- 无标题文档
查看论文信息

论文中文题名:

 小电流接地系统单相接地故障区段定位方法研究    

姓名:

 胡江岩    

学号:

 20206227114    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电力系统及其自动化    

第一导师姓名:

 赵建文    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Research on Location of Single-phase Grounding Fault Section in Medium-Voltage Distribution Network    

论文中文关键词:

 故障区段定位 ; 神经网络 ; 支持向量机 ; 变分模态分解 ; 麻雀搜索算法    

论文外文关键词:

 Fault location ; Neural network ; Support vector machine ; Variational mode decomposition ; Sparrow search algorithm    

论文中文摘要:

在传统的中低压配电网中小电流接地系统占据多数,线路结构与运行方式多变且易发生单相接地故障。大多数接地系统采用经消弧线圈接地,因此故障电流信号十分微弱,系统发生故障时难以及时处理,进而极有可能形成更加严重的相间故障,对配电网造成更加严重的损失。因此配电网的安全运行迫切需要一种快速可靠的故障区段定位方法,

因此,本文针对小电流接地系统单相接地故障区段定位问题,从故障特征信号提取以及快速准确定位两方面切入研究。主要工作如下:

基于谐振接地系统零序等效网络模型分析,验证不同故障区段暂态零序电流的特征存在明显差异。建立10kV配电网仿真模型,通过仿真对比验证不同故障相角、不同过渡电阻、不同补偿度下各检测点暂态零序电流波形存在差异。

分析VMD(变分模态分解)算法原理,并通过仿真对比验证VMD算法的可行性。并引入ISSA算法(改进麻雀搜索算法)来优化VMD参数模态个数K与二次惩罚项α,解决了故障区段定位过程中暂态信息分解参数难以确定,信号分解后得到的特征模态分量中部分故障特征丢失的问题。

基于ISSA算法优化SVM(支持向量机)参数值使其收敛寻优速度更快,不易陷入局部最优解导致定位失败。将分解后的故障信号经模态能量计算构成故障特征输入,按照比例分成训练集和测试集,通过ISSA-SVM分类器训练测试得到区段定位结果,将故障区段定位问题转化为分类问题实现。

为验证本文配电网故障区段定位方法的高效性和适用性,通过Matlab/Simulink搭建10kV配电网模型以及本课题组自主研发的物理仿真实验平台进行多组实验,包括不同过渡电阻、不同补偿度,不同故障区段等故障情况。实验结果表明,本文方法在不同故障条件及噪声的影响下均可正确定位。并与其它人工智能分类器通过迭代次数和准确率对比验证本文方法的优越性。

论文外文摘要:

In the traditional medium and low voltage distribution network, the small and medium current grounding system occupies the majority, the line structure and operation mode are variable and single-phase grounding fault is easy to occur. Most grounding systems are grounded through arc suppression coil, so the fault current signal is very weak, and it is difficult to deal with the system fault in time, which is very likely to form more serious interphase faults, causing more serious losses to the distribution network. Therefore, a fast and reliable fault location method is urgently needed for the safe operation of distribution network

Therefore, aiming at the problem of single-phase grounding fault location in the small current grounding system, this paper studies the fault feature signal extraction and fast and accurate location. The main work is as follows:

Based on the zero sequence equivalent network model analysis of resonant grounding system, it is verified that the characteristics of transient zero sequence current in different fault segments are obviously different. The simulation model of 10kV distribution network was established, and the difference of transient zero sequence current waveform of each detection point was verified by simulation comparison under different fault phase Angle, different transition resistance and different compensation degree.

The principle of VMD (variational mode decomposition) algorithm is analyzed, and the feasibility of VMD algorithm is verified by simulation comparison. ISSA algorithm (improved sparrow search algorithm) was introduced to optimize the number of VMD parameter modes K and quadratic penalty term α, which solved the problem that the decomposition parameters of transient information were difficult to determine during fault location, and some fault features were lost in the characteristic modal component obtained after signal decomposition.

