- 无标题文档
查看论文信息

题名:

 高位厚硬岩层下厚煤层开采致灾机理及区段煤柱调控研究    

作者:

 毛旭魏    

学号:

 16103304011    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 081901    

学科:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 开采损害与灾害防治    

导师姓名:

 余学义    

导师单位:

 西安科技大学    

提交日期:

 2024-06-24    

答辩日期:

 2024-06-05    

外文题名:

 Research on the Disaster-Causing Mechanism of Thick Coal Seam Mining Wnder High Level Thick Hard Rock Layer and Regulation of Coal Pillar in Section    

关键词:

 坚硬岩层 ; 区段煤柱 ; 动力灾害 ; 结构稳定性 ; 支承压力    

外文关键词:

 hard rock stratum ; section coal pillar ; dynamic disasters ; structural stability ; abutment pressure    

摘要:

亭南煤矿属于黄陇煤田彬长矿区早期开采的大型煤矿之一,地质条件复杂,地层具有“三厚一硬”特征。矿井开采4号煤层埋深约600m,煤层平均厚度18.3m,开采煤层上覆赋存白垩系厚硬砂岩厚度达342.15m,地表为厚湿陷性黄土覆盖层平均厚度150m,随着矿井开采深度和范围扩展,煤层顶板动力灾害严重威胁矿井安全开采。本文以彬长矿区亭南煤矿二盘区煤层地质赋存条件和覆岩结构特征为研究对象,采用理论分析、物理相似材料模拟、数值模拟计算及现场实测相结合的方法,研究了高位厚硬岩层下厚煤层开采工作面动力灾害形成机理,提出了相应的防控措施与技术途径。论文的主要研究内容包括:

(1)结合岩层物理力学性质,分析了亭南煤矿“三厚一硬”覆岩结构特征;应用关键层理论结合工作面矿压显现规律、巷道变形规律以及地表移动变形规律,分析了厚松散黄土层的加载、厚硬岩层弯曲变形的能量积聚和厚煤层开采覆岩剧烈移动的冲击条件,确定了工作面冲击地压显现机制和主要致灾因素。

(2)基于SMP破坏准则构建了亭南煤矿区段煤柱稳定性理论计算模型,给出多工作面开采区段煤柱稳定性的临界判据,通过相似材料模拟实验和数值模拟计算,分析得到了高位厚硬岩层下开采留设不同区段煤柱宽度的覆岩移动变形规律:低位关键层以梁形式发生破坏,形成“悬臂梁+砌体梁”稳定结构;在留设区段宽煤柱条件下,各工作面形成的低位结构相对独立,高位主关键层在煤柱的支撑作用下呈波浪形态;在留设区段窄煤柱条件下,随工作面开采区段窄煤柱破坏失效,多个工作面开采后,高位主关键层充分下沉呈平缓盆地形态。

(3)实验结果表明工作面强冲击地压的能量主要来源于区段煤柱上方低位岩层结构断裂释放的积聚能量,与矿压观测结果一致。基于改进的文克尔地基理论建立多关键层条件下支承压力计算模型,将计算模型应用于亭南煤矿二盘区工作面分析支承压力分布特征,半定量分析了各个关键层破断时释放的能量,得出亭南煤矿高位厚硬岩层下多工作面开采区段宽煤柱引起冲击地压的致灾机理:区段宽煤柱与上覆厚硬岩层形成了稳定的承载聚能结构,高位主关键层在厚松散加载层和自重的作用下发生弯曲变形,在区段宽煤柱上覆岩层中积聚了大量能量,当开采空间达到极限状态时,煤柱上方未垮落的低位亚关键层结构发生破断,形成顶板动力灾害。

(4)基于材料力学构建了工作面开采低位覆岩结构稳定性判别模型,将采空区未垮落的岩层边界近似看作梯形拱梁,给出了两侧具有约束的梯形拱梁中任意一点的拉应力、压应力、剪切应力,根据强度准则求解出结构不发生失稳的必要条件;建立高位覆岩厚板力学模型,应用有限积分变换法求解了文克尔地基模型上厚板弯曲变形解析解,给出了工作面开采的极限高度。在此基础上构建了多工作面开采覆岩结构稳定性判别模型,分析了“厚硬岩层-区段煤柱”结构失稳过程。

(5)针对亭南煤矿动力灾害特征,分析提出相应的灾害防控开采布局和对策:区段煤柱宽度小于8m、煤层开采厚度小于9m、工作面开采宽度大于200m、工作面按顺序依次开采,实现区段煤柱依次破坏、上覆岩层分次缓慢下沉的效果,将覆岩载荷转移至采空区,实现了通过调整工作面开采布局达到防治动力灾害的效果。

研究成果揭示了亭南煤矿二盘区高位厚硬岩层条件下开采覆岩运移演化规律与致灾机理,提出了顶板灾害防控措施,并在三盘区进行了良好的应用实践,可为大采深高位厚硬顶板工作面的安全开采提供依据。

外文摘要:

