- 无标题文档
查看论文信息

论文中文题名:

 重大突发公共卫生事件网络舆情传播规律及干预研究    

姓名:

 万钰珏    

学号:

 19220214082    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 安全与应急管理    

第一导师姓名:

 李磊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Research on the law of network public opinion propagation and intervention in major public health emergencies    

论文中文关键词:

 重大突发公共卫生事件 ; 网络舆情 ; 传播规律 ; 干预理论模型 ; 仿真模拟    

论文外文关键词:

 Major public health emergencies ; Network public opinion ; Propagation law ; Intervention theoretical model ; Simulation    

论文中文摘要:

      重大突发公共卫生事件引发的网络舆情传播规模大,且极易衍生负面舆情对社会造成严重影响,进而恶化网络舆情发展,加大监管部门的管理和应对难度。掌握重大突发公共卫生事件网络舆情传播规律和特征,才能为监管部门处置重大突发公共卫生事件网络舆情提供理论参考。通过及时干预网络舆情传播关键节点、制定合理干预策略集,为引导网络舆情演化和针对性防控提供理论依据。因此,本文以揭示重大突发公共卫生事件网络舆情传播规律与建立传播规律模型为起点,以及时干预和管控舆情为落脚点,对重大突发公共卫生事件网络舆情传播规律及干预进行了一系列研究。

      本文通过构建传播规律模型,揭示重大突发公共卫生事件网络舆情传播规律,运用Gephi可视化识别传播关键节点,根据划分的六阶段传播规律,提出干预策略集,构建重大突发公共卫生事件网络舆情干预理论模型。在SEIR模型基础上,通过NetLogo仿真分析模型中的传播影响因子,构建重大突发公共卫生事件网络舆情传播规律模型;基于生命周期理论,揭示重大突发公共卫生事件网络舆情传播规律。分析重大突发公共卫生事件网络舆情监测与预警关键传播渠道,通过Gephi可视化识别传播关键节点,大数据技术监测热点话题、高频关键词,细化重大突发公共卫生事件网络舆情的预警依据、手段,确立预警等级,建立重大突发公共卫生事件网络舆情监测与预警机制。在传播规律、监测与预警研究基础上,针对性地提出监管部门对重大突发公共卫生事件网络舆情的干预策略集,构建重大突发公共卫生事件网络舆情干预理论模型。以2021年底西安市新冠肺炎疫情为例进行实证分析,验证本文重大突发公共卫生事件网络舆情传播规律及干预模型的科学性,并提出相应干预方法和引导建议。

      研究表明当前重大突发公共卫生事件网络舆情传播规律符合潜伏、发酵、爆发、缓解、反复、衰退六阶段。“传播涉及总人数”“初始传播人数”“传播周期”对重大突发公共卫生事件网络舆情传播过程有显著影响,当传播涉及总人数为1000人、初始传播者人数为10人、传播周期为5天时是干预舆情发展的最佳时机。实现对重大突发公共卫生事件网络舆情的监测与预警可从“热点话题监测”“高频关键词监测”及“识别传播关键节点”三个方面进行。由此得出,通过对网络舆情各阶段传播过程、传播关键节点进行监测与预警,掌握重大突发公共卫生事件网络舆情传播规律,从而实现对重大突发公共卫生件网络舆情的有效干预。该研究为监管部门处置重大突发公共卫生事件网络舆情提供新思路,具有重要的实践参考意义和理论价值。

论文外文摘要:

      The spread of network public opinion caused by major public health emergencies is large, and it is easy to derive negative public opinion that has a serious impact on society, thus deteriorating the development of network public opinion and increasing the difficulty of management and response of regulatory authorities. Mastering the propagation law and characteristics of network public opinion in major public health emergencies can provide theoretical reference for regulatory authorities to deal with network public opinion in major public health emergencies. By timely intervening the key nodes of network public opinion propagation and formulating reasonable intervention strategy set, it provides a theoretical basis for guiding the evolution of network public opinion and targeted prevention and control. Therefore, this paper takes revealing the propagation law and establishing the propagation law model of network public opinion in major public health emergencies as the starting point, and timely intervention and control of public opinion as the foothold, and conducts a series of studies on the propagation law and intervention of network public opinion in major public health emergencies.

