- 无标题文档
查看论文信息

论文中文题名:

 低温阶段煤对自燃标志气体的吸附/解吸特性研究    

姓名:

 唐瑞    

学号:

 19220089033    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 文虎    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-05    

论文外文题名:

 Study on the adsorption/desorption characteristics of coal to spontaneous combustion marker gas at low temperature stage    

论文中文关键词:

 煤自燃 ; 低温阶段 ; 标志气体 ; CO ; C2H4 ; 吸附/解吸特征 ; 分子模拟    

论文外文关键词:

 Spontaneous combustion of coal ; Marker air ; CO ; C2H4 ; Adsorption/Desorption characteristics ; Molecular simulation    

论文中文摘要:

自然发火是煤矿常见灾害之一。煤自燃低温阶段CO与C2H4作为预测预报的标志气体,CO与C2H4在煤中的吸附/解吸影响预测预报准确性。本文以宁夏灵新煤矿不粘煤为研究对象,采用液氮吸附实验、CO与C2H4吸附/解吸实验,深入研究了温度、压力、粒径及孔隙结构对CO和C2H4在煤中吸附/解吸的影响,并分析了CO和C2H4吸附/解吸过程中的吸附热和吸附势特征,结合分子模拟手段,从微观角度探究CO和C2H4吸附特征。取得的主要研究成果如下:

(1)实验煤样孔隙结构发育有墨水瓶孔、半开放孔及开放孔,孔径分布以微孔为主;随粒径减小,煤样总孔容和总比表面积增加,其中微孔孔容和比表面积所占比例增大,过渡孔孔容和比表面积所占比例减小,中孔孔容和比表面积所占比例减小。

(2)实验条件下(温度:303.15~333.15K、压力:0.15~0.50MPa),温度越低、压力越大、煤样粒径越小,煤对CO和C2H4的吸附能力越强。降压能够促进CO和C2H4在煤中解吸,解吸过程存在滞后现象;温度越高、煤样粒径越小,煤对CO和C2H4的解吸滞后性越小。煤样孔容和比表面积与CO和C2H4饱和吸附量呈正相关关系,与解吸滞后性呈负相关关系。

(3)CO和C2H4解吸过程等量吸附热大于吸附过程等量吸附热,说明CO和C2H4解吸过程比吸附过程需要更多能量;相同吸附量条件下,煤样粒径越小,等量吸附热越低;CO和C2H4吸附/解吸过程的等量吸附热分别介于1.51~18.95 kJ/mol与0.81~14.50 kJ/mol之间,吸附势与吸附相体积呈线性负相关关系,表明煤与CO和C2H4分子之间作用力主要为色散力,属于物理吸附。

(4)CO与C2H4在煤分子中吸附模拟实验表明:不同温度和压力条件下,CO和C2H4在煤分子中吸附规律与实验结果一致;CO和C2H4的模拟实验吸附热结果显示,CO和C2H4在煤分子中吸附属于物理吸附;CO和C2H4与煤分子之间的相互作用能为负,温度相同时相互作用能随压力升高而减小,压力一定时相互作用能随温度升高而增大。

论文外文摘要:

Natural ignition is one of the common disasters in coal mines. CO and C2H4 at the low temperature stage of coal spontaneous combustion are used as the marker gases for prediction, and the adsorption / desorption of CO and C2H4 in coal affects the prediction accuracy. This paper takes Ningxia Lingxin coal non-stick coal as the research object, adopts liquid nitrogen adsorption experiment, CO and C2H4 adsorption/desorption experiment, and deeply investigates the effects of temperature, pressure, particle size and pore structure on CO and C2H4 adsorption/desorption in coal, and analyzes the characteristics of adsorption heat and adsorption potential during CO and C2H4 adsorption/desorption, and combined with molecular simulation tools to explore the CO and C2H4 adsorption characteristics from a microscopic perspective. The main research results obtained are as follows:

(1) The pore structure of the experimental coal samples developed with ink bottle pores, semi-open pores and open pores, and the pore size distribution was mainly micropores; the total pore volume and total specific surface area of the coal samples increased with decreasing particle size, among which the proportion of micropore volume and specific surface area increased, the proportion of transition pore volume and specific surface area decreased, and the proportion of medium pore volume and specific surface area decreased.