The Tingnan Coal Mine belongs to one of the large-scale coal mines in the early stage of mining in Binchang Mining Area of Huanglong Coal Field, with complicated geological conditions and "three thick and one hard" features. Mine mining No. 4 coal seam depth of about 600m, the average thickness of the coal seam 18.3m, mining coal seam overlying endowed Cretaceous thick hard sandstone thickness of 342.15m, the surface for the thick humid loess overburden with an average thickness of 150m, with the expansion of the mine mining depth and scope of the coal bed roof power disaster is a serious threat to the safety of mine mining. This paper takes the geological conditions of the coal seam and the structural characteristics of the overburden in the second plate area of Tingnan Coal Mine in Binchang Mining Area as the research object, and adopts the combination of theoretical analysis, physical similarity material simulation, numerical simulation computation and on-site measurement to study the formation mechanism of the power disaster of the working face of the thick coal seam mining in the high level of thick and hard rock layer, and puts forward the corresponding preventive and control measures and technological pathways. The main research content of the paper includes:

(1) Combined with the physical and mechanical properties of rock strata, we analyzed the structural characteristics of "three thick and one hard" overburden rock in Tingnan Coal Mine, and applied the key layer theory to analyze the loading of thick loose loess layer, the energy accumulation of bending and deformation of thick hard rock strata, and the impact conditions of violent movement of the overburden rock of thick coal seam mining in combination with the law of manifestation of the ore pressure, the law of deformation of the roadway, and the law of moving and deformation of the surface of the ground, so as to determine the mechanism of the manifestation of the impact pressure in the face and the main disaster-causing factors.

(2) Based on the SMP damage criterion, a theoretical calculation model of section coal pillar stability in Tingnan Coal Mine is constructed, and the critical criterion for the stability of section coal pillars in multi-face mining is calculated. Through similar material simulation experiments and numerical simulation calculations, the movement and deformation laws of overburden rock for mining and leaving different widths of section coal pillars in the high level and thick hard rock stratum are analyzed and given: the low key layer is damaged in the form of beams to form a "Under the condition of leaving the section wide coal pillar, the low level structure formed by each working face is relatively independent, and the high level main key layer is in the form of wave under the support of coal pillar; under the condition of leaving the section narrow coal pillar, the narrow coal pillar is destroyed and failed with the mining of working face, and the high level main key layer is fully sunk in the form of gentle basin after mining of several working faces. After several working faces are mined, the high-level main key layer fully sinks in the form of a gentle basin.

(3) The experimental results show that the energy of the strong impact ground pressure in the working face mainly comes from the accumulated energy released by the fracture of the low rock structure above the coal pillar in the section, which is consistent with the observation results of the mine pressure. Based on the improved Winkel's foundation theory, a calculation model of supporting pressure under the condition of multiple key layers was established, and the calculation model was applied to the working face of Tingnan Coal Mine's second plate area to analyze the distribution law of supporting pressure, and semi-quantitatively analyze the energy released by the breakage of each key layer, which led to the disaster-causing mechanism of multi-working face mining under the high-level thick and hard rock layer in Tingnan Coal Mine: the wide coal pillar of the section and the overlying thick and hard rock layer form a stable energy-concentrating structure for bearing, and the high-level key layer is in the thick loose-loaded layer, and the main key layer is in the thick loose-loaded layer. The main key layer undergoes bending and deformation under the action of thick loose loading layer and self-weight, and a large amount of energy is accumulated in the rock layer overlying the wide coal pillar of the section. When the mining space reaches the limit state, the low sub-critical layer structure above the coal pillar that has not collapsed breaks, forming a roof dynamic disaster.

(4) Based on the mechanics of materials, a structural stability discrimination model of low-level overburden rock in working face mining was constructed, and the boundary of the rock layer that has not collapsed in the hollow area was approximated as a trapezoidal arch beam, and the tensile stress, extrusion stress, and shear stress at any point in the trapezoidal arch beam with constraints on the two sides were given, and the necessary conditions of the structure for no destabilization were solved according to the strength criterion; a mechanical model of the thick plate of the high-level overburden rock was established, and a finite integral transformation was applied to solve the analytical solution of bending deformation of the thick plate on the Vinckel foundation model. The analytical solution for the bending deformation of the thick plate on the Kerr foundation model was developed, and the limiting height of the working face mining was given. On the basis of this model, a multi-working face mining overburden structure stability discrimination model was constructed, and the destabilization process of "thick hard rock layer - section coal pillar structure" was analyzed.

(5) In view of the characteristics of power disaster in Tingnan coal mine, the analysis puts forward the corresponding disaster prevention and control mining layout and countermeasures: the width of coal pillar in section is less than 8m, the thickness of coal seam mining is less than 9m, the width of working face mining is more than 200m, and the working face is mined in sequence, so as to realize the effect of the destruction of coal pillar in section in sequence, and the overburden of rock layer is slowly sinking in sequence, and the overburden of rock is transferred to the hollow area, and the effect of preventing and controlling the power disasters is realized through the adjustment of the layout of mining in the working face.

The research results have revealed the transportation law and disaster-causing mechanism of mining overburden under the condition of high thick and hard rock layer in Tingnan Coal Mine No.2 Plateau Area, put forward the measures of preventing and controlling the roof disaster, and carried out good application practice in No.3 Plateau Area, which can provide the basis for the safe mining of the large mining face with deep and thick hard roof.

参考文献:

[1]王金华.我国大采高综采技术与装备的现状及发展趋势[J].煤炭科学技术,2006,34(1):4-7.

[2]钱鸣高.煤炭产业特点与科学发展[J].中国煤炭,2006,32(11):5-8.

