论文中文题名: | 两种细菌对陕北富油煤的降解过程研究 |
姓名: | |
学号: | 19213105006 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070303 |
学科名称: | 工学 - 化学 - 有机化学 |
学生类型: | 硕士 |
学位级别: | 理学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤炭微生物转化 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-28 |
论文答辩日期: | 2022-05-30 |
论文外文题名: | Study on degradation process of oil rich coal in Northen Shaanxi by two bacteria |
论文中文关键词: | |
论文外文关键词: | Bacteria ; Oil rich coal ; Biodegradation ; Surfactant ; Degradation products |
论文中文摘要: |
煤炭是我国重要的化石能源,然而煤炭常规加工利用存在工艺复杂、条件苛刻以及污染环境等缺点。微生物降解煤炭是利用微生物的生化作用将煤炭转化为液体燃料或附加值高的化学品,此方法具有常温常压、操作简单、能耗低、无污染和附加值高等优势,是煤炭绿色转化的有效途径之一。 本文选择食萘新鞘氨醇菌和金雀儿根瘤苍白杆菌2种细菌对陕北富油煤进行降解过程研究,探讨了影响降解率的主要因素,研究了3种表面活性剂对优势菌种食萘新鞘氨醇菌降解富油煤效果的影响,并对两种细菌作用后固相产物(剩煤)和液相产物的组成和结构进行了表征与分析。 主要工作如下: (1)采用单因素和正交实验探讨了2种细菌降解富油煤的最佳工艺条件 选取煤浆浓度、菌液用量、降解时间和培养方式4种因素进行降解过程的单因素实验和正交实验,结果表明金雀儿根瘤苍白杆菌降解陕北富油煤的最佳工艺条件为:煤浆浓度0.3 g/(50 mL培养基)、接种量20 ml/(50mL培养基)、降解时间18 d和摇床培养,最大降解率为13%;食萘新鞘氨醇菌降解陕北富油煤的最佳工艺条件为:煤浆浓度0.7 g/(50 mL培养基)、接种量15 mL/(50mL培养基)、降解时间18 d和摇床培养,最大降解率为15%。 (2)研究了3种表面活性剂对优势菌种食萘新鞘氨醇菌降解富油煤效果的影响 研究了3种表面活性剂LAS、Tween 80和DTAB对优势菌种食萘新鞘氨醇菌降解富油煤效果的影响,3种表面活性剂均能促进优势菌种食萘新鞘氨醇菌对陕北富油煤的降解,发现当LAS和Tween 80的浓度均为1000 mg/L,促进作用最大,降解率分别提高到26%和34%,此时降解液的表面张力最小,分别为57.39 mN/m和46.98 mN/m;降解液的pH分别为8.35和8.56。当DTAB的浓度为200 mg/L时,促进作用最大,降解率提高到20%,表面张力为44.45 mN/m,降解液的pH为7.78。 (3)分析了2种细菌降解富油煤的固、液相产物组成和结构 通过元素分析、热重分析、红外分析、低温氮气吸附、SEM和XRD分析对细菌降解后的固相产物(剩煤)进行了分析。2种细菌降解后剩煤的C、N及S元素含量均降低;剩煤表面有明显被溶蚀的痕迹,比表面积降低;剩煤的层片堆砌度增加,层片延展度减小,煤的微晶结构减弱;富油煤中芳香环和长链烷烃被细菌降解;剩煤的第二和第三热失重温度均升高,热稳定性提高。 紫外和气质分析表明2种细菌降解富油煤的液相产物组成相似,主要含有长链烷烃,芳香烃、醇、醚和酯等化合物。 |
论文外文摘要: |
Coal is an important fossil energy in China. However, the conventional processing and utilization of coal has some disadvantages, such as complex process, harsh conditions and environmental pollution. Microbial degradation of coal is to use the biochemical action of microorganisms to convert coal into liquid fuel or chemicals with high added value. This method has the advantages of normal temperature and pressure, simple operation, low energy consumption, no pollution and high added value. It is one of the effective ways of green transformation of coal. In this paper, O. cytisi and N.naphthalenivorans were selected to study the degradation of oil-rich coal in Northern Shaanxi. The effects of