(2) Under the experimental conditions (temperature: 303.15~333.15 K, pressure: 0.15~0.50 MPa), the lower the temperature, the higher the pressure, and the smaller the particle size of the coal sample, the stronger the adsorption capacity of coal to CO and C2H4. Depressurization can promote the desorption of CO and C2H4 in coal, and there is a hysteresis in the desorption process; the higher the temperature and the smaller the particle size of the coal sample, the smaller the hysteresis in the desorption of CO and C2H4 by coal. The pore volume and specific surface area of coal samples showed a positive correlation to the saturation adsorption of CO and C2H4, and a negative correlation to the desorption hysteresis.

(3) The equivalent heat of adsorption of CO and C2H4 desorption process is larger than the equivalent heat of adsorption of adsorption process, which indicates that the desorption process of CO and C2H4 requires more energy than the adsorption process; the smaller the particle size of the coal sample, the lower the equivalent heat of adsorption under the condition of the same adsorption amount; the equivalent heats of adsorption for the CO and C2H4 adsorption/desorption processes ranged from 1.51 to 18.95 kJ/mol and 0.81 to 14.50 kJ/mol, respectively, and the adsorption potential is linearly and negatively correlated with the volume of the adsorbed phase, which indicates that the force between coal and CO and C2H4 molecules is mainly dispersion force and belongs to physical adsorption.

(4) The simulation experiments of CO and C2H4 adsorption in coal molecules showed that: the adsorption pattern of CO and C2H4 in coal molecules under different temperature and pressure conditions is consistent with the experimental results; the simulated experimental heat of adsorption results for CO and C2H4 show that the adsorption of CO and C2H4 in the coal molecules belong to physical adsorption; the interaction energy between CO and C2H4 and coal molecules is negative, and the interaction energy decreases with increasing pressure when the temperature is the same, and increases with increasing temperature when the pressure is certain.

参考文献:

[1]Deng J, Xiao Y, Li Q W, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal [J]. Fuel, 2015, 157(5): 261-269.

[2]秦波涛,仲晓星,王德明,等.煤自燃过程特性及防治技术研究进展[J].煤炭科学技术,2021,49(1):66-99.

[3]邓军,李贝,王凯,等.我国煤火灾害防治技术研究现状及展望[J].煤炭科学技术,2016,44(10):1-7+101.

[4]Liang Y T, Zhang J, Wang L C, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review[J]. Journal of Loss Prevention in the process Industries, 2019, 57(10):208-222.

[5]任万兴,郭庆,石晶泰,等.基于标志气体统计学特征的煤自燃预警指标构建[J].煤炭学报,2021,46(6):1747-1758.

[6]Hou X R, Guo L W,Wang F, et al. Reasearch on sources appointment of abnormal CO in underground mine[J]. Fresenius Environmental Bulletin,2019,28(4):2897-2907

[7]Wang Y M, Wang W Z, Shao Z L, et al. Innovative prediction model of carbon monoxide emission from deep mined coal oxidation[J]. Bulgarian Chemical Communications, 2014, 46(4):887-895.

[8]贾海林,余明高,徐永亮.矿井CO气体成因类型及机理辨识分析[J]. 煤炭学报, 2013,38(10):1812-1818.

[9]Qin B T, Wang H T, Yang J Z, et al. Largearea goaf fires: a numerical method for locating high-temperature zones and assessing the effect of liquid nitrogen fire control[J].Environmental Earth Sciences, 2016,75(21):1396-1410.

[10]Tang Y B. Sources of underground CO: Crushing and ambient temperature oxidation of coal[J]. Journal of Loss Prevention in the Process Industries, 2015,38(9):50-57.

[11]Yang Y L, Li Z H, Hou S S,et al. Identification of Primary CO in Coal Seam Based on Oxygen Isotope Method[J]. Combustion Science and Technology,2017,189(11):1924-1942.

[12]Zhu H Q,Chang M R,Wang H Y.Study on primal CO gas generation and emission of coal seam[J].International Journal of Mining Science and Technology,2017,27(6):973-979.

[13]中国法制出版社.煤矿安全规程[M]. 中国法制出版社, 2016.

[14]岳克明.常温常压下煤对CO吸附及解吸特性研究[D]. 中国矿业大学, 2014.

[15]钱钧,周光华,刘洪刚,等.地面钻孔液氮直注式防灭火技术在灵新煤矿的应用[J].煤矿安全,2015,46(9):137-140.

[16]Cheng W, Xue J, Xie J, et al. A Model of Lignite Macromolecular Structures and Its Effect on the Wettability of Coal - A Case Study[J]. Energy & Fuels, 2017,31(12):13834-13841.