[3]钱鸣高,缪协兴,许家林,等.论科学采矿[J].采矿与安全工程学报,2008,25(1):1-10.

[4]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534.

[5]朱涛.软煤层大采高综采工作面围岩控制理论及技术研究[D].太原:太原理工大学,2010.

[6]崔廷锋,张东升,范钢伟,等.浅埋煤层大采高工作面矿压显现规律及支架适应性[J].煤炭科学技术,2011,39(1):25-28.

[7]韩俊效.寺河矿大采高长工作面矿压显现规律研究[D].焦作:河南理工大学,2011.

[8]王亚东.长平矿大采高综采面合理区段煤柱尺寸研究[D].阜新:辽宁工程技术大学,2012.

[9]钱鸣高,许家林.科学采矿的理念与技术框架[J].中国矿业大学学报(社会科学版),2011,13(3):1-7.

[10]钱鸣高,许家林,王家臣.再论煤炭的科学开采[J].煤炭学报,2018,43(1):1-13.

[11]刘听成.工作面矿山压力讲义.西安:西安矿业学院,1962.

[12]弓培林.大采高工作面围岩控制理论及应用研究[M].北京:煤炭工业出版社,2006.

[13]Cai M,Morioka H ,Kaiser P K, et al.Back-analysis of rock mass strength parameters using AE monitoring data[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(4): 538-547.

[14]Xingping Lai, Meifeng Cai, Fenhua Ren,et al. Assessment of rock-mass characteristics and the excavation disturbed zone in the Linxin Coal Mine beneath the Xitian river, China[J]. International Journal of Rock Mechanics & Mining Science, 2006, 43(4): 572-580.

[15]Chunlin Li. Rock support design based on the concept of pressure arch[J]. International Journal of Rock Mechanics & Mining Science, 2006, 43(7):1083-1092.

[16]Moosavi M, Grayeli R. A model for cable bolt-rock mass interaction:Integration with discontinuous deformation analysis (DDA) algorithm[J].International Journal of Rock mechanics & Mining Science, 2006, 43(4): 661-670.

[17]Goel R K ,Anil Swarup ,Sbeorey P R .Bolt length requirement in underground openings[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(5): 802-815.

[18]B.Unver ,N.E.Yasitli. Modeling of strata movement with a special reference to caving mechanism in thick seam coal mining[J].International Journal of Coal Geology ,66(2006): 227-252.

[19]王平.高位厚硬顶板断裂与矿震预测的关系探讨[J].岩土工程学报,2011,33(4):618-623.

[20]同超.大采高综采上覆高位厚硬岩层移动演化规律研究[D].西安:西安科技大学,2016.

[21]李金华.浅埋煤层工作面覆岩破坏及地表移动规律研究[D].西安:西安科技大学,2017.

[22]弓培林.大采高采场围岩控制理论及应用研究[D].太原:太原理工大学,2006.

[23]梁晓丹,刘刚,赵坚.地下工程压力拱拱体的确定与成拱分析[J].河海大学学报(自然科学版),2005,33(3):314-317.

[24]Huang Z.Stabilizing of rock cavern roofs by rockbolts[D].Norway:Norwegian Univ of Science and Technology, 2001.

[25]杜晓丽.采矿岩石压力拱演化规律及其应用的研究[D].徐州:中国矿业大学,2011.

[26]缪协兴.自然平衡拱与巷道围岩的稳定[J].矿山压力与顶板管理,1990, 2: 55-57.

[27]Li Chunlin. Rock support design based on the concept of pressure arch[J]. International Journal of Rock Mechanics and Mining Sciences ,2006 ,43(7): 1083-1090.

[28]黄汉富.薄基岩综放工作面覆岩结构运动与控制研究[D].徐州:中国矿业大学,2012.

[29]BAKUN-MAZOR D, HATZOR Y H, DERSHOWITZ W S. Modeling mechanical layering effects on stability of underground openings in jointed sedimentary rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 262-271.

[30]贺广零,黎都春,翟志文,等.采空区煤柱-顶板系统失稳的力学分析[J].煤炭学报,2007,32(9):897-901.

[31]王树仁,HAGAN P,程岩,等.岩板断裂铰接成拱过程及其失稳特征试验研究[J].岩石力学与工程学报,2012,31(8):1674-1679.

[32]杨建辉,王伟堂,夏建中.煤巷层状顶板锚杆组合铰接拱支护机制数值模拟研究[J].煤炭科学技术,2004,32(6):65-68.

[33]刘德乾.深埋煤层采动过程顶板聚压与煤柱受力的关联性及其断层结构影响[D].徐州:中国矿业大学,2009.

[34]钱鸣高,缪协兴,何富连.工作面“砌体梁”结构的关键块分析[J].煤炭学报,1994,(06):557-563.

[35]高瑞.远场坚硬岩层破断失稳的矿压作用机理及地面压裂控制研究[D].徐州:中国矿业大学,2018.

[36]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,(02):97-106.

[37]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995,3(4):3-12.

[38]石平五.周期来压对顶煤破坏放出的作用[J].煤炭科学技术,1993(1):34-37.

[39]石平五.试论一些矿压问题的能量原理[G].第二届煤矿工作面矿压理论与实践讨论会论文汇编,煤炭工业部矿山压力科技情报中心站,1984.

[40]石平五.论采场支架的作用及其与围岩的关系[J].西安矿业学院学报,1983,(1):54-62.