dominant bacteria on the degradation of oil-rich coal under the action of three surfactants were discussed, and the composition and structure of solid and liquid products after the action of the two bacteria were characterized and analyzed. The main work is as follows: (1) The optimum technological conditions for the degradation of oil rich coal by two kinds of bacteria were studied by single factor and orthogonal experiments The effects of coal slurry concentration, bacterial solution dosage, degradation time and culture mode on the degradation of oil-rich coal were investigated. The results showed that the best technological conditions for the degradation of oil-rich coal in Northern Shaanxi were as follows: coal slurry concentration of 0.3 g/50 mL, inoculation amount of 20 mL, degradation time of 18 d and shaking table culture. At this time, the highest biodegradation rate of O. cytisi was 13%. The optimum conditions for the degradation of oil-rich coal in northern Shaanxi were as follows: coal slurry concentration 0.7 g/50 mL, inoculation amount 15 mL, degradation time 18 d and shaking table culture. Under these conditions, the degradation rate of N.naphthalenivorans was 15%. (2) The effect of three surfactants on the degradation of oil-rich coal was studied To explore the effect of naphthalene eating sphingosine bacteria on the degradation of oil-rich coal under the action of three surfactants LAS, Tween 80 and DTAB. When the concentrations of LAS and Tween 80 were 1000 mg/L, the highest degradation was 23% and 28% respectively. When the concentration of DTAB is 200 mg/L, the degradation rate is as high as 18%. (2) The optimum technological conditions for the degradation of oil rich coal by two kinds of bacteria were obtained by orthogonal experiment Three factors and three levels were used to study the process conditions of two kinds of bacteria degrading oil-rich coal and oil-rich coal, and the best degradation process conditions of four kinds of bacteria for two kinds of coal were obtained. The degradation rates of oil-rich coal by O. cytisi and N.naphthalenivorans under the best degradation process conditions were 13% and 15% respectively. (3) The composition and structure of solid and liquid products of oil rich coal degraded by two kinds of