      In this paper, the propagation law model is constructed to reveal the propagation law of network public opinion in major public health emergencies. Gephi visualization is used to identify the key nodes of propagation. According to the six-stage propagation law, the intervention strategy set is proposed to construct the theoretical model of network public opinion intervention in major public health emergencies. Based on the SEIR model, the propagation law model of network public opinion in major public health emergencies is constructed through the propagation influence factors in the NetLogo simulation analysis model. Based on the life cycle theory, this paper reveals the network public opinion propagation law of major public health emergencies. The key propagation channels of network public opinion monitoring and early warning for major public health emergencies are analyzed. The key nodes of propagation are identified by Gephi visualization. The hot topics and high-frequency keywords are monitored by big data technology. The early warning basis and means of network public opinion for major public health emergencies are refined, the early warning level is established, and the network public opinion monitoring and early warning mechanism for major public health emergencies is established. Based on the study of propagation law, monitoring and early warning, this paper puts forward the intervention strategy set of supervision departments for network public opinion of major public health emergencies, and constructs the theoretical model of network public opinion intervention of major public health emergencies. Taking the epidemic of new coronavirus pneumonia in Xi’ an at the end of 2021 as an example, this paper verifies the scientific nature of the network public opinion dissemination law and intervention model of major public health emergencies, and puts forward corresponding intervention methods and guidance suggestions.

      Research shows that the current major public health emergencies network public opinion propagation law conforms to the latent, fermentation, outbreak, mitigation, repeated, recession six stages. The “ total number of communication involved ”, “ initial number of communication ” and “ communication cycle ” have a significant impact on the process of network public opinion dissemination in major public health emergencies. When the total number of communication involved is 1000, the initial number of communicators is 10 and the communication cycle is 5 days, it is the best time to intervene in the development of public opinion. Monitoring and early warning of network public opinion in major public health emergencies can be carried out from three aspects : “hot topic monitoring”, “high frequency keyword monitoring” and “identifying key nodes of propagation”. It is concluded that through the monitoring and early warning of the propagation process and key nodes of network public opinion in each stage, the propagation law of network public opinion in major public health emergencies is mastered, so as to realize the effective intervention of network public opinion in major public health emergencies. This study provides a new idea for the regulatory authorities to deal with the network public opinion of major public health emergencies, which has important practical reference significance and theoretical value.

参考文献:

[1]中国互联网络中心. 第49次中国互联网络发展状况统计报告[R]. 北京:中国互联网络中心, 2022.

[2]曾润喜. 网络舆情管控工作机制研究[J]. 图书情报工作, 2009, 53(18):79-82.

[3]刘毅. 网络舆情研究概论[M]. 天津:人民出版社, 2007.

[4]卢恒, 张向先, 闫伟. 重大疫情中网络舆情的多属性演化分析[J]. 情报科学, 2022, 40(1):158-165.

[5]依法监督和管理网络舆情, 防范社会危机[J]. 民主, 2012, 10(3):10-11.

[6]Wang Q, Yang X, Xi W. Effects of group arguments on rumor belief and transmission in online communities: an information cascade and group polarization perspective[J]. Information & Management, 2017, 35(6):441-449.

[7]Ana M, Marco P. Detecting controversial events from twitter[C]. Proceedings of the19th ACM International Conference on Information and Knowledge Management, 2010, 9(4):273-276.

[8]Sahafizadeh, Ebrahim, Ladani, et al. The impact of group propagation on rumor spreading in mobile social networks[J]. Physica A: Statistical Mechanics and its Applications, 2018, 36(6): 412-423.

[9]Hu Y,Pan Q,Hou W, et al. Rumor spreading model with the different attitudes towards rumors[J]. Physica A: Statistical Mechanics and its Applications, 2018, 36(6):331-344.

[10]Liu Q, Li T, Sun M. The analysis of an SEIR rumor propagation model on heterogeneous network[J]. Physica A: Statistical Mechanics and its Applications, 2017, 35(3):372-380.

[11]Duc T. Nguyen, Jai E. Jung. Real-time event detection for online behavioral analysis of big social data[J]. Future Generation Computer Systems, 2017,29(6):137-145.

[12]Grégoire B, Harith A. Crisis event extraction service (crees)-automatic detection and classification of crisis-related content on social media[J]. Information Processing & Management,2018, 35(9):117-129.

