论文中文题名: | 山西省植被覆盖度时空演变及驱动力分析 |
姓名: | |
学号: | 19210210056 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地理信息可视化 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-16 |
论文答辩日期: | 2022-06-02 |
论文外文题名: | Spatial and temporal evolution and driving force analysis of fractional vegetation coverage in Shanxi Province |
论文中文关键词: | |
论文外文关键词: | Fractional vegetation coverage ; Temporal and spatial variation ; Influencing factors ; Shanxi Province |
论文中文摘要: |
随着土地利用不断加深和城市化进程加快,对地表植被产生的影响不断加强,研究植被覆盖度的时空变化及其影响因素,可为区域生态文明建设和生态环境保护提供参考。本文以山西省为研究对象,首先应用Sen趋势分析法、稳定性分析法、重新标度极差分析法开展山西省2000-2020年植被覆盖度时空分布及其演变过程研究,其次探究气候因子和地形因子等自然因素和GDP、人口等非自然因素与植被覆盖度之间的关系,为十四五期间山西省开展的国土综合整治与生态修复、城市有机更新、实施乡村振兴提供参考依据。主要结论如下: 从时间上来看,年际植被覆盖度呈增加趋势,增加速率为0.16%/a;分季节来看,春季、夏季、秋季呈增加趋势,增加速率分别为0.40%/a,0.31%/a,0.01%/a;冬季呈减少趋势,减少速率为-0.01%/a;分月份来看,1月、2月、12月呈减小趋势,其余月份呈增加趋势。从空间分布上来看,研究区表现出盆地内城区及其周围植被覆盖度低,周边丘陵山地植被覆盖度高的空间分布特征。2000-2020年间研究区植被覆盖度稳定性表现出大部分区域处于稳定状态,轻度浮动、重度浮动集中的特点,植被覆盖度持续性表现出大部分区域都处于强持续性,弱反持续性分布集中的特点,但空间差异性不明显。 山西省年均植被覆盖度与年均降水量相关性最高为0.90,与年均气温相关性最高为0.84。年均植被覆盖度与年均气温呈正相关的区域占研究区面积的41.02%,主要分布在朔州市西部、忻州市中西部,吕梁市中部等地区,其中显著正相关占39.03%;两者呈负相关的区域占研究区面积的58.98%,主要分布在大同市东部、忻州市东部,太原市北部等地区,其中显著负相关占52.28%。年均植被覆盖度与年均降水量呈正相关的区域占研究区面积的72.60%,主要分布在吕梁市、太原市、大同市、朔州市、临汾市,其中显著正相关占56.25%,呈负相关的区域占研究区面积的27.4%,主要分布在忻州市东部、晋中市、长治市东部太行山脉、晋城市南部,其中显著负相关占26.09%。从高程来看,研究区内植被覆盖度随着高程的增加先增加后下降;从坡度来看,平坡的植被覆盖度最低,其均值为0.35,陡坡的植被覆盖度最高,其均值为0.70;从坡向来看,平地上的植被覆盖度最低,其均值为0.31,其余坡向上的植被覆盖度均在0.40以上,说明研究区内植被生长受到地形中坡向因子的影响微弱。 通过对研究区2000年、2010年、2020年三期土地利用数据进行分析,发现研究区耕地面积持续下降,两个10年间分别下降了0.65%和1.47%;林地面积在持续增长,两个10年间分别增长了0.15%和0.24%,建设用地面积也在持续增加,两个10年间分别增长了0.38%,2.82%,其余土地利用类型基本保持不变。不同土地利用类型下年均植被覆盖度具有差异性,其中林地的植被覆盖度年平均值最高,常年高于0.6,建设用地年均植被覆盖度一直处于低值状态,基本保持在0.2。通过统计不同区间GDP、人口密度的植被覆盖度情况,从整体来看,植被覆盖度与GDP、人口密度呈反比关系。研究区植被覆盖度与人口的相关系数范围为-0.97-0.97,平均相关系数为-0.06,研究区植被覆盖度与GDP的相关系数范围为-0.99-0.99,平均相关系数为0.18。经过残差分析得到人类活动对植被覆盖度存在负干扰的地区占研究区面积的37.22%,主要分布在临汾市南部、长治市、运城市、晋城市和大同市、忻州市东部地区和太原盆地;存在正干扰的地区占研究区面积的62.78%,主要分布在吕梁市的东部地区、太原市中南部、忻州市西部、晋中市和阳泉市。 |
论文外文摘要: |
With the deepening of land use and the acceleration of urbanization, the impact on surface vegetation has been continuously strengthened. Studying the temporal and spatial changes of vegetation coverage and its influencing factors can provide reference for the construction of regional ecological civilization and ecological environmental protection. This paper takes Shanxi Province as the research object. First, the Sen trend analysis method, stability analysis method, and rescaled range analysis method are used to study the spatiotemporal