[17]王海燕.煤层原生CO生成机理及吸附、放散特征研究[D].中国矿业大学(北京),2015.

[18]Wickowski M, Howaniec N, Adam S. Natural desorption of carbon monoxide during the crushing of coal simulating natural rock mass pressure[J]. Science of The Total Environment, 2020,736(5):139639.

[19]Zhang Y, Shi X, Li Y, et al. Characteristics of carbon monoxide production and oxidation kinetics during the decaying process of coal spontaneous combustion[J]. The Canadian Journal of Chemical Engineering, 2018,96(8): 1752-1761.

[20]Dudzinska A . Analysis of Adsorption and Desorption of Ethylene on Hard Coals[J]. Energy & Fuels, 2018, 32(4):4951-4958.

[21]Li X, Li Z, Ren T, et al. Effects of particle size and adsorption pressure on methane gas desorption and diffusion in coal[J]. Arabian Journal of Geosciences, 2019,12(24):1-17.

[22]Wang C, Liu J, Feng J, et al. Effects of gas diffusion from fractures to coal matrix on the evolution of coal strains: Experimental observations[J]. International Journal of Coal Geology, 2016,162(5):74-84.

[23]Du Y, Chen X, Li L, et al. Characteristics of methane desorption and diffusion in coal within a negative pressure environment[J]. Fuel, 2018, 217(5):111-121.

[24]郭立稳,王月红,张九零.煤的变质程度与煤层吸附CO影响的实验研究[J].辽宁工程技术大学学报,2007,(2):165-168.

[25]Liu S,Yue K M,Liu L, et al. The Research and Application on CO Adsorption Experiment of Different Metamorphic Coal under the Constant Temperature and Pressure[C]// International Conference on Information Science & Control Engineering. IEEE Computer Society, 2017.

[26]毋亚文.不同变质变形煤吸附解吸特征研究[D].河南理工大学,2018.

[27]Li X, Fu X, Liu A, et al. Methane Adsorption Characteristics and Adsorbed Gas Content of Low-Rank Coal in China[J]. Energy & Fuels, 2016, 30(5):3840-3848.

[28]Wang F K, Liang Y P, Zou Q L. Correlation between coal and gas outburst risk and adsorption properties of coal seams[J]. Energy Science & Engineering,2019,7(3) :947-985.

[29]Zhou Y B, Zhang R L, Huang J L, et al. Effects of pore structure and methane adsorption in coal with alkaline treatment[J]. Fuel,2019,254(10):115600.

[30]Sun B, Yang Q, Zhu J, et al. Pore size distributions and pore multifractal characteristics of medium and low-rank coals[J]. Scientific Reports, 2020, 10(12) :1-12.

[31]Yilmaz S. The Relationship between Unburned Carbon Levels in Coal Combustion Ash and Volatile Matter Content in Coal[J]. Combustion Science and Technology, 2021,193(4) :716-725.

[32]王月红.煤层中一氧化碳吸附规律及影响因素研究[D].河北理工大学,2006.

[33]Fan L, Liu S. Numerical prediction of in situ horizontal stress evolution in coalbed methane reservoirs by considering both poroelastic and sorption induced strain effects[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104(12):156-64.

[34]Guo J, Kang T, Kang J, et al. Effect of the lump size on methane desorption from anthracite [J]. Journal of Natural Gas Science & Engineering, 2014, 20(10):337-346.

[35]戚宇霄.新景矿3#煤层地质构造作用对煤孔隙结构特征及瓦斯吸附解吸特性影响[D].中国矿业大学,2018.

[36]Cheng Y, Pan Z. Reservoir properties of Chinese tectonic coal: a review[J]. Fuel,2020, 260(1):116350.

[37]Zhao W, Wang K, Wang L, et al. Influence of matrix size and pore damage path on the size dependence gas adsorption capacity of coal[J]. 2021,283(1):119289.

[38]韩金轩.含水煤层中气体吸附、解吸扩散的分子模拟研究[D].西南石油大学,2015.

[39]Pajdak A . Studies on the influence of moisture on the sorption and structural properties of hard coals Science Direct[J]. International Journal of Greenhouse Gas Control, 2020,103(12):103193.

[40]Zhang W, He M, Wei H B,et al.Molecular dynamics simulations of interaction between sub-bituminous coal and water[J]. Molecular Simulation,2018,44(9):769-773.