[13]Seyed H, Hadi S. Identifying crisis-related informativetweets using learning on distributions[J]. Information Processing & Management, 2020, 37(2):102-125.

[14]Yin J, Hu W. Increasing “right” or “reducing right”: the role transformation of guidance of public opinion under new media empowerment[J]. Journal of Henan Normal University, 2018, 27(8):226-241.

[15]董坚峰. 基于Web挖掘的突发事件网络舆情预警研究[J]. 现代情报, 2014, 34(2):43-51.

[16]项权, 于同洋, 肖人彬. 突发事件网络舆情演化与干预[J]. 计算机应用, 2018, 38(S2):97-102.

[17]王志英, 杨淼, 王念新, 等. 信息安全突发事件情感领袖群际效应研究[J]. 管理科学,2019, 32(1):14-27.

[18]田依林, 李星. 基于事理图谱的新冠肺炎网络舆情演化路径分析[J]. 情报理论与实践, 2021, 44(3):76-83.

[19]Barbara R. Crisis and emergency risk communication: Pandemic influenza[M]. Atlanta, GA: Centers for Disease Control and Prevention, 2006.

[20]Zoë C. Twitter to track dengue fever outbreaks in Brazil[J]. New Scientist, 2011, 10(6): 211-226.

[21]Wang J, Guo M, Zhang L, et al. Research on dissemination rule of public opinion from SNA perspective: Taking the vaccine safety event as an example[J]. Studies in Media andCommunication, 2017, 11(5):42-49.

[22]Santosh V, Glen N, Itai H, et al. Virtual Zika transmission after the first US case:who saidwhat and how it spread on twitter[J]. American Journal of Infection Control, 2018, 17(46):549-557.

[23]Seltzer E K, Horst Martz E, Lu M, et al. Public sentiment and discourse about Zika virus oninstagram[J]. Public Health, 2017, 37(5):170-175.

[24]Rui G, Cláudia P, Panos P, et al. Beyond positive or negative: Qualitative sentiment analysis of social media reactions to unexpected stressfulevents[J]. ComputersinHuman Behavior, 2016, 56(5):179-191.

[25]Haihong E, Hu Y,Peng H, et al. Theme and sentiment analysis modelof public opinion dissemination based on generative adversarial network[J]. Chaos,Solitons & Fractals, 2019, 12(7):160-167.

[26]曹晚红, 卢海燕. 移动互联时代社交媒体舆情的形成与引导——以“山东疫苗事件”的微信传播为例[J]. 东南传播, 2016, 11(6):56-58.

[27]张行钦, 张东红, 付刚瓯, 等. “乙肝疫苗”事件网络舆情热度演变特点及应对研究[J].中国预防医学杂志, 2017, 18(1):60-62.

[28]逯万辉. 突发事件网络與情传播的社会网络结构演变研究——以“山东非法疫苗案”为例[J]. 福建行政学院学报, 2017, 22(3):111-120.

[29]滕文杰. 突发公共卫生事件网络舆情网民关注度区域分布研究[J]. 中国卫生事业管理, 2015, 32(5):393-396.

[30]安璐, 欧孟花. 突发公共卫生事件利益相关者的社会网络情感图谱研究[J]. 图书情报工作, 2017,35(20):120-130.

[31]安璐, 杜廷尧, 李纲, 等. 突发公共卫生事件利益相关者在社交媒体中的关注点及演化模式[J].情报学报, 2018, 37(4):394-405.

[32]王林, 王可, 吴江. 社交媒体中突发公共卫生事件舆情传播与演变——以2018年疫苗事件为例[J]. 数据分析与知识发现, 2019, 3(4):42-52.

[33]Sharma R, Karad A B, Dash B, et al. Media scanning and verification system as a supplemental tool to disease outbreak detection & reporting at national centre for disease control,Delhi[J]. Commun Dis, 2012, 24(1):9-20.

[34]Liu K, Li L, Tao J, et al. Chinese public attention to the outbreak of Ebola in West Africa: evidence from the online big data platform[J]. International Journal of Environmental Research and Public Health, 2016, 13(8):78-89.

[35]Jennifer A. F, Micah DJ. P, Imogen R, et al. Effectiveness of publichealth messaging and communication channels during smoke events: a rapid systematic review[J].Journalof Environmental Management, 2017, 19(3):247-256.