bacteria were analyzed The solid products after bacterial degradation were analyzed by elemental analysis, thermogravimetric analysis, infrared analysis, low temperature nitrogen adsorption, SEM analysis and XRD analysis. The contents of C, N and S elements in solid phase products decreased after degradation by two kinds of bacteria; There are obvious corrosion traces on the surface of residual coal, and the specific surface area decreases; The lamellar stacking degree of residual coal increases slightly, the lamellar ductility decreases obviously, and the microcrystalline structure of coal weakens; Aromatic rings and long-chain alkanes in oil-rich coal are degraded by two kinds of bacteria; Under the maximum thermal weight loss, the peak temperature values of TP2 and TP3 of residual coal increase and the thermal stability is improved. UV and GC-MS analysis showed that the liquid phase products of oil-rich coal degraded by the two bacteria were similar, mainly containing long-chain alkanes, aromatic hydrocarbons, alcohols, ethers and esters. |
参考文献: |
[1] 矿产资源工业要求手册编委会. 矿产资源工业要求手册(2014修订版)[M]. 北京: 地质出版社, 2014. [2] 马丽, 拓宝生. 陕西富油煤资源量居全国之首榆林可“再造一个大庆油田”[J]. 陕西煤炭, 2020, 39 (01): 220-222. [3] 姜耀东. 我国富油煤资源浪费不容小觑[N]. 中国能源报, 2021-04-12(015). [4] 申艳军, 王旭, 赵春虎, 等. 榆神府矿区富油煤多尺度孔隙结构特征[J]. 煤田地质与勘探, 2021, 49 (03): 33-41. [5] 王锐, 夏玉成, 马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术, 2020, 48 (12): 192-197. [6] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46 (05): 1365-1377. [7] 谢青, 李宁, 姚征, 等. 黄陵矿区富油煤焦油产率特征及主控地质因素分析[J]. 中国煤炭, 2020, 46 (11): 83-90. [8] 王瀚姣, 杜美利, 薛文海, 等. 酸洗对黄陵富油煤结构和动力学特征的影响[J]. 煤炭转化, 2021, 44 (04): 37-44. [9] 马丽, 王双明, 段中会, 等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探, 2022, 50 (02): 1-8. [10] 李建涛, 刘向荣, 皮淑颖, 等. 煤的微生物转化研究进展[J]. 西安科技大学学报, 2017, 37 (01): 106-120. [17] 程娟, 何环, 衡曦彤, 等. 微生物降解昭通褐煤提高游离腐殖酸含量[J]. 江苏农业科学, 2020, 48 (17): 296-301. [20] 康红丽, 刘向荣, 赵顺省, 等. 4种细菌降解内蒙古赤峰褐煤的实验研究[J]. 煤炭技术, 2019, .38 (10): 136-139. [21] 石晨, 刘向荣, 胡雪华. 友好戈登氏菌降解内蒙古白音华褐煤的工艺条件探究[J]. 应用化工, 2021, 50 (08): 2113-2119. [22] 王龙贵, 张明旭, 欧泽深, 等. 白腐真菌对煤炭的降解转化试验[J]. 煤炭学报, 2006 (02): 241-244. [23] 李建涛, 刘向荣, 杨杰, 等. 微生物降解低阶煤的光氧化预处理工艺条件优化[J]. 化学与生物工程, 2019, 36 (12): 17-20. [30] 王英, 王力, 王学民. 微生物液化富油煤的溶煤方式和工艺条件研究[J]. 煤炭转化, 2006, 29 (1): 19-22. [31] 陈宏贵, 杜美利, 姜素荣. 硝酸预处理榆林煤的微生物液化技术研究[J]. 