- 无标题文档
查看论文信息

论文中文题名:

 二维弯曲系统的KT相变研究    

姓名:

 张探涛    

学号:

 22201104032    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0702    

学科名称:

 理学 - 物理学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 物理学    

研究方向:

 凝聚态物理    

第一导师姓名:

 翟啸波    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-24    

论文答辩日期:

 2025-05-23    

论文外文题名:

 Thouless-Kosterlitz Transition in Two-Dimensional Curved Surfaces    

论文中文关键词:

 KT相变 ; 拓扑缺陷 ; 格林函数 ; 共形变换 ; 二维弯曲系统    

论文外文关键词:

 KT transition ; Topological defect ; Green's function ; Conformal transformation ; Two-Dimensional Curved Surfaces    

论文中文摘要:

随着纳米科技的飞速发展,人类对器件的微型化需求日益增长。二维材料因其独特的力学、电学和热学特性,成为实现纳米器件的理想选择。从石墨烯到过渡金属硫族化合物,二维材料展现出优异的物理性能和广阔的应用前景。在这一研究背景下,深入理解二维材料的热力学行为变得尤为重要。在二维材料的研究中,Kosterlitz-Thouless (KT) 相变是一个关键的理论概念。这一相变机制由Kosterlitz和Thouless在上世纪70年代提出,揭示了二维体系中拓扑缺陷对相变行为的重要影响。人们在超导薄膜中观测到这种由无序到“准长程序”的特殊相变。这种拓扑相变,是二维体系中涡旋由束缚态到游离态转变所导致的,被称作KT相变。KT相变不仅存在于超导薄膜中,在二维晶体材料中也表现出独特的相变特征,表现为旋错对的解耦现象。当达到临界温度时,出现独立旋错,系统由短程有序变为无序。旋错作为晶体中的拓扑缺陷,其行为直接影响材料的力学和热学性质。探索这些系统中的KT相变行为成为了一个重要的研究方向。本文拟针对二维弯曲系统,探讨弯曲系统中KT相变的可能性。

碳纳米管具有独特的电子结构和优异的物理性质。碳纳米管中会产生拓扑缺陷,这些缺陷显著影响其力学、电学和热学等性质。显然拓扑缺陷相互作用的研究对碳纳米管的应用具有重要意义,因此本文拟研究柱面系统中缺陷的缺陷能。柱面系统中的格林函数不收敛是该研究的难点。本文探究了一种寻找共形变换的方法,找到了合适的共形变换解决了格林函数发散问题,给出了柱面系统的旋错缺陷能,并探寻了纳米管中旋错的相互作用特性。

至今为止,碳纳米管的熔化温度在实验上仍无法准确测定,且相关数值模拟有较大差异。考虑到KT相变是一种二维拓扑相变,其核心机制可以看做是正反旋错对的解耦。因此,碳纳米管作为典型的柱面系统是研究弯曲二维系统中KT相变的理想平台,可以应用柱面系统KT相变来分析碳纳米管的熔化温度。所以本文研究了柱面系统中的KT相变,进而应用建立的柱面系统KT相变理论,对碳纳米管的相变行为进行了深入研究。通过计算含孤立旋错的柱面的自由能,得到了柱面发生KT相变的相变温度,明确了相变温度与柱面半径的依赖关系。通过理论计算,本研究成功预测了碳纳米管的KT相变温度,从而在理论上求出了实验上难以测定的碳纳米管熔化温度。发现碳纳米管的熔化温度随管径增大而增大,当管径趋于无穷大时趋近于石墨烯的熔化温度。再者,本文从理论上预测了手征性对碳纳米管熔化温度没有影响。最后,通过数值模拟,验证了理论计算的正确性。

论文外文摘要:

With the rapid development of nanotechnology, the demand for device miniaturization continues to grow. Two-dimensional (2D) materials have emerged as ideal candidates for nanodevices due to their unique mechanical, electrical, and thermal properties. From graphene to transition metal dichalcogenides, these materials demonstrate exceptional physical characteristics and broad application prospects. Against this research backdrop, gaining a profound understanding of the thermodynamic behavior of 2D materials has become particularly crucial. In the study of 2D materials, the Kosterlitz-Thouless (KT) transition represents a pivotal theoretical concept. First proposed by Kosterlitz and Thouless in the 1970s, this phase transition mechanism reveals the significant influence of topological defects on phase behavior in two-dimensional systems. Experimental observations of this special disorder-to-"quasi-long-range order" transition have been made in superconducting thin films. This topological phase transition, caused by the transition of vortices from bound states to free states in 2D systems, is termed the KT phase transition. The KT transition not only exists in superconducting films but also manifests unique phase transition characteristics in 2D crystalline materials, particularly through the decoupling of dislocation pairs. When reaching the critical temperature, independent dislocations emerge, transforming the system from short-range order to disorder. As topological defects in crystals, the behavior of dislocations directly affects the mechanical and thermal properties of materials. Investigating KT transition phenomena in these systems has become an important research direction. This paper aims to explore the possibility of KT phase transitions in curved two-dimensional systems, specifically focusing on geometrically deformed configurations.