distribution and evolution process of vegetation coverage in Shanxi Province from 2000 to 2020. The relationship between natural factors such as topographic factors and unnatural factors such as GDP and population and vegetation coverage provides a reference for the comprehensive land improvement and ecological restoration, urban organic renewal, and rural revitalization carried out in Shanxi Province during the 14th Five-Year Plan period. The main conclusions are as follows: From the time point of view, the inter-annual vegetation coverage shows an increasing trend, with an increase rate of 0.16%/a; in terms of seasons, spring, summer, and autumn show an increasing trend, with an increase rate of 0.40%/a and 0.31%/a, respectively. 0.01%/a; it showed a decreasing trend in winter, and the decreasing rate was -0.01%/a; in terms of months, it showed a decreasing trend in January, February, and December, and the remaining months showed an increasing trend. From the perspective of spatial distribution, the study area shows the spatial distribution characteristics of low vegetation coverage in the urban area of the basin and its surrounding areas, and high vegetation coverage in the surrounding hills and mountains. The stability of vegetation coverage in the study area from 2000 to 2020 showed that most areas were in a stable state, with slight fluctuations and heavy fluctuations and concentrated characteristics. The characteristics of the distribution are concentrated, but the spatial differences are not obvious. The correlation between the annual average vegetation coverage and the annual average precipitation in Shanxi Province is the highest 0.90, and the highest correlation with the annual average temperature is 0.84. The area where the annual average vegetation coverage is positively correlated with the average annual temperature accounts for 41.02% of the area of the study area, mainly in western Shuozhou, central and western Xinzhou, and central Luliang, among which 39.03% are significantly positively correlated; Negatively correlated areas accounted for 58.98% of the study area, and were mainly distributed in the eastern part of Datong City, the eastern part of Xinzhou City, and the northern part of Taiyuan City, among which the significant negative correlation accounted for 52.28%. The area where the annual average vegetation coverage is positively correlated with the average annual precipitation accounts for 72.60% of the area of the study area, mainly distributed in