, 黄厚旭, 赵松, 等. 基于数值模拟的充填开采地表下沉系数分析[J]. 中国地质灾害与防治学报, 2014, 25(02):98-102.

中图分类号:

 TD325    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式