[36]Gema B O, Julio H C, David Camacho. Detecting discussion communitieson vaccination in twitter[J]. Future Generation Computer Systems, 2017,26(6):125-136.

[37]李纲, 陈璟浩, 毛进. 突发公共卫生事件网络语料库系统构建[J]. 情报学报, 2013, 32(9):936-944.

[38]王若佳, 李培. 基于互联网搜索数据的流感监测模型比较与优化[J]. 图书情报工作, 2016, 34(8):122-132.

[39]夏一雪, 袁野, 张文才, 等. 面向大数据的网络舆情异常数据监测与应用研究[J]. 现代情报, 2018, 38(6):80-85.

[40]Mollema L, Harmsen I A, Broekhuizen E, et al. Disease detection or public opinion reflection? Content analysis of tweets, other social media, and online newspapers during the measles outbreak in the netherlands in 2013[J]. Journal of Medical Internet Research,2015, 17(5):128-141.

[41]Mauricio S, André T N, Mark D, et al. Combining search, social media, and traditional data sources to improve influenza surveillance[J]. Computational Biology, 2015, 11(10):207-221.

[42]Nguyen H, Nguyen T, Nguyen D T. An empirical study on prediction of population health through social media[J]. Journal of Biomedical Informatics, 2019, 19(9):103-117.

[43]杜明英, 杨珊珊, 高向辉, 等. 基于模糊综合评价法的食品安全网络舆情预警研究[J].商业经济研究, 2018, 12(9):188-192.

[44]曾子明, 黄城莺. 基于BP神经网络的突发传染病舆情热度趋势预测模型研究[J]. 现代情报, 2018,38(5):44-52.

[45]梁艳平, 安璐, 刘静. 同类突发公共卫生事件微博话题共振研究[J]. 数据分析与知识发现, 2020,4(Z1):122-133.

[46]Kristine S, Stephan V D B, James F, et al. Health literacyand publichealth: a systematic review and integration of definitions and models[J].Public Health, 2012, 12(1):80-92.

[47]Aron C. Lightweight methods to estimate influenza rates and alcohol sales volumefrom twitter messages[J]. Language Resources and Evaluation, 2013, 17(1):217-238.

[48]Yan X, Jiang P. Effect of the dynamics of human behavior on the competitive spreading of information[J]. Computers in Human Behavior, 2018, 18(9):1-7.

[49]Chen J, Yang L,Yang X, et al. Cost-effective anti-rumor message-pushing schemes[J]. Physica A: Statistical Mechanics and its Applications, 2020, 25(4):1-12.

[50]Yang L, Li Z, Alessandro G. Containment of rumor spread in complex social networks[J]. Information Sciences, 2020, 17(6):113-130.

[51]惠志斌. 新媒体环境下我国突发公共事件信息发布与管理初探[J]. 图书情报工作, 2011, 29(3): 18-26.

[52]刘文, 李强. 食品安全网络舆情监测与干预研究初探[J]. 中国科技论坛, 2012, 26(7):44-49.

[53]杜泽, 张晓杰. 循证治理视域下突发公共卫生事件的网络舆情治理研究[J]. 情报理论与实践, 2020, 43(5):17-23.

[54]刘娜, 丁艺璇. 突发公共卫生事件的网络舆情传播及社会治理[J]. 当代传播, 2021, 36(1):73-76.

[55]Haman M. The use of twitter by state leaders and its impact on the public duringthe COVID pandemio[J]. Heliyon, 2020, 11(6):126-134.

[56]Zhao J, He H, Zhao X. Modeling and simulation of microblog-based publichealth emergency-associated public opinion communication[J]. Information Processing & Management, 2022, 39(2):224-231.

[57]Liu J, Liu L, Tu Y. Multi-stage Internet public opinion risk grading analysis of publichealth emergencies: An empirical study on microblog in COVID-19[J]. Information Processing&Management, 2022, 39(1):102-114.

[58]王晰巍, 赵丹, 李嘉兴, 等. 新媒体环境下网络舆情演化模型及仿真研究——基于信息生态视角[J]. 情报学报, 2016, 35(10):111-121.

[59]李磊, 支梅, 李睿涵. 新冠肺炎突发公共卫生事件网络舆情传播动力学[J]. 西安科技大学学报, 2022, 42(1):47-54.