[41]杨培举.两柱掩护式放顶煤支架与围岩关系及适应性研究[D].徐州:中国矿业大学,2009.

[42]刘清宝.红柳煤矿6m大采高工作面开采技术及设备选型研究[D].西安:西安科技大学,2011.

[43]曹胜根,缪协兴,钱鸣高.“砌体梁”结构的稳定性及其应用[J].东北煤炭技术,1998,(5):22-26.

[44]钱鸣高,张项立,黎良杰,等.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理,1994,(3):6-10.

[45]于洋.特厚煤层坚硬顶板破断动载特征及巷道围岩控制研究[D].徐州:中国矿业大学,2015.

[46]钱鸣高,缪协兴.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.

[47]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2):135-139.

[48]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1992.

[49]钱鸣高.从围岩移动的力学关系论采场支架基本参数的决定[J].煤炭科学技术,1978,(11):1-7.

[50]钱鸣高.采场上覆岩层岩体结构模型及其应用[J].中国矿业学院学报,1982,(2):1-11.

[51]宋振骐.实用矿山压力与控制[M].徐州:中国矿业大学出版社,1988,44-59.

[52]赵通.近距离巨厚坚硬岩层下厚煤层开采顶板的破断失稳机理及控制研究[D].徐州:中国矿业大学,2018.

[53]卢国志,汤建泉,宋振骐.传递岩梁周期裂断步距与周期来压步距差异[J].岩石力学与工程学报,2010,32(4):538-541.

[54]姜福兴.采煤工作面顶板控制设计及其专家系统[M].北京:煤炭工业出版社,2010.

[55]窦林名,贺虎.煤矿覆岩空间结构OX-F-T演化规律研究[J].岩石力学与工程学报,2012,31(3):453-460.

[56]Bingxiang Huang, Jiangwei Liu, Quan Zhang.The reasonable breaking location of overhanging hard roof for directional hydraulic fracturing to control strong strata behaviors of gob-side entry[J].International Journal of Rock Mechanics and Mining Sciences, 2018,103: 1-11.

[57]Dou Linming, He Xueqiu, He Hu, et al.Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal minr[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4):1255-1261.

[58]郭惟嘉,刘利民,郭炳正,等.巨厚坚硬覆盖层矿井开采灾害与防治措施的研究[J].中国地质灾害与防治学报,1994,5(2):37-42.

[59]轩大洋,许家林,冯建超,等.巨厚火成岩下采动应力演化规律与致灾机理[J].煤炭学报,2011,36(8):1252-1257.

[60]Cong Lin, Jianqiang Deng, Yaoru Liu, et al.Experiment simulation of hydraulic fracture in colliery hard roof control[J]. Journal of Petroleum Science and Engineering,2016,138:265-271.

[61]Quansen WU, lishuai JIANG, Quanlin WU, et al.A study on the law of overlying strata migration and separation space evolution under hard and thick strata in underground coal mining by similar simulation[J].DYNA, 2018, 94: 175-181.

[62]姜福兴,姚顺利,魏全德,等.重复采动引发矿震的机理探讨及灾害控制[J].采矿与安全工程学报,2015,32(3):349-355.

[63]姜福兴,张兴民,杨淑华,等.长壁采场覆岩空间结构探讨[J].岩石力学与工程学报,2006,25(5):979-984.

[64]赵科,张开智,王树立.巨厚覆岩破断运动与矿震活动规律研究[J].煤炭科学技术,2016,44(2):118-122.

[65]徐学锋,窦林名,刘军,等.巨厚砾岩对围岩应力分布及冲击矿压影响的“O”型圈效应[J].煤矿安全,2011,42(7):157-160.

[66]王利,张修峰.巨厚覆岩下开采地表沉陷特征及其与采矿灾害的相关性[J].煤炭学报,2009,34(8):1048-1051.

[67]Palchik V. Experimental investigation of apertures of mining-induced horizontal fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2010,47(3):502-508.

[68]Shen B, Poulsen B.Investigation of overburden behaviour for grout injection to control mine subsidence [J]. International Journal of Mining Science and Technology, 2014,24(3):317-323.

[69]于斌,刘长友,杨敬轩,等.坚硬厚层顶板的破断失稳及其控制研究[J].中国矿业大学学报,2013,42(3):342-348.

[70]唐巨鹏,潘一山,徐方军.上覆砾岩运动与冲击矿压的关系研究[J].煤矿开采,2002,7(2):49-51,57.

[71]王毅,曹安业,窦林名,等.开采布局不合理引发冲击危险的研究[J].采矿与安全工程学报,2012,29(6):827-832.

[72]王伟东,曲华,张培鹏,等.高位硬厚岩层下重复采动应力演化规律[J].煤炭技术,2015,34(2):22-24.

[73]王伟东,曲华,张培鹏,等.高位硬厚岩层破断规律力学分析与数值模拟研究[J].煤炭技术,2014,33(8):156-158.

[74]吴志刚,翟明华,周廷振.徐州西部矿区坚硬顶板来压预测预报[J].岩石力学与工程学报,1996,15(2):163-170.

[75]肖江,任奋华,王金安,等.高位巨厚岩浆岩断裂失稳机理研究[J].西安科技大学学报,2008,28(1):1-5.

[76]史红,姜福兴.综放工作面上覆厚层坚硬岩层破断规律的分析及应用[J].岩土工程学报,2006,28(4):525-528.