ISSA algorithm is used to optimize SVM (support vector machine) parameter values so that the convergence optimization speed is faster and it is not easy to fall into the local optimal solution leading to positioning failure. The decomposed fault signals were calculated by modal energy to form fault feature input, which was divided into training set and test set according to proportion. The results of segment location were obtained by ISA-SVM classifier training test, and the fault segment location problem was transformed into classification problem.

In order to verify the efficiency and applicability of the distribution network fault section location method in this paper, the 10kV distribution network model was built by Matlab/Simulink and the physical simulation experimental platform independently developed by the research group to carry out multiple groups of experiments, including different transition resistance, different compensation, different fault sections and other fault conditions. Experimental results show that the proposed method can be located correctly under the influence of different fault conditions and noise. Compared with other artificial intelligence classifiers, the superiority of the proposed method is verified by the number of iterations and accuracy.

参考文献:

[1]吴志力,刘艳茹,崔凯.“十四五”能源转型步伐加快 配电网如何高质量发展[N].国家电网报,2021-03-09(008).

[2]王东芳,陶飞达,黄智鹏,朱宵,李桂昌.配电网小电流接地方式下故障定位技术研究综述[J].机电工程技术,2020,49(01):65-68.

[3]李龙洋.配电网单相接地故障选线与区段定位研究[D].中国矿业大学,2020.

[4]国家电网公司.配电网技术导则:Q/GDW 10370—2016[S].北京:中国电力出版社,2017.

[5]侯义明.《配电网技术导则》修订背景和编制原则[J].供用电,2017(01):28-31.

[6]刘民培,林竞妍,洪伟彬,黄超艺,林文贵,吴荣福.中压配电网单相接地故障暂态定位技术综述[J].电气开关,2019,57(04):1-4.

[7]梁睿,孟祥震,周鲁天,彭楠.配电网故障定位技术发展现状及展望[J].电力工程技术,2018,37(06):20-27.

[8]Mohamed M.A. Mahfouz. A protection scheme for multi-distributed smart microgrid based on auto-cosine similarity of feeders current patterns[J].Electric Power Systems Research,2020,186(4):167-169.

[9]毕元,房鑫炎,俞国勤,何维国,包海龙.通用矩阵算法和区域辨识法电力故障定位计算[J].电力系统及其自动化学报,2010,22(06):52-56.

[10]陈清川,王成楷,杨振中.一种基于网形结构矩阵的配电网故障定位改进算法研究[J].电气技术,2010(12):31-34+38.

[11]黄佳乐,杨冠鲁.配电网故障区间定位的改进矩阵算法[J].电力系统保护与控制,2014,42(11):41-45.

[12]翁蓝天,刘开培,刘晓莉,仰彩霞,姚刚.复杂配电网故障定位的链表法[J].电工技术学报,2009,24(05):190-196.

[13]李璞. 基于AGM曲线能量的单相接地故障区段定位方法研究[D].西安科技大学,2021.

[14]杨以涵,张利. 中性点不接地电网在线故障定位研究[J]. 华北电力大学学报(自然科学版),2008,35(6):6.

[15]姜建,刘家齐,李燕青,等. 基于配电自动化技术的小电流接地故障区段定位方法[J]. 电测与仪表,2017,4(3):4.

[16]张利,杨以涵,司冬梅,等. 基于零序电流和磁场检测故障杆的配电网故障定位[J]. 电力系统自动化,2008,32(14):5.

[17]刘渝根,王建南,马晋佩,骆仁意.结合小波包变换和5次谐波法的谐振接地系统综合故障选线方法[J].高电压技术,2015,41(05):1519-1525.

[18]郭谋发,黄建业,杨耿杰. 谐振接地系统故障区段模糊信息融合定位方法[J]. 电力系统保护与控制,2012,40(10):65-70.

[19]和敬涵,罗国敏,程梦晓,刘艳梅,谭颖婕,李猛.新一代人工智能在电力系统故障分析及定位中的研究综述[J].中国电机工程学报,2020,40(17):5506-5516.