[60]陈璟浩, 陈美合, 曾桢. 突发公共卫生事件中中国网民关注度分析——基于新冠肺炎网络舆情数据[J]. 现代情报, 2020, 40(10):11-21.

[61]刘继, 武梦娇. 基于贝叶斯网络的网络舆情态势评估分析——以“新冠肺炎疫情”事件为例[J].情报杂志, 2021, 40(3):85-92.

[62]Janaína G, Adriano V, Wagner M, et al. Dengue surveillance based on a computational model of spatio temporal locality of twitter[C]. Proceedings ofthe 3rd International Web Science Conference, 2011, 11(7):1-8.

[63]Gabriel J M, Gail M W, Archie C A C, et al. Internet-based surveillance systems for monitoring emerging infectious diseases[J]. The Lancet Infectious Diseases, 2014,14(2):160-168.

[64]Tang X, Shen H. Building real-time monitoring of infectious diseases and corresponding public opinion based on naive bayesian algorithm and crowd sensing[J]. Information Processing & Management, 2018, 35(3):90-100.

[65]霍飞, 高浩宇, 刘长娜, 等. 舆情监测在重大传染病预防控制工作中的应用[J]. 职业与健康, 2013, 29(3):306-320.

[66]郭浩岩, 王林, 苏婧, 等. 2013年人感染H7N9禽流感舆情监测结果分析[J]. 中国健康教育, 2015,31(5):479-481.

[67]宋铁, 叶永隆, 刘国恒, 等. 突发公共卫生事件网络舆情监测平台的建立与应用[J]. 华南预防医学, 2013, 39(3):53-58.

[68]Pei J, Yu G, Tian X, et al. A new method for early detection of mass concern about public health issues[J]. Journal of Risk Research, 2017, 20(4):516-532.

[69]Lu A, Yi X, Yu C, et al. Predicting the influence of microblog entries regarding public health emergencies[J]. Conference Proceedings, 2017, 11(7):78-91.

[70]Zhang M, Qin S, Zhu X. Information diffusion under public crisis in BA scale-free network based on SEIR model:Taking 2019-nCoV explosion as an example[J]. PhysicaA:Statistical Mechanics and its Applications, 2021, 12(10):89-97.

[71]向小东, 黄飘. 基于EEMD-NAR的突发传染病舆情热度预测研究[J]. 武汉理工大学学报(信息与管理工程版), 2019, 41(4):352-358.

[72]牛琦娟, 付之鸥, 王斐, 等. 基于百度指数的流感预测模型比较研究[J]. 江苏预防医学, 2019, 30(6):617-621.

[73]郑月彬, 朱国魂. 基于Twitter数据的时间序列模型在流行性感冒预测中的应用[J]. 中国预防医学杂志, 2019, 20(9):793-798.

[74]于姗姗, 陈建华. 重大疫情网络舆情的应急引导机制研究[J]. 情报科学, 2020, 38(9):82-89.

[75]Cynthia C, Gunther E. Pandemics in the age of twitter: content analysis of tweetsduring the 2009 H1N1 outbreak[J]. PLOS ONE, 2010, 5(11):156-166.

[76]Alessio S, Alberto M S, Philip M. The use of twitter to track levels of diseaseactivity and public concern in the US during the influenza a H1N1 pandemic[J]. PLOS One, 2011, 6(5):194-207.

[77]Seungwon Y, Boryung J. Library support for emergency management during the time ofnatural disasters: Through the lens of public library twitter data[J]. Library & Information Science Research, 2021, 43(1):129-137.

[78]刘鹏程, 孙梅, 李程跃, 等. H7N9事件网络舆情分析及其对突发公共卫生事件应对的启示[J]. 中国卫生事业管理, 2014, 31(10):784-786.

[79]王心瑶, 郝艳华, 吴群红, 等. 社交媒体环境下H7N9事件网络舆情演变与比较分析[J]. 中国公共卫生, 2018, 34(9):132-136.

[80]姚乐野, 吴茜, 李明. 新冠肺炎疫情微博舆情传播的网络结构分析[J]. 图书情报工作,2020, 38(15):123-130.

[81]周晓英. 新冠肺炎疫情防控中的应急信息管理问题与对策研究[J]. 图书与情报, 2020, 38(1):51-57.

[82]曾润喜, 徐晓林. 网络舆情对群体性突发事件的影响与作用[J]. 情报杂志, 2010, 29(12):1-4.