[77]史红,姜福兴.采场上覆大厚度坚硬岩层破断规律的力学分析[J].岩石力学与工程学报,2004,23(18):3066-3069.

[78]史红.综采放顶煤采场厚层坚硬顶板稳定性分析及应用[D].青岛:山东科技大学,2005.

[79]靳钟铭.坚硬顶板长壁采场的悬梁结构及其控制[J].煤炭学报,1986,(2):71-79.

[80]秦广鹏,蒋金泉,张培鹏,等.硬厚岩层破断机理薄板分析及控制技术[J].采矿与安全工程学报,2006,23(1):30-33.

[81]赵国彦,周士祥.基于厚板理论的滨海开采顶板安全厚度确定[J].中国地质灾害与防治学报,2015,26(4):60-66.

[82]蒋金泉,代进,王普,等.上覆硬厚岩层破断运动及断顶控制[J].岩土力学,2014,35(S1):264-270.

[83]蒋金泉,张培鹏,潘立友,等.重复采动下上覆高位巨厚岩层微震分布特征研究[J].煤炭科学技术,2015,43(1):21-24.

[84]蒋金泉,张培鹏,聂礼生,等.高位硬厚岩层破断规律及其动力响应分析[J].岩石力学与工程学报,2014,33(7):1365-1374.

[85]王晓亮,窦林名,李凤荣,等.采空区上方巨厚硬岩破断的力学分析[J].煤炭科技,2009,(2):13-15.

[86]王平,姜福兴,冯增强,等.高位厚硬顶板断裂与矿震预测的关系探讨[J].岩土工程学报,2011,33(4):618-623.

[87]吴立新,王金庄.连续大面积开采托板控制岩层变形模式的研究[J].煤炭学报,1994,19(3):233-242.

[88]余学义,刘智,牛宗涛,等.采场上覆厚硬岩层的结构稳定性分析[J].煤田地质与勘探,2007,35(5):38-41.

[89]宋颜金,程国强,郭惟嘉.采动覆岩裂隙分布及其空隙率特征[J].岩土力学,2011,32(2):533-536.

[90]吴洪词.长壁工作面基础板结构模型及其来压规律[J].煤炭学报,1997,22(3):37-42.

[91]潘红宇,李树刚,张涛伟,等.Winkler地基上复合关键层模型及其力学特性[J].中南大学学报:自然科学版,2012,43(10):4050-4056.

[92]王金安,刘红,纪洪广.地下开采上覆巨厚岩层断裂机制研究[J].岩石力学与工程学报,2009,28(S1):2815-2823.

[93]王金安,尚新春,刘红,等.采空区坚硬顶板破断机理与灾变塌陷研究[J].煤炭学报,2008,33(8):850-855.

[94]Siqing Qin, Sijing Wang, Long Hui, et al.A new approach to estimating geo-stresses from laboratory Kaiser effect measurement [J]. International Journal of Rock Mechanics and Mining Science, 2008,8.

[95]贺广零,黎都春,翟志文,等.采空区顶板塌陷破坏的力学分析[J].石河子大学学报(自然科学版),2007,25(1):103-108.

[96]缪协兴,安千里,翟明华.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,28(2):113-117.

[97]浦海,缪协兴.采动覆岩中关键层运动对围岩支承压力分布的影响[J].岩石力学与工程学报,2002,21(S2):2366-2369.

[98]缪协兴,陈荣华,浦海,等.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1259.

[99]茅献彪,缪协兴,钱鸣高.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学,1999,20(2):1-4.

[100]缪协兴,茅献彪,孙振武,等.采场覆岩中复合关键层的形成条件与判别方法[J].中国矿业大学学报,2005,34(5):547-550.

[101]杜晓丽.矿岩石压力拱演化规律及其应用的研究[D].徐州:中国矿业大学,2011.

[102]金洪伟,许家林,朱卫兵.覆岩移动的拱-梁组合结构模型的初步研究[C].第十一届中国科协年会论文集.重庆:中国科协,2009:608-613.

[103]汪峰.采动覆岩结构的“关键层-松散层拱”理论及其应用研究[D].徐州:中国矿业大学,2011.

[104]马其华.长壁工作面覆岩“O”型空间结构及相关矿山压力研究[D].青岛:山东科技大学,2005.

[105]黄庆享,张沛,董爱菊.浅埋煤层地表厚砂土层“拱梁”结构模型研究[J].岩土力学,2009,30(9):2722-2726.

[106]潘岳,顾士坦,戚云松.周期来压前受超前隆起分布荷载作用的坚硬顶板弯矩和挠度的解析解[J].岩石力学与工程学报,2012,31(10):2053-2063.

[107]徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5):485-491.

[108]赵阳升,冯增朝,万志军.岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2003,22(11):1781-1783.

[109]贺广零,黎都春,霍志文,等.采空区煤柱-顶板系统失稳的力学分析[J].煤炭学报,2007,32(9):897-901.

[110]李新元,马念杰,钟亚平,等.坚硬顶板断裂过程中弹性能量积聚与释放的分布规律[J].岩石力学与工程学报,2007,26(S1):2786-2793.

[111]Hao Bingyuan, Huang Hui, Feng Zi-jun, et al.The static breaking technique for sustainable and eco-environmental coal mining[J]. The Scientific World Journal,2014,10.