[20]李静. 利用暂态信息的小电流接地故障选线方法研究[D]. 山东大学, 2014.

[21]Hildebrandt T T, Cattani G L. Expert System[M] The International Encyclopedia of Communication Theory and Philosophy. John Wiley & Sons, Inc. 2016.

[22]王雪文,石访,张恒旭,等. 基于暂态能量的小电流接地系统单相接地故障区段定位方法[J]. 电网技术,2019,43(3):8.

[23]田书, 王晓卫, 王娟娟. 基于相关分析的暂态零模电流与功率故障定位方法比较[J]. 电网技术, 2011, 35(04):206-211.

[24]孙波, 徐丙垠, 孙同景, 等. 基于暂态零模电流近似熵的小电流接地故障定位新方法[J]. 电力系统自动化, 2009, 33(20):83-87.

[25]Wang Y , Huang Y , Zeng X , et al. Faulty Feeder Detection of Single Phase-earth Fault Using Grey Relation Degree in Resonant Grounding System[J]. IEEE Transactions on Power Delivery, 2016:1-1.

[26]钟建伟,朱涧枫,黄秀超,周玉超,张建业,黄谋甫.基于双态二进制粒子群优化算法的配电网故障定位[J].电力系统及其自动化学报,2019,31(03):29-34.

[27]付家才,陆青松.基于蝙蝠算法的配电网故障区间定位[J].电力系统保护与控制,2015,43(16):100-105.

[28]严太山.基于人类进化算法的配电网故障定位[J].仪器仪表学报,2015,36(03):694-700.

[29]张颖, 周韧, 钟凯. 改进蚁群算法在复杂配电网故障区段定位中的应用[J]. 电网技术, 2011, 35(01):224-228.

[30]A H A Bakar, M S Ali, C Tan, et al. High impedance fault location in 11kV underground distribution systems using wavelet transforms [J]. International Journal of Electrical Power & Energy Systems, 2014, 55: 723-730.

[31]Shangbin Jiao, Ting Xiao, Qing Zhang, et al. A New Method for Single-phase Grounding Fault Line Selection Based on Fuzzy Fusion[C], 2020 39th Chinese Control Conference (CCC), 2020, 3071-3076.

[32]郭谋发,黄建业,杨耿杰.谐振接地系统故障区段模糊信息融合定位方法[J].电力系统保护与控制,2012,40(10):65-70.

[33]吉兴全,张朔,张玉敏,韩学山,肖云东,曾若梅.基于IELM算法的配电网故障区段定位[J].电力系统自动化,2021,45(22):157-166.

[34]赵乔,王增平,董文娜,鲍薇.基于免疫二进制粒子群优化算法的配电网故障定位方法研究[J].电力系统保护与控制,2020,48(20):83-89.

[35]陶维青,肖松庆,李林,曹军.基于双精英蚁群算法的配电网故障区段定位[J].合肥工业大学学报(自然科学版),2020,43(12):1626-1632.

[36]李晓波,陈义刚,陈文斌,等. 基于小波和深度学习的配电网单相接地故障辨识[J]. 电测与仪表,2021,58(04):115-120.

[37]李卫国,许文文,王旭光,卢广旗.基于DTW距离搜索的配电网故障区段定位方法[J].电力系统及其自动化学报,2020,32(06):80-87.

[38]刘方园,王水花,张煜东. 深度置信网络模型及应用研究综述[J]. 计算机工程与应用,2018,54(01):11-18+47.

[39]王雪文,石访,张恒旭,薛景润,贠志皓,谢伟,凌平,柳劲松.基于暂态能量的小电流接地系统单相接地故障区段定位方法[J].电网技术,2019,43(03):818-825.

[40]王旭海. 基于改进量子遗传算法的含分布式电源配电网故障区段定位方法的研究[D]. 西安理工大学, 2019.

[41]孙其东,张开如,刘建等.基于五次谐波和小波重构能量的配电网单相接地故障的选线方法研究[J].电测与仪表,2016,53(16):1-4.