Carbon nanotubes exhibit unique electronic structures and exceptional physical properties. Topological defects can arise in carbon nanotubes, significantly influencing their mechanical, electrical, and thermal behaviors. Research on the interactions of these topological defects is evidently critical for advancing carbon nanotube applications. This study focuses on investigating the defect energy of dislocations in cylindrical systems. A key challenge lies in the divergence of Green’s functions within such geometries. To address this issue, the work explores a method to identify suitable conformal transformations, resolving the divergence problem of Green’s functions. The dislocation energy in cylindrical systems is analytically derived, and the interaction characteristics of dislocations in nanotubes are systematically explored.

To date, the experimental determination of the melting temperature of carbon nanotubes remains challenging, and numerical simulations show significant discrepancies. Considering that the KT transition is a two-dimensional topological phase transition whose core mechanism involves the decoupling of oppositely charged dislocation pairs, carbon nanotubes as prototypical cylindrical systems serve as an ideal platform for studying KT transitions in curved two-dimensional geometries. This work leverages the framework of KT transitions in cylindrical systems to analyze the melting temperature of carbon nanotubes. The study investigates KT transitions in cylindrical systems and applies the developed theoretical framework to conduct an in-depth exploration of phase transition behavior in carbon nanotubes. By calculating the free energy of cylindrical systems containing isolated dislocations, the phase transition temperature for KT behavior in these systems is derived, clarifying its dependence on the cylinder radius. Through theoretical modeling, this research successfully predicts the KT transition temperature of carbon nanotubes, thereby theoretically estimating their experimentally elusive melting temperature. The results reveal that the melting temperature of carbon nanotubes increases with tube diameter and asymptotically approaches that of graphene as the diameter tends to infinity. Furthermore, the study theoretically predicts that chirality has no discernible impact on the melting temperature of carbon nanotubes. Finally, numerical simulations are employed to validate the accuracy of the theoretical calculations.

参考文献:

[1] KOSTERLITZ J M, THOULESS D J. Ordering, metastability and phase transitions in two-dimensional systems[J]. 1973: 1181.

[2] KOSTERLITZ, M J. The critical properties of the two-dimensional xy model[J]. Journal of Physics C Solid State Physics, 1974, 7(6): 1046-1060.

[3] KOSTERLITZ J M, THOULESS D J. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory)[J]. Journal of Physics C: Solid State Physics, 1972, 5(11): L124.

[4] NOBEL-MEDIA-AB-2016. Strange phenomena in matter’s flatlands[EB/OL]. 2016, http://www.nobelprize.org/nobel_prizes/ physics/laureates/2016/popular.html.

[5] 施郁. 拓扑改变凝聚态物理——2016年诺贝尔物理学奖[J]. 大学物理, 2017, 36(02): 47-54.

[6] HAN L, DA L Y, BIN-BIN C, et al. Kosterlitz-Thouless melting of magnetic order in the triangular quantum ising material TmMgGaO4[J]. Nature Communications, 2020, 11(1): 1111.

[7] JULKU A, PELTONEN T J, LIANG L, et al. Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene[J]. Physical Review B, 2020, 101(6): 060505.

[8] WANG J. Berezinskii-Kosterlitz-Thouless phase transition in a 2D-XY ferromagnetic monolayer[J]. Journal of Semiconductors, 2021, 42(12): 16-18.

[9] ASHOKA A, S. B K, BHAT S V. Magnetic field induced Berezinskii-Kosterlitz-thouless correlations in 3-dimensional manganites[J]. MRS Advances, 2020, 5(44): 1-10.

[10] MERMIN N D, WAGNER H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models[J]. Physical Review Letters, 1966, 17: 1133-1136.

[11] HOHENBERG P C. Existence of long-range order in one and two dimensions[J]. Physical Review, 1967, 158(2): 383-386.