[41]Wang L, Chen E T, Liu S, et al. Experimental study on the effect of inherent moisture on hard coal adsorption–desorption characteristics[J]. Adsorption, 2017,23(5):1-20.

[42]Guo H, Cheng Y, Wang L, et al. Experimental study on the effect of moisture on low-rank coal adsorption characteristics-ScienceDirect[J]. Journal of Natural Gas Science & Engineering, 2015,24(4):245-251.

[43]肖藏岩,韦重韬,郭立稳.中低煤阶煤对CO的吸附/解吸特性[J].煤炭科学技术,2016,44(11):98-102.

[44]Keshavarz A, Sakurovs R, Grigore M, et al. Effect of maceral composition and coal rank on gas diffusion in Australian coals[J]. International Journal of Coal Geology, 2017, 173(5):65-75.

[45]张九零,郭立稳,周心权,等.惰质组与镜质组对煤吸附CO性能的影响[J].煤炭学报,2007(12):1297-1300.

[46]庞睿智.煤层CO吸附解吸热力学研究[D].河北理工大学,2009.

[47]Li X C, Kang Y L, Chen D F. Effect of Fracturing Fluid on Coalbed Methane Desorption, Diffusion, and Seepage in the Ningwu Basin of China[J]. SPE Production & Operations,2017,32(2):177-185.

[48]Meng Z P, Liu S S, Li G Q. Adsorption capacity, adsorption potential and surface free energy of different structure high rank coals[J]. Journal of Petroleum Science & Engineering, 2016,146(10):856-865.

[49]聂百胜,伦嘉云,王科迪,等.煤储层纳米孔隙结构及其瓦斯扩散特征[J].地球科学,2018,43(5):1755-1762.

[50]Pan J N, Zhu H T,Hou Q L, et al. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel,2015,139(1):94-101.

[51]Wojtacha-Rychter K , Adam S. A study of dynamic adsorption of propylene and ethylene emitted from the process of coal self-heating[J]. Scientific Reports, 2019, 9(1):18277.

[52]Pan H, Zhao J, Lin Q, et al. Preparation and Characterization of Activated Carbons from Bamboo Sawdust and Its Application for CH4 Selectivity Adsorption from a CH4/N2 System[J]. Energy & Fuels, 2016, 30(12):10730.

[53]Xu R, Li H, Guo C. The mechanisms of gas generationduring coal deformation: preliminary observations[J]. Fuel.2014,117(1):326-330

[54]Li J H, Li Z H, Yang Y L, et al. Study on the generation of active sites during low-temperature pyrolysis of coal and its influence on coal spontaneous combustion[J]. Fuel,2019,241(4): 283-296.

[55]Zhang Y, Wang J, Wu J, et al. Modes and kinetics of CO2 and CO production from low-temperature oxidation of coal[J]. International Journal of Coal Geology, 2015,140(2):1-8.

[56]刘永新,郭立稳,肖藏岩.煤的元素分析对煤层吸附CO的影响研究[J].采矿与安全工程学报,2009,26(2):249-252.

[57]常明,董宪姝,李宏亮,等.煤表面含氧官能团对矿井气体吸附特性的模拟研究[J].煤矿安全,2020,51(1):176-180+186.

[58]邹卓.不同变质程度煤岩吸附特性及其热力学变化规律研究[D].中国地质大学(北京),2020.

[59]李龙建.CO2和CH4在不同变质程度煤上吸附行为及其热效应研究[D].太原理工大学,2020.

[60]Gao T , Deng C B, Han Q . Experimental Research on the Law of Energy Conversion during CO2 Sequestration in Coal[J]. Energies, 2021,14(23):8079-8086.

[61]王传涛.黄陇煤田镜煤与暗煤CH4解吸机理研究[D].西安科技大学,2019.

[62]张遵国.煤吸附/解吸变形特征及其影响因素研究[D].重庆大学,2015.

[63]马东民,马薇,蔺亚兵.煤层气解吸滞后特征分析[J].煤炭学报,2012,37(11):1885-1889.

[64]林海宇,熊健,刘向君.川南龙马溪组页岩甲烷等温解吸特征研究[J].油气藏评价与开发,2021,11(1):56-61.

[65]黄若彤.平煤十矿煤孔隙结构对吸附解吸特性影响[D].中国矿业大学,2020.

[66]Li T, Wu C, Wang Z. Isothermal characteristics of methane adsorption and changes in the pore structure before and after methane adsorption with high-rank coal[J]. Energy Exploration & Exploitation, 2020,38(5):1409-1427.