Luliang City, Taiyuan City, Datong City, Shuozhou City, and Linfen City. Negatively correlated areas accounted for 27.4% of the study area, and were mainly distributed in the east of Xinzhou City, Jinzhong City, the Taihang Mountains in the east of Changzhi City, and the south of Jincheng City, of which 26.09% were significantly negatively correlated. From the perspective of elevation, the vegetation coverage in the study area increases first and then decreases with the increase of elevation; from the perspective of slope, the vegetation coverage of flat slopes is the lowest, with an average value of 0.35, and the vegetation coverage of steep slopes is the highest, with an average value of 0.70. ; From the aspect of the slope, the vegetation coverage on the flat land is the lowest, with an average value of 0.31, and the vegetation coverage on the other slopes is above 0.40, indicating that the vegetation growth in the study area is weakly affected by the aspect factor in the terrain. By analyzing the land use data of the study area in 2000, 2010 and 2020, it was found that the cultivated land area in the study area continued to decline, with a decrease of 0.65% and 1.47% respectively in the two 10 years; the forest area continued to increase, and the two 10 years The annual growth rate was 0.15% and 0.24% respectively, and the construction land area also continued to increase, with an increase of 0.38% and 2.82% respectively in the two 10 years, and the rest of the land use types remained basically unchanged. The average annual vegetation coverage of different land use types is different, among which the annual average of forest land is the highest, which is higher than 0.6 all the year round, and the annual average vegetation coverage of construction land has been in a low state, basically maintained at 0.2. By calculating the vegetation coverage of GDP and population density in different intervals, on the whole, vegetation coverage is inversely proportional to GDP and population density. The correlation coefficient between vegetation coverage and population in the study area ranges from -0.97 to 0.97, and the average correlation The coefficient is -0.06, the correlation coefficient between vegetation coverage and GDP in the study area ranges from -0.99 to 0.99, and the average correlation coefficient is 0.18. Through residual analysis, it is found that the areas where human activities have negative interference to vegetation coverage account for 37.22% of the study area, mainly distributed in southern Linfen, Changzhi, Yuncheng, Jincheng and Datong, eastern Xinzhou and Taiyuan Basin The areas with positive interference accounted for 62.78% of the study area, mainly in the eastern part of Luliang City, the central and southern part of Taiyuan City, the western part of Xinzhou City, Jinzhong City and Yangquan City. |