[12] WEGNER F. Spin-ordering in a planar classical heisenberg model[J]. Zeitschrift für Physik A Hadrons and Nuclei, 1967, 206(5): 465-470.

[13] BISHOP D J, REPPY J D. Study of the superfluid transition in two-dimensional 4He films[J]. Physical Review Letters, 1978, 40(26): 1727-1730.

[14] EPSTEIN K, GOLDMAN A M, KADIN A M. Vortex-antivortex pair dissociation in two-dimensional superconductors[J]. Physical Review Letters, 1981, 47(7): 534-537.

[15] HEBARD A F, FIORY A T. Evidence for the Kosterlitz-Thouless transition in thin superconducting aluminum films[J]. Physical Review Letters, 1980, 44(4): 291-294.

[16] STRANDBURG K J. Two-dimensional melting[J]. Reviews of Modern Physics, 1988, 60(1): 161-207.

[17] NELSON D R, THOULESS D. Defects and geometry in condensed matter physics[M]. Cambridge University Press, 2002.

[18] BERTAND B. Bulk and surface properties in the critical phase of the two-dimensional XY model[J]. Journal of PhysicsAMathematical and General:A Europhysics Journal, 2003, 36(3): 585-607.

[19] KHALI S S, CHAKRABORTY D, CHAUDHURI D. Two step melting of the weeks-chandler-anderson system in two dimensions[J]. Soft matter, 2021, 17(12): 3473-3485

[20] HALPERIN B I, NELSON D R. Theory of two-dimensional melting[J]. Physical Review Letters, 1978, 41(2): 121-124.

[21] BEREZINSKIT V L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group.[J]. Sov Phys JETP, 1972,61(3): 1144-1156.

[22] PUSEY, PETER, N. Freezing and melting: Action at grain boundaries[J]. Science, 2005, 309(5738): 1198-1199.

[23] GASSER U, EISENMANN C, MARET G, et al. Melting of crystals in two dimensions[J]. Chemphyschem, 2010, 11(5): 963-970.

[24] DILLMANN P, MARET G, KEIM P. Comparison of 2D melting criteria in a colloidal system[J]. Journal of Physics Condensed Matter An Institute of Physics Journal, 2012, 24(46): 464118.

[25] PéREZ-GARRIDO A, MOORE M A. Simulations of two-dimensional melting on the surface of a sphere[J]. Physical Review B, 1998, 58(15): 9677-9680.

[26] LANSAC Y, GLASER M A, CLARK N A. Discrete elastic model for two-dimensional melting. [J]. Physical review, E Statistical, nonlinear, and soft matter physics, 2006, (4) :041501

[27] QI W, GANTAPARA A P, DIJKSTRA M. Two-stage melting induced by dislocations and grain boundaries in monolayers of hard spheres[J]. Soft Matter, 2014, 10(30): 5449-5457.

[28] PARK J M, LUBENSKY T C. Sine-gordon field theory for the Kosterlitz-Thouless transitions on fluctuating membranes[J]. Physical Review E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1995, 53(3): 2665.

[29] ŠAMAJ L. Universal finite-size effects in the two-dimensional asymmetric coulomb gas on a sphere[J]. Physica A: Statistical Mechanics and its Applications, 2001, 297(1-2): 142-156.

[30] SELINGER R L B, KONYA A, TRAVESSET A, et al. Monte carlo studies of the XY model on two-dimensional curved surfaces[J]. Journal of Physical Chemistry B, 2011, 115(48): 13989-13993.

[31] VEST J P, TARJUS G, VIOT P. Dynamics of a monodisperse lennard-jones system on a sphere[J]. Molecular Physics, 2014, 112(9-10): 1330-1335.

[32] D, FRENKEL, J, et al. Evidence for an orientationally ordered two-dimensional fluid phase from molecular-dynamics calculations[J]. Physical Review Letters, 1979, 42(24): 1632–1635.

[33] UDINK C, VAN D E J. Determination of the algebraic exponents near the melting transition of a two-dimensional lennard-jones system[J]. Physical Review B Condensed Matter, 1987, 35(1): 279-283.

[34] CHEN K, KAPLAN T, MOSTOLLER M. Melting in two-dimensional lennard-jones systems: observation of a metastable hexatic phase[J]. Physical Review Letters, 1995, 74(20): 4019-4022.

[35] BOLL, MARTIN, HILKER, et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in fermi-hubbard chains[J]. Science, 2016, 353(6305): 1257-1260.

[36] 李伟, 孟子杨, 戚扬. 二维量子磁晶体中的“幽灵软模”与KT物理[J]. 物理, 2020, 49(06): 400-402.