[112]牟宗龙,窦林名.坚硬顶板突然断裂过程中的突变模型[J].矿山压力与顶板管理,2004, (4):90-92.

[113]牟宗龙,窦林名,倪兴华,等.顶板岩层对冲击矿压的影响规律研究[J]. 中国矿业大学学报, 2010, 39(1): 40-44.

[114]谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.

[115]武泉森,蒋金泉,张培鹏,等.巨厚坚硬岩浆岩不同配比的模型试验研究[J].煤矿开采,2015,20(3):3-6.

[116]魏小文,纪洪广,李文.巨厚岩浆岩下部开采时的破坏机理分析[J].中国矿业,2007,16(6):91-93.

[117]李宝富,李小军,任永康.工作面上覆巨厚砾岩层运动对冲击地压诱因的实验与理论研究[J].煤炭学报,2014,39(S1):31-37.

[118]Li Nan, Wang Enyuan, Ge Maochen, et al. The fracture mechanism and acoustic emission analysis of hard roof:a physical modeling study[J]. Arabian Journal of Geosciences, 2015.

[119]杨合远,申法建,吴德义.新集二矿巨厚砂岩顶板覆岩应力位移场数值模拟[J].安徽建筑工业学院学报,2014,22(2):71-73+82.

[120]Hu He, Linming Dou, Jun Fan, et al.Deep-hole directional fracturing of thick hard roof for rockburst prevention [J].Tunnelling and Underground Space Technology, 2012,32:34-43.

[121]杨敬轩,鲁岩,刘长友,等.坚硬厚顶板条件下岩层破断及工作面矿压显现特征分析[J].采矿与安全工程学报,2013,30(2):211-217.

[122]Tong Zhao, Changyou Liu, Kaan Yetilmezsoy, et al. Realization and engineering application of hydraulic support optimization in residual coal remining[J]. Journal of Intelligent & Fuzzy Systems,2017,32:2207-2219.

[123]Tong Zhao, Changyou Liu. Roof instability characteristics and pre-grouting of the roof caving zone in residual coal mining[J]. Journal of Geophysics and Engineering. 2017, 14,1463.

[124]姚顺利,孟广峰,张胜泉,等.巨厚岩层稳定性与冲击地压防治关系研究[J].煤矿安全,2015,46(05):63-66.

[125]Mahdi Shabanimashcool, Charlie C. Li. Analytical approaches for studying the stability of laminated roof strata[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 79: 99-108.

[126]祝捷,张敏,唐俊,等.顶板断裂瞬间煤体稳定性的动力学分析及数值模拟[J].煤炭学报,2014,39(2):253-257.

[127]Schweiger H F, Kummerer C,Otterbein R.Numerical modelling of settlement compensation by means of fracture grouting [J]. Soils and Foundations, 2004, 44(1):71-86.

[128]谭吉世,纪洪广,姚志贤.巨厚岩浆岩下开采覆岩移动规律及采场压力变异性分析[J].煤炭技术,2007,(26)3:34-37.

[129]曲华,张培鹏,王伟东,等.巨厚岩层下重复采动采场支承压力分布规律数值分析[J].煤炭技术,2014,33(09):166-169.

[130]曹胜根,姜海军,王福海,等.采场上覆坚硬岩层破断的数值模拟研究[J].采矿与安全工程学报,2013,30(2):205-210.

[131]王家臣,潘卫东,李诚,等.葛泉矿坚硬顶板综放开采三维数值模拟[J].采矿与安全工程学报,2008,25(3):272-276.

[132]程家国,曲华.深井高地压坚硬顶板采场围岩特性的数值模拟[J].采矿与安全工程学报,2006,23(1):70-73.

[133]王金安,李大钟,尚新春,等.采空区坚硬顶板流变破断力学分析[J].北京科技大学学报,2011,33(2):142-148.

[134]司亮,徐学锋,庞龙龙,等.巨厚上覆砾岩厚度对采动围岩应力演化影响规律数值模拟研究[J].煤矿开采,2015,20(3):101-105.

[135]马建宏,侯江涛,张兵奇.巨厚关键层条件下远距离下保护层开采保护效果分析[J].煤炭工程,2014,46(2):67-70,74.

[136]曹建军,马其华,王宜泰.基于采场覆岩空间结构的宽条带开采技术研究[J].采矿与安全工程学报,2008,25(1):68-72.

[137]杜锋,白海波,姜广辉.软弱薄基岩放顶煤安全开采关键问题研究[J].采矿与安全工程学报,2013,30(3):337-342.

[138]杜锋.厚松散层薄基岩下综放开采留设防砂煤岩柱研究[D].淮南:安徽理工大学,2008.

[139]杨培举,何烨,郭卫彬.采场上覆巨厚坚硬岩浆岩致灾机理与防控措施[J].煤炭学报,2013,38(12):2106-2112.

[140]Chen S G, Guo H.Numerical simulation of bed separation development and grout injecting into separations [J].Geotechnical and Geological Engineering, 2008, 26(4):375-385.

[141]周楠,李泽君,张吉雄,等.采区坚硬岩层动力灾害致灾能量演化及充填弱化机理研究[J].采矿与安全工程学报,2023,40(05):1078-1091.

[142]章征峰,何晓义,林森海.深井连续开采厚硬覆岩空间演化规律研究[J].中国设备工程,2023,(12):10-13.