参考文献: |
[2] 常慧. 基于多源遥感的植被覆盖度反演研究[D]. 西宁: 青海师范大学, 2015. [3] 刘任涛, 赵哈林, 赵学勇. 沙地生态系统中蚂蚁活动与地表植被及土壤环境间的互作关系[J]. 干旱区资源与环境, 2011, 25(12): 166-70. [5] 孙红雨,王长耀,牛铮,等. 中国地表植被覆盖变化及其与气候因子关系──基于NOAA时间序列数据分析[J]. 遥感学报, 1998, 2(3): 204-10. [6] 王瑾. 内蒙古自治区植被覆盖度变化的驱动因素与气候因子响应[D]. 徐州: 中国矿业大学, 2020. [7] 王植, 刘世荣. 全球环境变化对植物物候的影响[J]. 沈阳农业大学学报(社会科学版), 2007, 9(3): 350-3. [8] 陈茁新, 张金池. 近10年全球水土保持研究热点问题述评[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 167-74. [12] Arneth A. Uncertain future for vegetation cover[J]. Nature, 2015, 524(7563): 44-5. [13] 杨思遥, 孟丹, 李小娟, 等. 华北地区2001—2014年植被变化对SPEI气象干旱指数多尺度的响应[J]. 生态学报, 2018, 38(3): 1028-39. [14] 李玉凤, 王波, 李小明. 基于SPOT5影像的山东南四湖地被覆盖分类研究[J]. 遥感技术与应用, 2008, 23(1): 62-6. [15] 王伟泽, 胡鹏, 王建华, 等. 扎龙湿地植被覆盖度及其分布结构对水文气象要素的响应[J]. 水生态学杂志, 2020, 41(5): 89-97. [16] 张远东, 张笑鹤, 刘世荣. 西南地区不同植被类型归一化植被指数与气候因子的相关分析[J]. 应用生态学报, 2011, 22(2): 323-30. [17] 冷若琳, 张瑶瑶, 谢建全, 等. 基于多光谱数据与小型无人机的甘南草地非生长季植被覆盖度[J]. 草业科学, 2019, 36(11): 2742-51. [19] 李杨, 王杰, 黄春林. 一种基于归一化扰动模型的积雪和植被覆盖度反演方法[J]. 地球信息科学学报, 2019, 21(12): 1955-64. [20] 刘丽丽. 基于不同植被指数提取GF-1植被覆盖度比较分析![J]. 西部大开发(土地开发工程研究), 2018, 3(04): 1-6+16. [21] 张晓东, 刘湘南, 赵志鹏, 等. 基于像元二分法的盐池县植被覆盖度与地质灾害点时空格局分析[J]. 国土资源遥感, 2018, 30(2): 195-201. [22] 马程, 李双成, 刘金龙, 等. 基于SOFM网络的京津冀地区生态系统服务分区[J]. 地理科学进展, 2013, 32(9): 1383-93. [23] 成文东. 大渡河流域植被变化遥感监测研究[D]. 成都: 成都理工大学, 2019. [24] 陈昀琳. 基于Landsat和MODIS NDVI时序数据的青海湖流域植被覆盖度提取及其变化分析[D]. 武汉: 中国地质大学(北京), 2019. [25] 王建宏. 塔里木河下游生态输水后地下水的响应分析[J]. 河南水利与南水北调, 2020, 49(1): 41-3. [26] 张士华. 山西省“十三五”坡耕地水土流失综合治理成效[J]. 山西水土保持科技, 2021, 03: 1-2+14. [27] 秦雪芬, 李毳. 山西省水土流失综合治理成效、问题及对策[C]//中国环境科学学会2021年科学技术年会论文集(三). 天津: 电子杂志社有限公司, 2021: 41-45. [28] 章文波, 符素华, 刘宝元. 目估法测量植被覆盖度的精度分析[J]. 北京师范大学学报(自然科学版), 2001, 03: 402-8. [29] 杨琴, 蒲红梅, 赵学春, 等. 3种人工草地不同植被覆盖度实地测量方法比较[J]. 应用与环境生物学报, 2021, 27(1): 220-7. [30] 章文波, 刘宝元, 吴敬东. 小区植被覆盖度动态快速测量方法研究[J]. 水土保持通报, 2001, 06: 60-3. [31] 龚大鑫, 贠汉伯, 窦学诚, 等. 青藏工程走廊多年冻土段植被覆盖度动态快速测量方法研究[J]. 中国沙漠, 2013, 33(2): 412-8. [31] 龚大鑫, 贠汉伯, 窦学诚, 等. 青藏工程走廊多年冻土段植被覆盖度动态快速测量方法研究[J]. 中国沙漠, 2013, 33(2): 412-8. [34] 滑永春, 张恒, 王冰, 等. 1982—2015年内蒙古地区NDVI时空变化及驱动力分析 [J]. 西南林业大学学报(自然科学), 2021, 41(6): 175-82. [35] 赵子娟, 范蓓蕾, 王玉庭, 等. 2000—2018年西辽河流域植被覆盖度时空变化特征及影响因素研究[J]. 中国农业资源与区划, 2021, 42(12): 75-88. [36] 杨少康, 刘冀, 魏榕, 等. 