[67]唐明云,张海路,段三壮,等.基于Langmuir修正模型的热对煤吸附解吸甲烷影响实验研究[J].煤炭科学技术,2022,13(1):1-9.

[68]武腾飞,都喜东,李琪琦.煤与泥页岩孔隙结构和吸附特性的对比分析[J].煤矿安全,2020,51(11):169-174.

[69]李沛.页岩润湿性及其对甲烷吸附的控制机理[D].中国地质大学(北京),2021.

[70]Braida W J,Pignatello J J,Lu Y,et al.Sorption hysteresis of benzene in charcoal particles[J].Environmental Science&Technology,2003,37(2):409-417.

[71]何鑫鑫.煤中甲烷吸附-解吸滞后微观影响因素及其定量评价方法研究[D].中国矿业大学,2021.

[72]王公达,REN T X,齐庆新,等.吸附解吸迟滞现象机理及其对深部煤层气开发的影响[J].煤炭学报,2016,41(1):49-56.

[73]Sun Y, Zhao Y, Zhang H , et al. Visualization of Gas Diffusion-Sorption in Coal: A Study Based on Synchrotron Radiation Nano-CT[J]. Geofluids,2020,2020:1-11.

[74]Ren J G, Weng H B, Li B, et al. The Influence Mechanism of Pore Structure of Tectonically Deformed Coal on the Adsorption and Desorption Hysteresis[J]. Frontiers in Earth Science,2022,10(2):841353.

[75]吕兆兰,宁正福,王庆,等.甲烷在页岩黏土矿物中吸附行为的分子模拟[J].煤炭学报,2019,44(10):3117-3124.

[76]Dubinin M. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces[J]. Chemical Reviews, 1960, 60(2):235-241.

[77]Lu G, Wei C, Wang J, et al. Methane Adsorption Characteristics and Adsorption Model Applicability of Tectonically Deformed Coals in the Huaibei Coalfield[J]. Energy & Fuels, 2018,32(7):7485-7496.

[78]Ozawa S, Kusumi S, Ogino Y. Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin Astakhov adsorption equation[J]. Journal of Colloid and Interface Science, 1976,56(1):83-91.

[79]Liu X Q, Li M J, Zhang C H, et al.Mechanistic insight into the optimal recovery efficiency of CBM in subbituminous coal through molecular simulation[J]. Fuel, 2020, 266(4):117137.

[80]You J, Tian L, Zhang C,et al.Adsorption behavior of carbon dioxide and methane in bituminous coal:A molecular simulation study[J].Chinese Journal of Chemical Engineering, 2016,24(9):1275-1282.

[81]李壮楣,王艳美,李平,等.宁东红石湾煤大分子模型构建及量子化学计算[J].化工学报,2018,69(5):2208-2216.

[82]Gao D M, Hong L, Wang J R, et al.Adsorption simulation of methane on coals with different metamorphic grades[J].AIP Advances,2019,9(9):95108.

[83]Yin T T, Liu D M, Cai Y D,et al.A new constructed macromolecule pore structure of anthracite and its related gas adsorption:A molecular simulation study[J]. International Journal of Coal Geology, 2020,220(3):103415.

[84]Zhou W N, Wang H B, Zhang Z,et al.Molecular simulation of CO2/CH4/H2O competitive adsorption and diffusion in brown coal[J]. RSC Advances, 2019,9(6):3004-3011.

[85]Zhu H Q, Zhang Y L, Fang S H, et al.Methane Adsorption Influence and Diffusion Behavior of Coking Coal Macromolecules under Different Moisture Contents[J]. Energy & Fuels, 2020,34(12):15920.

[86]Liu X Q, Li M J, Zhang C H, et al.Mechanistic insight into the optimal recovery efficiency of CBM in sub-bituminous coal through molecular simulation[J]. Fuel, 2020,266:117137.

[87]Wang L, Wang Z F, Li X J, et al.Molecular Dynamics Mechanism of CH4 Diffusion Inhibition by Low Temperature in Anthracite Microcrystallites[J].ACS Omega,2020, 5(36):23420-23428.

[88]Okolo G N, Everson R C , Neomagus H, et al. Dataset on the carbon dioxide, methane and nitrogen high-pressure sorption properties of South African bituminous coals[J]. International Journal of Coal Geology, 2019,25(5):40-53.

中图分类号:

 TD752.2    

开放日期:

 2023-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式