[143]孟祥军,张广超,李友,等.深厚表土覆岩结构运移演化及高应力突变致灾机理[J].煤炭学报,2023,48(05):1919-1931.

[144]白有社,岳正喜,杨占盈.彬长矿区保水与采煤分析[J].中国煤炭地质,2008,20(1): 21-24.

[145]伍永平.彬长矿区坚硬特厚煤层综放面矿压显现特征[J].煤炭科学技术,2009,37(1): 59-61.

[146]杜飞.大佛寺矿综放工作面矿压规律分析及区段煤柱宽度优化[D].西安:西安科技大学,2013.

[147]杨红民.特厚煤层复杂开采条件下动力显现机理及防治技术[J].煤矿安全,2014,45(7): 124-126,130.

[148]蔡怀恩.彬长矿区地面塌陷特征及形成机理研究[D].西安:西安科技大学,2008.

[149]席国军,王兵建,韩国安.胡家河煤矿影响冲击地压的地质因素分析[J].陕西煤炭,2015,(4): 43-45,75.

[150]段王拴,高喜才,窦娟,等.坚硬特厚煤层综放工作面覆岩破坏运动规律[J].西安科技大学学报,2008,28(2):211-214.

[151]李伟.胡家河煤矿冲击矿压诱发机理与防治技术应用研究[D].西安:西安科技大学,2019.

[152]苏振国.胡家河煤矿特厚坚硬煤层煤柱区冲击矿压规律及防治研究[D].徐州:中国矿业大学,2015.

[153]李业.高家堡煤矿综放工作面冲击地压防控技术研究[D].西安:西安科技大学,2011.

[154]刘育晖,张晔,赵恒.陕西彬长矿区冲击地压防治现状[J].煤矿开采,2017,22(6): 92-95,103.

[155]张卫军.孟村矿深埋特厚煤层巷道冲击地压预测预报与防治技术[D].西安:西安科技大学,2019.

[156]李臣.蒙陕矿区双巷布置留巷围岩破坏机理及适用采深研究[D].北京:中国矿业大学(北京),2022.

[157]王博.陕蒙深部矿区典型动力灾害发生机理及防治研究[D].北京:北京科技大学,2021.

[158]崔峰,张廷辉,来兴平,等.冲击地压矿井不同采动强度下的开采扰动特征及其产能[J].煤炭学报,2021,46(12):3781-3793.

[159]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):381-385.

[160]许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5).762-769.

[161]王晓振,许家林,朱卫兵.主关键层结构稳定性对导水裂隙演化的影响研究[J].煤炭学报,2012,37(4):606-612.

[162]张明.厚硬岩层矿井矿震与冲击复合动力灾害防控研究[D].北京科技大学,2017.

[163]朱志洁.大同矿区坚硬顶板运动特征及对综放工作面矿压影响研究[D].阜新:辽宁工程技术大学,2018.

[164]杨雷磊.郭家河煤矿综放开采高位厚硬岩层移动破坏规律研究[D].西安:西安科技大学,2018.

[165]杨艺,孟璐.亭南煤矿微震监测数据与工作面涌水量关系研究[J].华北科技学院学报,2021,18(01):22-29.

[166]李杨.西部煤炭高强度开采微震监测及关键层破断研究[D].沈阳:东北大学,2017.

[167]陈祖玺.山区开采沉陷监测及数据处理方法研究[D].西安:西安科技大学,2013.

[168]余学义,李邦帮,李瑞斌,等.西部巨厚湿陷性黄土层开采损害程度分析[J].中国矿业大学学报,2008,160(01):43-47.

[169]王乃国,朱斯陶,王慧涛,等.深厚表土薄基岩综放工作面地表沉陷与冲击地压联动效应研究[J].采矿与安全工程学报,2016, 33(2): 214-219.

[170]National Coal Board (NCB).Subsidence engineer’s handbook[M].London:NCB Mining Department,1975.

[171]王正义.急倾斜特厚煤层水平分段开采夹持型冲击失稳机理研究[D].徐州:中国矿业大学,2019.

[172]傅鑫.深井冲击煤层大断面沿空掘巷围岩控制技术研究[D].青岛:山东科技大学,2020.

[173]刘俊杰.亭南煤矿二盘区开采地表移动变形规律研究[D].西安:西安科技大学,2016.

[174]崔峰,杨彦斌,来兴平等.基于微震监测关键层破断诱发冲击地压的物理相似材料模拟实验研究[J].岩石力学与工程学报,2019,38(04):803-814.

[175]朱建明,程海峰,姚仰平.基于SMP强度准则的岩石残余应力与围压的关系[J].煤炭学报,2013,38(S1):43-48.

[176]朱建明,程海峰,姚仰平.基于SMP准则的破裂岩统计损伤软化模型及其应用研究[J].岩石力学与工程学报,2013,32(S2):3160-3168.

[177]王金东.综放开采覆岩高位结构稳定性极强矿压形成机理研究[D].西安:西安科技大学,2016.

[178]韩红凯.关键层对支承压力分布影响规律的理论研究[D].徐州:中国矿业大学,2019.

[179]周峰,宰金珉,梅国雄.改进广义文克尔模型探讨[J].岩土力学与工程新进展,2013,38(S1):43-48.

[180]TERZAGHI K, PECK R B. Soil Mechanice in Engineering Practice[M]. 2nd ed.New York: John Wiley & Sons, 1967.