[42]霍琤,彭敏放. 基于聚类FSVM的小电流接地系统馈线故障定位系统[J]. 电测与仪表, 2005,42(12):26-29.

[43]齐郑,张惠汐,饶志,等. 基于极限学习机的多信息融合区段定位方法[J]. 电力系统保护与控制,2014(19):74-80.

[44]刘健,程红丽,毕鹏翔.配电网的简化模型[J].中国电机工程学报,2001,21(12):77-82.

[45]和敬涵,罗国敏,程梦晓,刘艳梅,谭颖婕,李猛.新一代人工智能在电力系统故障分析及定位中的研究综述[J].中国电机工程学报,2020,40(17):5506-5516.

[46]Hildebrandt T T, Cattani G L. Expert System[M] The International Encyclopedia of Communication Theory and Philosophy. John Wiley & Sons, Inc. 2016.

[47]张乃元.基于故障附加状态的谐振接地系统故障区段定位方法研究[D]. 西安科技大学,2017.

[48]刘健,张志华,张小庆.配电网故障处理若干问题探讨[J].电力系统保护与控制,2017,45(20):1-6.

[49]薛永端, 李娟, 徐丙垠. 中性点经消弧线圈接地系统小电流接地故障暂态等值电路及暂态分析[J]. 中国电机工程学报, 2015, 35(22):5703-5714.

[50]CHEN X, YANG Y, CUI Z, et al. .Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy. Energy [J], 2019:174: 1100-1109.

[51]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.

[52]魏鹏飞,樊小朝,史瑞静等.基于改进麻雀搜索算法优化支持向量机的短期光伏发电功率预测[J],热力发电,2021,50(12):74-79.

[53]基于改进麻雀搜索算法的微电网优化运行[D].福建工程学院,2021.

[54]马丽英,张洪杰,罗天洪,郑讯佳.基于LMD-CSP和随机森林的运动想象脑电信号分类[J].传感技术学报,2021,34(09):1189-1195.

[55]姜涛,刘博涵,李雪,李国庆.基于自适应投影多元经验模态分解的电力系统强迫振荡源定位[J/OL].电工技术学报:1-11[2023-05-04].

[56]周念成,肖舒严,虞殷树,等.基于质心频率和BP神经网络的配网故障测距[J].电工技术学报,2018,33(17):4154-4166.

[57]任良,甄龙信,赵云,董前程,张云鹏.基于SSA-VMD-MCKD的强背景噪声环境下滚动轴承故障诊断[J].振动与冲击,2023,42(03):217-226.

[58]施佳朋,黄汉明,薛思敏等.基于EMD-VMD-LSTM的地震信号分类研究[J].传感器与微系统,2021,40(06):57-59+62.

[59]Yang Y, Cheng J S, Zhang K. An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems[J]. Measurement, 2012(45): 561-570.

[60]胡水源,陈以.融合混沌与模拟退火PSO的BP神经网络模型研究[J].现代信息科技,2023,7(08):83-87.

[61]刘天明,刘建锋,肖贤贵,等.基于小波奇异熵和支持向量机的配电网单相接地选线新方法[J].电网与清洁能源,2017,33(02):14-20.

[62]仝卫国,郭超宇,赵如意.基于改进麻雀算法优化LSSVM的再循环箱浆液密度预测模型[J].电子测量技术,2022,45(01):70-76.

[63]杜佳耘,雷勇,李永凯等.基于参数优化变分模态分解的混合储能功率分配策略[J].现代电力,2021,38(01):51-59.

[64]李德鑫,田春光,吕项羽等.基于AHP和CRITIC的电网调峰调频储能系统规划[J].电源学报,2021,19(02):136-141.

[65]张政,李世强.基于AdaBoost改进随机森林和SVM的极化SAR地物分类[J].中国科学院大学学报,2022,39(06):776-782.

[66]李梦涵,赵学文,李建琦等.基于VMD-SVM的小电流接地系统故障选线方法[J].电网与清洁能源,2021,37(08):1-8.

中图分类号:

 TM726    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式