长江上游流域生长季植被覆盖度时空变化特征及其成因 [J]. 长江流域资源与环境, 2021, 1-15. [37] 孙与襄, 麦麦提吐逊•麦麦提, 马合木江•艾合买提, 等. 1995-2020年喀什市植被覆盖度时空动态变化研究[J]. 中国农村水利水电, 2022(1): 71-8+92. [41] 王正兴, 刘闯, 陈文波, 等. MODIS增强型植被指数EVI与NDVI初步比较[J]. 武汉大学学报(信息科学版), 2006, 05: 407-10+27. [42] 张顾萍, 陈国民, 邵怀勇, 等. 近16年金沙江流域植被覆盖时空特征及其对气候的响应[J]. 长江流域资源与环境, 2021, 30(7): 1638-48. [43] 陈亮, 王学雷, 杨超, 等. 2000~2018年鄂西山区植被EVI时空变化特征及其地形效应[J]. 长江流域资源与环境, 2021, 30(2): 419-26. [44] 尚雪, 何钊全, 张铜会. 增强型植被指数时空变化特征及其驱动机理[J]. 森林与环境学报, 2020, 40(5): 478-85. [51] 徐虹, 刘琴. 2001-2019年云南省植被NDVI变化及其气候因子的关系[J]. 水土保持研究, 2022, 29(01): 162-8. [52] 徐勇, 黄雯婷, 窦世卿, 等. 2000~2020年西南地区植被NDVI对气候变化和人类活动响应特征[J]. 环境科学, 2021, 18(7):1-15. [53] 付含培, 王让虎, 王晓军. 1999-2018年黄河流域NDVI时空变化及驱动力分析[J]. 水土保持研究, 2022, 29(02): 145-53+62. [54] 陈安, 李景吉, 黎文婷, 等. 2001-2018年雅砻江流域植被NDVI时空动态及其对气候变化的响应[J]. 水土保持研究, 2022, 29(1): 169-75+83. [55] 张华, 李明, 宋金岳, 等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志, 2021, 40(8): 2530-40. [57] 刘立文,徐立帅,段永红,蔡晶晶.晋城市植被覆盖时空变化与地形效应耦合[J].测绘与空间地理信息,2021,44(08):1-6+11. [58] 杨辰丛海.2000—2021年平和县植被覆盖度变化及其地形驱动因子分析[J].浙江农业科学,2021,62(08):1625-1628. [59] 吴志俊,王永强,鄢波,李凯,黄峰.巴勒更河流域植被覆盖度时空变化及其与地形因子的关系[J].水电能源科学,2021,39(07):24-27+75. [60] 刘梁美子,占车生,胡实,董宇轩.黔桂喀斯特山区植被变化及其地形效应[J].地理研究,2018,37(12):2433-2446. [61] 韩菡, 母华强, 韦伟, 等. 蜂桶寨自然保护区小型地栖兽类丰富度和多样性海拔分布及与植被的关系[J]. 西华师范大学学报(自然科学版), 2017, 38(03): 241-7. [62] 汤巧英, 戚德辉, 宋立旺, 等. 基于GIS和RS的延河流域植被覆盖度与地形因子的相关性研究[J]. 水土保持研究, 2017, 24(04): 198-203. [63] 位宏, 徐丽萍, 李晓蕾, 等. 玛纳斯河流域植被覆盖度随地形因子的变化特征[J]. 中国农业气象, 2018, 39(12): 814-24. [64] 张心茹, 曹茜, 季舒平, 等. 气候变化和人类活动对黄河三角洲植被动态变化的影响 [J]. 环境科学学报, 2018, 42(1):56-69. [65] 顾羊羊, 邹长新, 乔旭宁, 等. 2000—2015年黔西南州植被覆盖时空变化及影响因素分析[J]. 生态与农村环境学报, 2021, 37(11): 1413-22 [66] 曹永香, 毛东雷, 薛杰, 等. 绿洲-沙漠过渡带植被覆盖动态变化及其驱动因素——以新疆策勒为例[J]. 干旱区研究, 2022, 39(2):510-521. [67] 胡孟珂, 于欢, 孔博, 等. 2001~2020年嘉陵江流域植被覆盖度时空变化特征[J]. 人民长江, 2022, 53(01): 82-9+96. [68] 李苗苗. 植被覆盖度的遥感估算方法研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2003. [74] Kendall M G. Rank correlation methods [J]. The American Mathematical Monthly, 1950, 57(6):425. [78] 阿荣, 毕其格, 董振华. 基于MODIS/NDVI的锡林郭勒草原植被变化及其归因[J]. 资源科学, 2019, 41(7): 1374-86. [79] 王钊, 杨山. 多中心城市区域城市蔓延冷热点格局及演化——以苏锡常地区为例 [J]. 经济地理, 2015, 35(7): 59-65. [80] 乔旭宁, 顾羊羊, 邹长新, 等. 基于夜间灯光数据的太湖流域城镇扩张对净初级生产力的影响研究[J]. 生态学报, 2018, 38(16): 5883-93. [81] 周文强. 京津冀地区植被覆盖变化及影响因素分析[D]. 邯郸: 河北工程大学, 2021. [82] 齐丹宁. 基于MODIS影像的山西省植被指数时空分布及其影响因素分析 [D]. 太原:太原理工大学, 2021. [83] 吴超. 山西省植被覆盖时空变化及驱动因素研究[D]. 太原: 山西财经大学, 2020. [84] 努尔麦麦提•如孜. 基于MODIS NDVI的和田地区植被覆盖度动态监测研究[D]. 乌鲁木齐:新疆师范大学, 2021. |
中图分类号: | P208.2 |
开放日期: | 2022-06-21 |