[37] LIEW K M, WONG C H, HE X Q, et al. Thermal stability of single and multi-walled carbon nanotubes[J]. Physical Review B, 2005, 71(7): 075424.

[38] LOS J H, ZAKHARCHENKO K V, KATSNELSON M I, et al. Melting temperature of graphene[J]. Physical Review B, 2015, 91(4): 6.

[39] ERIC G, B G A, LI-MING Y, et al. The initial stages of melting of graphene between 4000 K and 6000 K[J]. Physical chemistry chemical physics : PCCP, 2017, 19(5): 3756-3762.

[40] KW Z, GM S, JX Z. Melting and premelting of carbon nanotubes[J]. Nanotechnology, 2007, 18(28): 85703.

[41] Y Kowaki, A Harada, F Shimojo, et al. Radius dependence of the melting temperature of single-walled carbon nanotubes: molecular-dynamics simulations[J]. Journal of Physics Condensed Matter, 2007, 19(43): 436224.

[42] 王苏燕, 靳聪明. 石墨烯SW缺陷的运动路径[J]. 浙江理工大学学报(自然科学版), 2019, 41(05): 670-675.

[43] Jannik C. Meyer, C. Kisielowski, et al. Direct imaging of lattice atoms and topological defects in graphene membranes[J]. Nano letters, 2008, 8(11): 3582-3586.

[44] 张亚玲, 孙玉平, 上媛媛. 不同层数单壁碳纳米管薄膜柔性应变传感器的性能研究[J]. 人工晶体学报, 2020, 49(05): 854-860.

[45] 王宗花, 官杰, 张菲菲. 碳纳米管在仪器分析领域中的应用新进展[J]. 材料导报, 2009, 23(07): 81-85.

[46] 侯思羽, 孙玉平, 上媛媛. 碳纳米管/聚乙烯醇空心螺旋纤维的可控制备及其力学性能研究[J]. 人工晶体学报, 2020, 49(05): 861-866.

[47] 赵玄, 孙玉平, 上媛媛. 高性能、可弯曲碳纳米管纤维负载镍磷合金电催化析氢电极的研究[J]. 人工晶体学报, 2020, 49(09): 1678-1683+1690.

[48] SI J, ZHANG P, ZHANG Z. Road map for, and technical challenges of, carbon-nanotube integrated circuit technology[J]. National Science Review, 2024, 11(03): 14-16.

[49] 黄静宏, 邹仁珍, 陈航. 航天用碳纳米管增强铝合金复合材料的力学与阻尼性能[J]. 上海航天(中英文), 2024, 41(03): 103-109.

[50] LU T, LEI X W, FUJII T. Nucleation of disclinations in carbon nanotube bundle structures under twisting loads[J]. Carbon, 2024, 228: 119287.

[51] N. C, S. N, C. S. Local elastic properties of carbon nanotubes in the presence of stone-wales defects[J]. Physical Review B, 2004, 69(9): 094101.

[52] LIYAN Z, JINLAN W, FENG D. The great reduction of a carbon nanotube's mechanical performance by a few topological defects[J]. ACS Nano, 2016, 10(6): 6410-6415.

[53] Z. R ZHOU, K. LIAO. Effect of inter-defect interaction on tensile fatigue behavior of a single-walled carbon nanotube with stone–wales defects[J]. Journal of Applied Mechanics, 2013, 80(5):051005.

[54] 林百川. 含缺陷的功能梯度碳纳米管增强旋转梁的动力学行为研究[D], 2022.

[55] 李云龙, 杨斌, 唐黎明. 碳纳米管表面缺陷对聚甲基丙烯酸甲酯基体弹性的影响[J]. 中南大学学报(自然科学版), 2020, 51(04): 893-901.

[56] JINGLIN M, YUCHEN M, HUICHUN L, et al. Optical properties of semiconducting zigzag carbon nanotubes with and without defects[J]. The Journal of Chemical Physics, 2019, 150(2): 024701.

[57] MASATO O, TAKUMA S, JUNICHIRO S. Effects of defects on thermoelectric properties of carbon nanotubes[J]. Physical Review B, 2017, 95(15): 155405.

[58] DOMíNGUEZ‐RODRíGUEZ G, TAPIA A, SEIDEL G D, et al. Influence of structural defects on the electrical properties of carbon nanotubes and their polymer composites[J]. Advanced Engineering Materials, 2016, 18(11): 1897-1905.

