论文中文题名: | 低温阶段煤对自燃标志气体的吸附/解吸特性研究 |
姓名: | |
学号: | 19220089033 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-05 |
论文外文题名: | Study on the adsorption/desorption characteristics of coal to spontaneous combustion marker gas at low temperature stage |
论文中文关键词: | |
论文外文关键词: | Spontaneous combustion of coal ; Marker air ; CO ; C2H4 ; Adsorption/Desorption characteristics ; Molecular simulation |
论文中文摘要: |
自然发火是煤矿常见灾害之一。煤自燃低温阶段CO与C2H4作为预测预报的标志气体,CO与C2H4在煤中的吸附/解吸影响预测预报准确性。本文以宁夏灵新煤矿不粘煤为研究对象,采用液氮吸附实验、CO与C2H4吸附/解吸实验,深入研究了温度、压力、粒径及孔隙结构对CO和C2H4在煤中吸附/解吸的影响,并分析了CO和C2H4吸附/解吸过程中的吸附热和吸附势特征,结合分子模拟手段,从微观角度探究CO和C2H4吸附特征。取得的主要研究成果如下: (1)实验煤样孔隙结构发育有墨水瓶孔、半开放孔及开放孔,孔径分布以微孔为主;随粒径减小,煤样总孔容和总比表面积增加,其中微孔孔容和比表面积所占比例增大,过渡孔孔容和比表面积所占比例减小,中孔孔容和比表面积所占比例减小。 (2)实验条件下(温度:303.15~333.15K、压力:0.15~0.50MPa),温度越低、压力越大、煤样粒径越小,煤对CO和C2H4的吸附能力越强。降压能够促进CO和C2H4在煤中解吸,解吸过程存在滞后现象;温度越高、煤样粒径越小,煤对CO和C2H4的解吸滞后性越小。煤样孔容和比表面积与CO和C2H4饱和吸附量呈正相关关系,与解吸滞后性呈负相关关系。 (3)CO和C2H4解吸过程等量吸附热大于吸附过程等量吸附热,说明CO和C2H4解吸过程比吸附过程需要更多能量;相同吸附量条件下,煤样粒径越小,等量吸附热越低;CO和C2H4吸附/解吸过程的等量吸附热分别介于1.51~18.95 kJ/mol与0.81~14.50 kJ/mol之间,吸附势与吸附相体积呈线性负相关关系,表明煤与CO和C2H4分子之间作用力主要为色散力,属于物理吸附。 (4)CO与C2H4在煤分子中吸附模拟实验表明:不同温度和压力条件下,CO和C2H4在煤分子中吸附规律与实验结果一致;CO和C2H4的模拟实验吸附热结果显示,CO和C2H4在煤分子中吸附属于物理吸附;CO和C2H4与煤分子之间的相互作用能为负,温度相同时相互作用能随压力升高而减小,压力一定时相互作用能随温度升高而增大。 |
论文外文摘要: |
Natural ignition is one of the common disasters in coal mines. CO and C2H4 at the low temperature stage of coal spontaneous combustion are used as the marker gases for prediction, and the adsorption / desorption of CO and C2H4 in coal affects the prediction accuracy. This paper takes Ningxia Lingxin coal non-stick coal as the research object, adopts liquid nitrogen adsorption experiment, CO and C2H4 adsorption/desorption experiment, and deeply investigates the effects of temperature, pressure, particle size and pore structure on CO and C2H4 adsorption/desorption in coal, and analyzes the characteristics of adsorption heat and adsorption potential during CO and C2H4 adsorption/desorption, and combined with molecular simulation tools to explore the CO and C2H4 adsorption characteristics from a microscopic perspective. The main research results obtained are as follows: (1) The pore structure of the experimental coal samples developed with ink bottle pores, semi-open pores and open pores, and the pore size distribution was mainly micropores; the total pore volume and total specific surface area of the coal samples increased with decreasing particle size, among which the proportion of micropore volume and specific surface area increased, the proportion of transition pore volume and specific surface area decreased, and the proportion of medium pore volume and specific surface area decreased. (2) Under the experimental conditions (temperature: 303.15~333.15 K, pressure: 0.15~0.50 MPa), the lower the temperature, the higher the pressure, and the smaller the particle size of the coal sample, the stronger the adsorption capacity of coal to CO and C2H4. Depressurization can promote the desorption of CO and C2H4 in coal, and there is a hysteresis in the desorption process; the higher the temperature and the smaller the particle size of the coal sample, the smaller the hysteresis in the desorption of CO and C2H4 by coal. The pore volume and specific surface area of coal samples showed a positive correlation to the saturation adsorption of CO and C2H4, and a negative correlation to the