煤质技术, 2008, (1): 51-60. [32] 王俊宏, 常丽萍, 谢克昌. 西部煤的热解特性及动力学研究[J]. 煤炭转化, 2009, 32 (3): 1-5. [33] 张宁, 许云, 乔军伟, 等. 陕北侏罗纪富油煤有机地球化学特征[J]. 煤田地质与勘探, 2021, 49 (03): 42-49. [37] 赵国俊, 郭红玉. 绿孢链霉菌对不同煤阶煤的降解转化[J]. 煤炭转化, 2020, 43 (03): 40-45. [38] 苏现波, 陈鑫, 夏大平, 等. 白腐真菌对不同煤阶煤的降解作用研究[J]. 河南理工大学学报(自然科学版), 2013, 32 (03): 281-284. [40] 李俊旺, 张明旭. 煤样预处理对义马煤生物降解的影响[J]. 煤炭科学技术, 2009, 37 (1): 125-127. [43] 高同国, 姜峰, 杨金水, 等. 低阶煤降解微生物菌群的分离及降解产生的黄腐酸特性研究[J]. 腐植酸, 2011 (02): 6-10. [44] 王若楠, 邱小倩, 刘亮, 等. 微生物降解低阶煤的研究及产物腐植酸的应用[J]. 腐植酸, 2017, (06): 3-9. [46] 王英. 煤的微生物溶解及液化机理的研究[D]. 山东科技大学, 2006. [47] 王英, 王文超, 孟娟. 微生物的分离及其培养条件对溶煤效果的影响[J]. 湿法冶金, 2008, 27 (2): 80-83. [48] 王琴, 傅霖, 辛明秀. 微生物降解煤的研究及其应用[J]. 煤炭加工与综合利用, 2009, (3): 38-41. [49] 陈慧, 陶秀祥, 石开仪, 等. 褐煤生物转化及其研究展望[J]. 洁净煤技术, 2008, 14 (5): 39-42. [50] 尹苏东, 陶秀祥. 微生物溶煤研究进展[J]. 洁净煤技术, 2006, 11 (4): 34-38. [51] 杜莹, 陶秀祥, 石开仪, 等. 几种降解褐煤模型化合物的白腐真菌性质研究[J]. 2009, 15 (4): 33-38. [52] 尹苏东, 陶秀祥, 马强, 等. 褐煤溶解菌的筛选及溶煤初步研究[J]. 2006, 29 (3): 13-16. [53] 王英, 王力, 王学民. 微生物溶煤产物的分析[J]. 湿法冶金, 2006, 25 (3): 165-168. [54] 韩威, 佟威, 杨海波, 等. 煤的微生物溶降解及其产物研究[J]. 大连理工大学学报, 1994, 34 (6): 653-661. [55] 佟威, 赵秀深, 孙玉梅, 等. 云芝培养胞外液溶煤产物的应用[J]. 煤炭转化, 1996, 19 (4): 62-67. [56] 王龙贵, 张明旭, 欧泽深, 等. 煤炭生物转化研究及发展[J]. 现代化工, 2006, 26 (5): 21-23. [57] 袁红莉, 陈文新. 煤的微生物液化[J]. 微生物学通报, 1997, 24 (5): 284-286. [58] 佟威. 煤的微生物分解及其产物研究[D]. 大连, 大连理工大学, 1993. [59] 王龙贵, 张明旭, 欧泽深, 等. 煤炭微生物转化技术研究状况与前景分析[J]. 洁净煤技术, 2006, 12 (3): 62-66. [60] 杨金水, 倪晋仁. 褐煤的微生物洁净化技术研究[J]. 洁净煤技术, 2005, 13 (3): 69-72. [62] 石开仪, 陶秀祥, 李阳, 等. 抚顺富油煤微生物溶煤机理初步研究[J]. 选煤技术, 2008, (3): 4-9. [76] 张栋. 表面活性剂对PAHs微生物界面行为的影响及调控机制[D]. 浙江大学, 2013. [77] 郝盼. 褐煤和氧化煤对表面活性剂CTAB吸附作用及其润湿性改性[D]. 太原: 太原理工大学, 2014. [88] 张明旭, 王龙贵, 欧泽深, 等. 几种木质素降解菌的筛选及其协同作用降解煤炭的研究[J]. 煤炭学报, 2007, 32 (6): 634-638. [90] 陈栋. 不同煤级煤中多环芳烃(PAHs)的分布特征[D]. 太原理工大学, 2020. [91] 金保升, 周宏仓, 仲兆平, 等. 三种不同中国煤中多环芳烃的分布特征研究[J]. 锅炉技术, 2004 (01): 1-4. [92] 肖锟, 刘聪洋, 王仁女, 等. 表面活性剂影响微生物降解多环芳烃的研究进展[J]. 微生物学通报, 2021, 48 (02): 582-595. [93] 张栋. 表面活性剂对PAHs微生物界面行为的影响及调控机制[D]. 浙江大学, 2013. [95] 康红丽, 刘向荣, 赵顺省, 等. 4种细菌降解内蒙古赤峰褐煤的实验研究[J]. 煤炭技术, 2019, 38 (10): 130-133. [96] 平安, 王梦蝶, 牛晨凯, 等. 表面活性剂改善浮选精煤脱水效果及其机理研究[J]. 煤炭科学技术, 2019, 47 (11): 6. [97] 杨静, 谭允祯, 王振华, 等. 煤尘表面特性及润湿机理的研究[J]. 煤炭学报, 2007, 32 (7): 4. [98] 李娇阳, 陆银平, 赵一星. 表面活性剂对煤润湿性的改性实验[J]. 煤炭技术, 2016 (8): 189-191. |
中图分类号: | TQ536 |
开放日期: | 2022-06-28 |