[59] NELSON D R, PELITI L. Erratum - fluctuations in membranes with crystalline and hexatic order[J]. Journal De Physique, 1988, 49(1): 1085-1092

[60] VINCENZO V, DAVID R NELSON. Defect generation and deconfinement on corrugated topographies[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(5): 051105.

[61] VINCENZO V, M T A. Anomalous coupling between topological defects and curvature[J]. Physical Review Letters, 2004, 93(21): 215301.

[62] 马琰铭, 顾广瑞, 金光星. S-D系统的统一模型与稀磁合金低温杂质电阻的特性[J]. 低温物理学报, 1998, 20(6): 451-457.

[63] 成泰民, 鲜于泽, 杜安. 低温下三角绝缘铁磁体的磁振子软化[J]. 低温物理学报, 2006, 28(2): 156-159.

[64] 王瑞旦. 六方密积结构铁磁材料低温物理性质的解析研究[J]. 中国有色金属学报, 1995, (04): 83-86.

[65] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响[J]. 物理学报, 2008, (06): 3679-3683.

[66] BOWICK M, TRAVESSET A. The geometrical structure of 2D bond-orientational order[J]. Journal of Physics A: Mathematical and General, 2001, 34(8): 1535-1548.

[67] 王福谦. 用保角变换法制作二维第一类格林函数[J]. 大学物理, 2010, 29(01): 26-30.

[68] LEOPOLDO R. GOMEZL, NICOLAS A, et al. Thermal properties of vortices on curved surfaces[J]. Physical review E, 2018, 97(1-1): 012117.

[69] VITELLI V. Crystals, liquid crystals and superfluid helium on curved surfaces[D]; Harvard University., 2006.

[70] MJ. B, A. T, DR. N. Interacting topological defects on frozen topographies[J]. Physical Review B Condensed Matter, 2000, 62(13): 8738-8751.

[71] MARK B, R N D, ALEX T. Curvature-induced defect unbinding in toroidal geometries[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(4 Pt 1): 041102.

[72] H Z G, R N D. Fractional defect charges in liquid crystals with p-fold rotational symmetry on cones[J]. Physical review E, 2022, 105(5-1): 054703-054703.

[73] 王旭, 沈亚鹏. 平面弹性中双圆柱夹杂问题的格林函数[J]. 力学学报, 2001, 33(5): 16.

[74] 解问鼎, 陈钢, 孙艺. 两圆相交形成的闭合单连通区域第一类格林函数求解[J]. 大学物理, 2015, 34(1): 4.

[75] 贾秀敏. 保角变换法计算均匀带电圆柱与接地导体平面间的电场[J]. 大学物理, 2007, 26(9): 3.

[76] TURNER A M, VITELLI V, NELSON D R. Vortices in superfluid films on curved surfaces[J]. Physics, 2008,(38): 50.

[77] I. N L, NIKHIL S. The gauss-bonnet-chern theorem[J]. Transactions of the American Mathematical Society, 2017, 369(4): 2951-2986.

[78] YAO Z, POSTMA H W C, BALENTS L, et al. Carbon nanotube intramolecular junctions[J]. Nature, 1999, 402(6759): 273-276.

[79] SUENAGA K, WAKABAYASHI H, KOSHINO M, et al. Imaging active topological defects in carbon nanotubes[J]. Nature Nanotechnology, 2007, 2(6): 358-360.

[80] YAO Z, POSTMA H W C, BALENTS L, et al. Carbon nanotube intramolecular junctions[J]. Nature, 1999, 402: 273-276.

[81] CHARLIER J C, EBBESEN T W, LAMBIN P. Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes[J]. Physical Review B, Condensed Matter, 1996, 53(16): 11108-11113.

[82] BINGCHUN X, XUEGUANG S, WENSHENG C. Comparison of the properties of bent and straight single-walled carbon nanotube intramolecular junctions[J]. Journal of Chemical Theory and Computation, 2009, 5(6): 1554-1559.

[83] CHAI L, YU Y, XIONG H, et al. Symmetry and asymmetry in mutations and memory retention during the evolutionary growth of carbon nanotubes[J]. Journal of the American Chemical Society, 2024,4: 10400.

[84] GAO H-F, ZHANG S-H, REN F-D, et al. Theoretical insight into the temperature-dependent acetonitrile (ACN) solvent effect on the diacetone diperoxide (DADP)/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) cocrystallization[J]. Computational Materials Science, 2016, 121: 232-239.

中图分类号:

 O469    

开放日期:

 2025-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式