desorption hysteresis. (3) The equivalent heat of adsorption of CO and C2H4 desorption process is larger than the equivalent heat of adsorption of adsorption process, which indicates that the desorption process of CO and C2H4 requires more energy than the adsorption process; the smaller the particle size of the coal sample, the lower the equivalent heat of adsorption under the condition of the same adsorption amount; the equivalent heats of adsorption for the CO and C2H4 adsorption/desorption processes ranged from 1.51 to 18.95 kJ/mol and 0.81 to 14.50 kJ/mol, respectively, and the adsorption potential is linearly and negatively correlated with the volume of the adsorbed phase, which indicates that the force between coal and CO and C2H4 molecules is mainly dispersion force and belongs to physical adsorption. (4) The simulation experiments of CO and C2H4 adsorption in coal molecules showed that: the adsorption pattern of CO and C2H4 in coal molecules under different temperature and pressure conditions is consistent with the experimental results; the simulated experimental heat of adsorption results for CO and C2H4 show that the adsorption of CO and C2H4 in the coal molecules belong to physical adsorption; the interaction energy between CO and C2H4 and coal molecules is negative, and the interaction energy decreases with increasing pressure when the temperature is the same, and increases with increasing temperature when the pressure is certain. |
参考文献: |
[2]秦波涛,仲晓星,王德明,等.煤自燃过程特性及防治技术研究进展[J].煤炭科学技术,2021,49(1):66-99. [3]邓军,李贝,王凯,等.我国煤火灾害防治技术研究现状及展望[J].煤炭科学技术,2016,44(10):1-7+101. [5]任万兴,郭庆,石晶泰,等.基于标志气体统计学特征的煤自燃预警指标构建[J].煤炭学报,2021,46(6):1747-1758. [8]贾海林,余明高,徐永亮.矿井CO气体成因类型及机理辨识分析[J]. 煤炭学报, 2013,38(10):1812-1818. [13]中国法制出版社.煤矿安全规程[M]. 中国法制出版社, 2016. [14]岳克明.常温常压下煤对CO吸附及解吸特性研究[D]. 中国矿业大学, 2014. [15]钱钧,周光华,刘洪刚,等.地面钻孔液氮直注式防灭火技术在灵新煤矿的应用[J].煤矿安全,2015,46(9):137-140. [17]王海燕.煤层原生CO生成机理及吸附、放散特征研究[D].中国矿业大学(北京),2015. [24]郭立稳,王月红,张九零.煤的变质程度与煤层吸附CO影响的实验研究[J].辽宁工程技术大学学报,2007,(2):165-168. [26]毋亚文.不同变质变形煤吸附解吸特征研究[D].河南理工大学,2018. [32]王月红.煤层中一氧化碳吸附规律及影响因素研究[D].河北理工大学,2006. [35]戚宇霄.新景矿3#煤层地质构造作用对煤孔隙结构特征及瓦斯吸附解吸特性影响[D].中国矿业大学,2018. [38]韩金轩.含水煤层中气体吸附、解吸扩散的分子模拟研究[D].西南石油大学,2015. [43]肖藏岩,韦重韬,郭立稳.中低煤阶煤对CO的吸附/解吸特性[J].煤炭科学技术,2016,44(11):98-102. [45]张九零,郭立稳,周心权,等.惰质组与镜质组对煤吸附CO性能的影响[J].煤炭学报,2007(12):1297-1300. [46]庞睿智.煤层CO吸附解吸热力学研究[D].河北理工大学,2009. [49]聂百胜,伦嘉云,王科迪,等.煤储层纳米孔隙结构及其瓦斯扩散特征[J].地球科学,2018,43(5):1755-1762. [56]刘永新,郭立稳,肖藏岩.煤的元素分析对煤层吸附CO的影响研究[J].采矿与安全工程学报,2009,26(2):249-252. [57]常明,董宪姝,李宏亮,等.煤表面含氧官能团对矿井气体吸附特性的模拟研究[J].煤矿安全,2020,51(1):176-180+186. [58]邹卓.不同变质程度煤岩吸附特性及其热力学变化规律研究[D].中国地质大学(北京),2020. [59]李龙建.CO2和CH4在不同变质程度煤上吸附行为及其热效应研究[D].太原理工大学,2020. [61]王传涛.黄陇煤田镜煤与暗煤CH4解吸机理研究[D].西安科技大学,2019. [62]张遵国.煤吸附/解吸变形特征及其影响因素研究[D].重庆大学,2015. [63]马东民,马薇,蔺亚兵.煤层气解吸滞后特征分析[J].煤炭学报,2012,37(11):1885-1889. [64]林海宇,熊健,刘向君.川南龙马溪组页岩甲烷等温解吸特征研究[J].油气藏评价与开发,2021,11(1):56-61. [65]黄若彤.平煤十矿煤孔隙结构对吸附解吸特性影响[D].中国矿业大学,2020. [67]唐明云,张海路,段三壮,等.基于Langmuir修正模型的热对煤吸附解吸甲烷影响实验研究[J].煤炭科学技术,2022,13(1):1-9. [68]武腾飞,都喜东,李琪琦.煤与泥页岩孔隙结构和吸附特性的对比分析[J].煤矿安全,2020,51(11):169-174. [69]李沛.页岩润湿性及其对甲烷吸附的控制机理[D].中国地质大学(北京),2021. [71]何鑫鑫.煤中甲烷吸附-解吸滞后微观影响因素及其定量评价方法研究[D].中国矿业大学,2021. [72]王公达,REN T X,齐庆新,等.吸附解吸迟滞现象机理及其对深部煤层气开发的影响[J].煤炭学报,2016,41(1):49-56. [75]吕兆兰,宁正福,王庆,等.甲烷在页岩黏土矿物中吸附行为的分子模拟[J].煤炭学报,2019,44(10):3117-3124. [81]李壮楣,王艳美,李平,等.宁东红石湾煤大分子模型构建及量子化学计算[J].化工学报,2018,69(5):2208-2216. |
中图分类号: | TD752.2 |
开放日期: | 2023-06-28 |