[83]纪红, 马小洁. 论网络舆情的搜集、分析和引导[J]. 华中科技大学学报(社会科学版), 2007, 17(6):104-107.

[84]国务院. 突发公共卫生事件应急条例[S]. 中华人民共和国国务院令第376号, 2003.

[85]朱晓峰. 生命周期方法论[J]. 科学学研究, 2004, 22(6):566-571.

[86]李昊青, 兰月新, 侯晓娜, 等. 网络舆情管理的理论基础研究[J]. 现代情报, 2015, 35(5):29-40.

[87]赵剑华, 万克文. 基于信息传播模型-SIR传染病模型的社交网络舆情传播动力学模型研究[J]. 情报科学, 2017, 35(12):34-38.

[88]田世海, 孙美琪, 张家毓. 基于改进SIR模型的网络舆情情绪演变研究[J]. 情报科学,2019, 37(2):52-64.

[89]魏静, 黄阳江豪, 朱恒民, 等. 基于双层微信网络的舆情传播模型研究[J]. 统计与决策, 2019, 35(1):38-42.

[90]王超, 杨旭颖, 徐珂, 等. 基于SEIR的社交网络信息传播模型[J]. 电子学报, 2014, 42(11):2325-2330.

[91]林晓静, 庄亚明, 孙莉玲. 具有饱和接触率的SEIR网络舆情传播模型研究[J]. 情报杂志, 2015, 34(3):150-155.

[92]Dong S, Deng Y, Huang Y. SEIR model of rumor spreading in online social network with varying total population size[J]. Communications in Theoretical Physics, 2017, 68(10):545-552.

[93]江长斌, 李汾萦, 张瑶源, 等. 次生舆情影响下的网络舆情传播研究[J]. 武汉理工大学学报(信息与管理工程版), 2021, 43(6):580-587.

[94]魏宇航, 田园. 高校突发事件网络舆情传播影响因素研究[J]. 情报科学, 2021, 39(12):53-59.

[95]蒋国银, 陈玉凤, 蔡兴顺, 等. 平台事件网络舆情传播的影响因素与治理策略研究:基于WSR的扎根分析[J]. 管理评论, 2021, 33(5):184-193.

[96]田水承, 董威松, 沈小清, 等. 基于Netlogo的矿工不安全行为传播仿真研究[J]. 安全与环境学报,2019, 19(6):216-222.

[97]张嘉敏, 张嘉锐. 基于NetLogo城市轨道交通网络仿真环境生成研究[J]. 科技创新与应用, 2021,10(3):1-6.

[98]赵柱, 王毅, 樊芮锋, 等. 基于多主体NetLogo平台的反无人机OODA体系对抗建模[J]. 系统仿真学报, 2021, 33(8):179-180.

[99]刘小虎, 张恒巍, 张玉臣, 等. 基于博弈模型与NetLogo仿真的网络攻防态势研究[J].系统仿真学报, 2020, 32(10):118-126.

[100]集智俱乐部. NetLogo多主体建模入门[M]. 北京: 人民邮电出版社, 2021.

[101]Jacob G Vincent D M, Rob E. Modeling influence and community in social media data using the digital methods initiative-twitter capture and analysis toolkit (DMI-TCAT) and Gephi[J]. MethodsX, 2020, 10(1):164-172.

[102]Shena C, Zhu W, Xua L. Critical risk determination method of energy-flow network for urban electricity system under extreme heat wave impact[J]. Environmental Research, 2020, 19(12):110-121.

[103]Rehane H F, Soodeh H. Machine learning algorithms for prediction of energyconsumption and IOT modeling in complex networks[J]. Microprocessors and Microsystems, 2022, 18(9):104-113.

[104]Loanna K, Olga A, Zoe N, et al. Stakeholder analysis for safe LNGhandling at ports[J]. Safety Science, 2022, 21(6):105-114.

[105]王曰芬, 王一山, 杨洁. 基于社区发现和关键节点识别的网络舆情主题发现与实证分析[J]. 图书与情报, 2020, 38(5):48-58.

[106]林心宇, 任映红. 重大突发公共卫生事件的网络舆情及引导机制研究[J]. 学术研究, 2021, 36(7):65-68.

中图分类号:

 X924    

开放日期:

 2022-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式