[181]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.

[182]高永刚,马科,贾增林.彬长矿区高位坚硬巨厚砂岩层(洛河组)破断规律分析[J] .陕西煤炭,2021,40(z1):13-16,21.

[183]徐芝纶.弹性力学[M].北京:高等教育出版社,1982.

[184]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002.

[185]崔树江.大采高超大采场覆岩破坏运动特征及控制研究[D].北京:中国矿业大学(北京),2016.

[186]樊克松.特厚煤层综放开采矿压显现与地表变形时空关系研究[D].北京:煤炭科学研究总院,2019.

[187]张国华,李凤仪.矿井围岩控制与灾害防治[M].徐州:中国矿业大学出版社,2009.

[188]BUCZKOWSKI R, TORBACKI W. Finite element modelling of thick plates on two-parameter elastic foundation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001,25(14): 1409-1427.

[189]HENWOOD D J, WHITEMAN J R, YETTRAM A L. Finite difference solution of a system of firstorder partial differential equations[J]. International Journal for Numerical Methods in Engineering,2010, 17(9): 1385-1395.

[190]CIVALEK ÖMER. Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method[J]. International Journal of Mechanical Sciences,2007, 49(6): 752-765.

[191]SHEN P, HE P. Bending analysis of rectangular moderately thick plates using spline finite element method[J]. Computers and Structures, 1995, 54(6): 1023-1029.

[192]TIMOSHENKO S P, WOINOWSKY-KRIEGER S W. Theory of Plates and Shells[M]. New York:McGraw-Hill, 1959.

[193]HENWOOD D J, WHITEMAN J R, YETTRAM A L. Fourier series solution for a rectangular thick plate with free edges on an elastic foundation[J]. International Journal for Numerical Methods in Engineering, 1982, 18(12): 1801-1820.

[194]YOO H H, PIERRE C. Modal characteristic of a rotating rectangular cantilever plate[J]. Journal of Sound and Vibration, 2003, 259(1): 81-96.

[195]钟阳,孙爱民,周福霖等.弹性地基上四边自由矩形薄板分析的有限积分变换法[J].岩土工程学报,2006(11):2019-2022.

[196]SNEDDON I N. Application of Integral Transforms in the Theory of Elasticity[M]. New York:McGraw-Hill Book Company, 1975.

[197]AN D, XU D, NI Z, et al, Finite integral transform method for analytical solutions of static problems of cylindrical shell panels[J]. European Journal of Mechanics/A Solids, 2020, 83: 104033.

[198]ULLAH S, ZHOU J, ZHANG J, et al, New analytic shear buckling solution of clamped rectangular plates by a two-dimensional generalized finite integral transform method[J]. International Journal of Structural Stability and Dynamics, 2020, 20(2).

[199]LI R, TIAN B, ZHONG Y. Analytical bending solutions of free orthotropic rectangular thin plates under arbitrary loading[J]. Meccanica, 2013, 48(10): 2497-2510.

[200]TIAN B, LI R, ZHONG Y. Integral transform solutions to the bending problems of moderately thick rectangular plates with all edges free resting on elastic foundations[J]. Applied Mathematical Modelling, 2015, 39(1): 128-136.

[201]田斌,钟阳,李锐等.弹性矩形悬臂中厚板弯曲问题积分变换解[J].大连理工大学学报,2011,51(03):381-386.

[202]李锐,田宇,郑新然等.求解弹性地基上自由矩形中厚板弯曲问题的辛-叠加方法[J].应用数学和力学,2018,39(08):875-891.

[203]费新华. 弹性地基上四边自由正交异性矩形中厚板的弯曲[D].西安建筑科技大学,2005.

[204]KHALILI M R, MALEKZADEH K, MITTAL R K. A new approach to static and dynamic analysis of composite plates with different boundary conditions[J]. Compos. Struct., 2005, 69: 149-155.

[205]齐庆新,窦林名.冲击地压理论与技术[M].中国矿业大学出版社,2008.3.

[206]齐庆新,李一哲,赵善坤,等.我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J].煤炭科学技术,2016,47(9):1-40.

[207]赵毅鑫,周金龙,刘文岗.新街矿区深部开采邻空巷道受载特征及冲击失稳规律分析[J].煤炭学报,2020,45(05):1595-1606.

[208]翁明月,王书文.内蒙古呼吉尔特矿区新建矿井冲击地压治理模式探索[J].煤矿开采,2018,23(01):60-64.

[209]孙东飞,尚奇.深井6.8m大采高大断面沿空掘巷窄煤柱宽度及围岩控制研究[J].煤矿安全,2022,53(07):166-173.

[210]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].中国矿业大学出版社,2010.

[211]申志平.沿空掘巷煤柱宽度与支护参数的研究与应用[J].煤炭科学技术,2010,38(07):31-34.

[212]董文敏.高瓦斯矿大采高工作面区段煤柱尺寸合理确定[J].煤炭科学技术,2007,35(12):67-70.

[213]王琦.亭南矿大采高工作面区段煤柱尺寸优化研究[D].西安:西安科技大学,2016.

[214]彭林军.特厚煤层沿空掘巷围岩变形失稳机理及控制对策[D].北京:中国矿业大学(北京),2013.

中图分类号:

 TD325    

开放日期:

 2026-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式